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Abstract

Current one-stage action detection methods, which si-
multaneously predict action boundaries and the corre-
sponding class, do not estimate or use a measure of con-
fidence in their boundary predictions, which can lead to
inaccurate boundaries. We incorporate the estimation
of boundary confidence into one-stage anchor-free detec-
tion, through an additional prediction head that predicts
the refined boundaries with higher confidence. We ob-
tain state-of-the-art performance on the challenging EPIC-
KITCHENS-100 action detection as well as the standard
THUMOS14 action detection benchmarks, and achieve im-
provement on the ActivityNet-1.3 benchmark.

1. Introduction
Current video understanding approaches [12, 6, 40]

recognise actions on short, trimmed videos. These assume
the boundaries of actions are already given, and thus fo-
cus on the class prediction problem solely. However, most
real-life videos are untrimmed and contain irrelevant visual
content. Temporal action detection aims to temporally lo-
cate the boundaries of actions and classify them in longer,
unscripted and untrimmed videos [9, 14, 16, 4], which is
crucial for video analysis.

Two-stage action detection approaches, such as [51, 22,
2, 20, 7, 37], were built on top of successful recognition
models [12, 11, 45] and widely used as reference methods
on simple action detection baselines [16, 4]. They first gen-
erate candidate proposals based on pre-defined sliding win-
dows or matching locations with high probabilities scores,
and then classify them to obtain the final predictions. How-
ever, such two-stage methods are inefficient for the wider
variety of actions, action lengths and action/background
densities found in longer untrimmed videos, since a large
number of redundant candidate proposals are produced by
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Figure 1. An illustration of the misalignment between the value
of tIoU and classification scores of predicted proposals, caused by
the absence of boundary confidences. Green denotes the ground
truth, blue and orange denote predictions produced by Action-
Former [48]. Specifically, when the boundary confidence is not
considered as the ranking metric, the prediction with a higher clas-
sification score but poor boundaries (blue) is chosen, rather than
the prediction with better boundaries (orange).

sliding windows and location matching.
More recently, one-stage methods have been proposed,

where the network simultaneously predicts the current ac-
tion for each timestep and its associated boundaries [47, 19,
48]. In this paper, we show that these methods are missing
the boundary confidence in proposal regression and eval-
uation. This can lead to imprecise localisation due to in-
sufficient boundary information, especially in the case of
actions of various lengths found in egocentric data, such
as EPIC-KITCHENS[9]. An example of the action ‘rinse
cloth’ from [9] is shown in Figure 1, where the prediction
with a higher classification score has a lower overlap be-
tween boundaries and ground truth (blue), while the predic-
tion with better boundaries has a lower classification score
(orange). This is due to the absence of boundary confi-
dences, resulting in poor regression and unreliable scores.

In this paper, we consider the extent of an action pro-
posal and estimate the confidence of the start and end
frames of the action segment, jointly. We supervise the
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confidence from the relative distance between the estimated
frame and the ground truth frame, for both the start and
end boundaries of the action. This confidence information
is leveraged to refine the boundaries of proposals which
leads to state-of-the-art action detection results on EPIC-
KITCHENS-100 [9] and THUMOS14 [16], and improve-
ment on ActivityNet-1.3 [4].

In summary, we introduce a boundary head for one-
stage anchor-free action detection which estimates bound-
ary confidence scores based on relative distances. We ob-
tain state-of-the-art results on EPIC-KITCHENS-100 and
THUMOS14 action detection, using the same backbone as
the current state-of-the-art. Notably, significant improve-
ment is achieved on EPIC-KITCHENS-100, which indi-
cates that our method performs well on complex actions
of various lengths. Further, we provide detailed ablations,
including investigating confidence scores and the effect of
action lengths.

2. Related Work
Action detection methods can be grouped into two cate-

gories: two-stage and one-stage.
Two-stage action detection: Two-stage methods first gen-
erate a set of candidate proposals and then classify each
proposal. They typically generate proposals by pre-defined
sliding window and grouping temporal locations with high
probabilities of being within an action [51] or close to a
boundary [22, 2]. Action and boundary combinations can
be selected based on high boundary confidence [20, 7], or
a combination of separately calculated boundary and ac-
tion scores [37]. This generation process can struggle when
presented with sequences containing many dense actions of
varying lengths, such as EPIC-KITCHENS-100 [9].
One-stage action detection: One-stage methods improve
detection efficiency by simultaneously predicting action
proposals and their associated classes. One approach is to
generate candidate boundaries by modelling temporal rela-
tionships [13, 21, 29, 43, 24]. However, these methods rely
on pre-defined anchors, causing them to struggle when pre-
sented with a wide range of action durations. Inspired by
the DETR framework [5] for object detection, some works
use learned action [27] or graph [30] queries as input to a
transformer decoder. Whilst a promising direction, these
methods are not suitable for long videos due to attention
scaling issues. Anchor-free methods [47, 19, 48] simulta-
neously predict classification scores and a pair of relative
distances to boundaries for each timestep.

Recently, ActionFormer [48] generated these predictions
with a multi-scale transformer encoder to model both short-
and long-range temporal dependencies, with simple classi-
fication and boundary regression heads, and achieved state-
of-the-art results on a number of benchmarks. In this work,
we adopt the same multi-scale transformer encoder and

pipeline as ActionFormer [48], but incorporate the ability
to estimate boundary confidences.

3. Method
We first briefly review ActionFormer [48], and then in-

troduce our novel boundary head, which is incorporated into
ActionFormer to achieve better performance.

3.1. Overview of ActionFormer

ActionFormer first extracts a feature pyramid based on
local self-attention, and then uses light-weight heads to si-
multaneously predict classification scores and a pair of rel-
ative distances to boundaries for each timestep.
Transformer-based feature pyramid: ActionFormer ex-
tracts features from an untrimmed sequence and passes
them to a multi-scale transformer encoder [48] to construct
a feature pyramid sequence. The feature pyramid sequence
contains multiple resolutions for each timestep, which al-
lows a single timestep to detect short and long actions.
Prediction heads: A classification head uses the feature
pyramid sequence to predict action labels and classification
scores for each timestep in multiple resolutions, and simi-
larly, a regression head predicts relative distances to the pre-
dicted start and end boundary locations, for every timestep
in the feature pyramid.
Training and Inference: The network is trained by mini-
mizing the multi-part losses of the classification head and
the regression head. For the classification head, a focal
loss [23] is used to balance loss weights between easy and
hard examples. For the regression head, it minimises the
distance between the ground truth boundaries and the pre-
dicted boundaries using the GIoU loss [35]. At inference,
they predict a pair of relative distances to boundaries and
a classification score to give a proposal for each timestep
across all pyramid levels. These candidate proposals are
ranked by classification scores and further filtered to obtain
the final outputs of actions.

3.2. Boundary Head

In ActionFormer, the regression head nominates where
the boundaries are, without providing any confidence of
the locations as boundaries. To address this, we compute
the boundary confidence at the same time as the boundary
location prediction. One approach could be using a sepa-
rate branch to directly predict boundary confidence. How-
ever, this may lead to learning conflicts in the anchor-free
pipeline, where the original network must learn the relative
distances between the current temporal location and ground
truth boundaries, rather than the confidence that the current
location is a boundary (demonstrated in Section 4.3).

We design a simple but effective boundary head, which
computes boundary probabilities via a confidence scaling,



Figure 2. Overview of our boundary head. Taking in the feature
pyramid sequence, two branches share most of the weights but
have separate top layers. The first branch predicts start and end
boundary locations. The second branch predicts boundary confi-
dence. A confidence scaling encodes the assumption that a loca-
tion t can be more confident about boundaries which are closer.

weighted by how close boundaries are. This approach, in-
stead of directly producing boundary probabilities, means
the network is better able to keep the consistency of two
parallel branches in predicting and optimizing and make the
learning process easier. As shown in Figure 2, the bound-
ary head takes in the feature pyramid sequence, and con-
tains two branches. These two branches share most of the
weights, as there is shared information between the two
tasks (e.g. high start confidence and small relative start
offset are related), but they have separate top layers. The
first branch predicts relative distances (r̂st , r̂

e
t ) to the start

and end boundaries for each location t in the feature pyra-
mid [19, 48]. Thus, the corresponding predicted start and
end locations are obtained as ŝt = t − r̂st and êt = t + r̂et .
The second branch predicts start and end confidence tokens
(b̂st , b̂

e
t ) that are further fed into scaling processing (will be

introduced next) to calculate the boundary confidence that
location t is either an action start or an action end.
Confidence scaling: To assign a confidence that location t
is a start (p̂st ) or end (p̂et ) boundary, the confidence tokens
are weighted such that

p̂st = exp
(
−(b̂st )

2/2σ2
)

and p̂et = exp
(
−(b̂et )

2/2σ2
)
.

(1)
Here, σ is a scaling hyperparameter, determined experimen-
tally in Section 4.3. Scaling in this manner encodes the
assumption that a location t can be more confident about
boundaries which are closer. This has previously been ex-
plored to improve online detection [18, 31], but not for of-
fline use cases.
Label assignment: We require ground truth confidence val-
ues as supervision signals. We omit all locations where the
GIoU between the ground truth and the predicted bound-

ary locations is less than a threshold β. We then adopt the
BSN approach [22] and denote the ground truth start confi-
dence for location t as pst . Specifically, we define a region
of length 1 timestep centered on location t, and calculate
pst as its overlap ratio to a region of length d/5 centered on
the ground truth start location, where d is the length of the
ground truth action. This can be thought of as the value at
location t of a start probability curve [22, 20, 50], and is
visualised in Figure 2. In the case of multiple overlapping
ground truth start locations, we take the maximum single
overlap ratio. The ground truth end confidence pet is calcu-
lated similarly.
Training: We minimise the difference between the ground
truth and predicted confidences using the following two loss
functions:

Ls
conf =

1

T

∑
t

(p̂st − pst )2 and Le
conf =

1

T

∑
t

(p̂et − pet )2,

(2)
where T is the total number of locations used for training
from all levels of the feature pyramid sequence.

In an end-to-end manner, we incorporate our confidence
losses into the total loss and optimize a weighted combina-
tion of all the losses:

Ltotal = Lcls + γLGIoU + ω(Ls
conf + Le

conf ) , (3)

where Lcls and LGIoU are losses for classification and re-
gression and are the same as in ActionFormer.

3.3. Post-processing

The network produces a proposal from each location t in
the feature pyramid containing a predicted start boundary
ŝt and a predicted end boundary êt. It also gives an action
ât and an action confidence score p̂at taken from the logits.
We can obtain the boundary confidences for this proposal
by looking up the start boundary confidence at location ŝt
and the end boundary confidence at location êt. These con-
fidences are p̂sŝt and p̂eêt .

We first multiply the start and end confidences to get the
boundary confidence, then combine it with the action confi-
dence to give a single final confidence for the proposal:

ĉ = p̂at
√
p̂sŝp̂

e
ê , (4)

where a square root is used to balance the contributions of
boundary and action confidences (demonstrated in Section
4.3). Finally, we follow standard practice [22, 20, 37, 48]
and suppress redundant proposals with Soft-NMS [3] to ob-
tain a final set of M predictions Φ̂ = {(ŝ, ê, ĉ, â)m}Mm=1.

4. Experiments
4.1. Setup

Datasets: We evaluate our method on three datasets:
EPIC-KITCHENS-100 [9], ActivityNet-1.3 [4] and THU-



Method Venue Feature mAP@IoU
0.1 0.2 0.3 0.4 0.5 Avg.

BMN [20, 9] IJCV 2022 SF [12] 6.95 6.10 5.22 4.36 3.43 5.21
AGT [30] arXiv 2021 I3D [6] 7.78 6.92 5.53 4.22 3.86 5.66
TSN [20, 15] ICLR 2022 TSN [40] 10.24 9.61 8.94 7.96 6.79 8.71
OWL [34] arXiv 2022 SF(A,V)[12, 17] 11.01 10.37 9.47 8.24 7.26 9.29
TAda2D [20, 15] ICLR 2022 TAda2D [15] 15.15 14.32 13.59 12.18 10.65 13.18
AF [48]∗ ECCV 2022 SF [12] 18.02 17.41 16.44 15.17 13.23 16.05
Ours - SF [12] 19.19 18.61 17.47 16.30 14.33 17.18

Table 1. Comparative results on the the EPIC-KITCHENS-100 validation set for the action task (i.e. predict both verb and noun). ∗AF
or ActionFormer only provides results on verb and noun detection separately, so we produce results by modifying it with our multitask
classification head. Bold for best model and underline for second best.

MOS14 [16]. Two of the most widely used baselines for
action detection are ActivityNet-1.3 [4] and THUMOS14
[16]. ActivityNet-1.3 contains 19,994 videos with 23,064
instances of 200 action classes, at an average of 1.5 in-
stances per video. THUMOS14 consists of 413 videos with
38,690 instances of 20 action classes, and an average of 15.4
instances per video.

More recently, interest in wearable cameras has led to the
collection and annotation of large-scale egocentric datasets,
such as EPIC-KITCHENS-100 [9], which consists of 700
videos with 89,977 verb/noun action instances. There are
96 verb and 300 noun classes, with 4,053 complicated ac-
tion instances (e.g. verb/noun pairs such as “pickup fork”
rather than “cycling”), with much longer sequences contain-
ing an average of 128 action instances per video. They also
contain a wider range of action durations, along with signif-
icant overlap between actions due to participants acting in
a natural manner in familiar environments. These provide a
much more difficult test for action detection methods [10].
Evaluation Metrics: Following the official settings, we
use mean Average Precision (mAP) at different Intersec-
tion over Union (tIoU) thresholds to evaluate the perfor-
mance of action detection. The mAP is the average pre-
cision across all action classes. On EPIC-KITCHENS-100,
the tIoU thresholds are set to {0.1, .., 0.5} at step size of
0.1. On ActivityNet-1.3 they are {0.5, 0.75, 0.95}, and on
THUMOS14 they are {0.3, .., 0.7} at step size of 0.1.
Baselines: We compare against state-of-the-art (SOTA) ap-
proaches on EPIC-KITCHENS-100 [20, 30, 40, 34, 15, 48],
ActivityNet-1.3 and THUMOS14 [22, 20, 44, 2, 37, 32, 39,
7, 41, 42, 26, 51, 29, 27, 19, 8, 25] benchmarks. As Ac-
tionFormer only provides results and code for separate verb
and noun detections (not combined action detection which
is standard practice) on EPIC-KITCHENS-100, we modify
it with our classification head to provide comparable results.
We also provide separate verb and noun detection results of
our own to compare.
Implementation details: For feature extraction and pyra-
mid generation, we follow ActionFormer [48] for all
datasets. Briefly, we use SlowFast [12] features for EPIC-
KITCHENS-100, TSP [1] features for ActivityNet-1.3 and
I3D [6] for THUMOS14. The transformer encoder gener-

ates a feature pyramid with 6 levels, with a level scaling
factor of 2. The length of the first pyramid level is 2304
for EPIC-KITCHENS-100 and THUMOS14, and 768 for
ActivityNet-1.3.

For label assignment and training, we find the ground
truth action that location t is in and take its start s∗ and end
e∗ boundaries. When multiple ground truth regions overlap
with t, only the shortest ground truth region is used to make
regression during training easier. Following [38, 49, 48], if
a location t is not in an action, or is too close to a ground
truth action boundary (i.e. not in the middle α timesteps
of an action), it is omitted from the loss calculation. The
value of α is set as 3. In Equation 1, we select T samples to
train the network. Specifically, we set the GIoU threshold
for rejecting proposals used to train boundary confidence
prediction as β = 0.5. For the total loss in Equation 3,
the weights are set as γ = 0.5 and ω = 0.5. These are
the same for all datasets. On EPIC-KITCHENS-100, the
classification loss weight for verb/noun is set as 0.5.

In the classification head, ActionFormer just returns
logits and predicts actions for a single action task (as in
ActivityNet-1.3 and THUMOS14). For the compound ac-
tions found in EPIC-KITCHENS-100, which are verb/noun
pairs, it is not practical to return confidences for every pos-
sible verb and noun combination. Instead, we take the top-v
verb and top-n noun predictions. The candidate actions are
every combination of top-v verbs and top-n nouns, and their
confidences are the verb and noun logits multiplied together.
Our main results use v = 10 and n = 30.

4.2. Results

Main Results: Tab. 1 shows the EPIC-KITCHENS-100 re-
sults, which is the most challenging dataset we use. Our
method outperforms all previous work in all mAP@IoUs.
Most importantly, it surpasses the current SOTA work, i.e.
ActionFormer [48] modified with our verb/noun classifica-
tion head. This establishes a direct comparison against the
the same architecture, but without boundary confidence.

Tab. 2 shows a comparison of noun detection and verb
detection separately (i.e. separate training and testing runs
for each). Although this is a simpler task and not the rec-



Task Method mAP@IoU
0.1 0.2 0.3 0.4 0.5 Avg.

Verb G-TAD [44, 48] 12.1 11.0 9.4 8.1 6.5 9.4
AF [48] 26.6 25.6 24.4 22.4 18.3 23.4
Ours 28.0 27.2 25.7 23.7 20.1 25.0

Noun G-TAD [44, 48] 11.0 10.0 8.6 7.0 5.4 8.4
AF [48] 25.5 24.3 22.6 20.3 16.6 21.9
Ours 26.0 24.4 23.0 20.4 16.7 22.1

Table 2. Comparative results for separate verb and noun models on the EPIC-KITCHENS-100 validation set. All methods use the same
SlowFast features [12]. Bold for best model and underline for second best.

Method Venue ActivityNet-1.3 THUMOS14
Feature 0.5 0.75 0.95 Avg. Feature 0.3 0.4 0.5 0.6 0.7 Avg.

BSN [22] ECCV 18 TSN [40] 46.5 30.0 8.0 30.0 TSN [40] 53.5 45.0 36.9 28.4 20.0 36.8

BMN [20] ICCV 19 TSN [40] 50.1 34.8 8.3 33.9 TSN [40] 56.0 47.4 38.8 29.7 20.5 38.5

G-TAD [44] CVPR 20 TSP [1] 51.3 37.1 9.3 35.8 TSN [40] 54.5 47.6 40.2 30.8 23.4 39.3

BC-GNN [2] ECCV 20 TSN [40] 50.6 34.8 9.4 34.3 TSN [40] 57.1 49.1 40.4 31.2 23.1 40.2

BSN++ [37] AAAI 21 TSN [40] 51.3 35.7 8.3 34.9 TSN [40] 59.9 49.5 41.3 31.9 22.8 41.1

TCANet [32] CVPR 21 SF [12] 54.3 39.1 8.4 37.6 TSN [40] 60.6 53.2 44.6 36.8 26.7 44.3

TVNet [39] VISAPP 22 TSN [40] 51.4 35.0 10.1 34.6 TSN [40] 64.7 58.0 49.3 38.2 26.4 47.3

DCAN [7] AAAI 22 TSN [40] 51.8 36.0 9.5 35.4 TSN [40] 68.2 62.7 54.1 43.9 32.6 52.3

RCL[41] CVPR 22 TSP [1] 55.2 39.0 8.3 37.7 TSN [40] 70.1 62.3 52.9 42.7 30.7 51.7

RefactorNet [42] CVPR 22 I3D [6] 56.6 40.7 7.4 38.6 I3D [6] 70.7 65.4 58.6 47.0 32.1 54.8

MUSES [46, 26] AAAI 22 I3D [6] 53.2 36.2 10.6 35.5 I3D [6] 71.5 67.0 60.0 48.9 33.0 56.1

SSN [51] ICCV 17 TS [36] 43.3 28.7 5.6 28.3 TS [36] 51.9 41.0 29.8 - - -

GTAN [29] CVPR 19 P3D [33] 52.6 34.1 8.9 34.3 P3D [33] 57.8 47.2 38.8 - - -

TadTR [27] TIP 22 I3D [6] 49.1 32.6 8.5 32.3 I3D [6] 62.4 57.4 49.2 37.8 26.3 46.6

AFSD [19] CVPR 21 I3D [6] 52.4 35.3 6.5 34.4 I3D [6] 67.3 62.4 55.5 43.7 31.1 52.0

TALLFormer [8] ECCV 22 SW [28] 54.1 36.2 7.9 35.6 SW [28] 76.0 - 63.2 - 34.5 59.2

MRBD [25] CVPR 22 SF [12] 50.5 36.0 10.8 35.1 SF [12] 69.4 64.3 56.0 46.4 34.9 54.2

AF [48] ECCV 22 TSP [1] 54.1 36.3 7.7 36.0 I3D [6] 75.5 72.5 65.6 56.6 42.7 62.6

AF [48]† ECCV 22 TSP [1] 54.2 36.9 7.6 36.0 I3D [6] 82.1 77.8 71.0 59.4 43.9 66.8

Ours - TSP [1] 54.1 37.3 8.0 36.1 I3D [6] 82.7 79.0 71.7 60.9 46.3 68.1

Table 3. Comparative results on ActivityNet-1.3 and THUMOS14, grouped by two-stage methods (top) and one-stage methods (bottom).
† means results from latest ActionFormer codebase. Bold for best model and underline for second best.

ommended evaluation metric, it allows us to compare our
method with the reported results from ActionFormer, which
we also outperform.

Tab. 3 shows results for ActivityNet-1.3 and THU-
MOS14. In general, two-stage methods (top) are strong
on ActivityNet-1.3 as it is a simple test, with one action
per video, but our method still outperforms other one-stage
methods (bottom). On the more challenging THUMOS14
dataset with multiple actions per video, one-stage methods
are better. Our method achieves SOTA results using the
same features as the best two-stage and one-stage methods.
Qualitative Results: Figure 3 shows the qualitative il-
lustrations on EPIC-KITCHENS-100 validation set. The
global results (bottom two lines) indicate the model’s ca-
pability to effectively detect dense actions with varying
classes and lengths. The local results (middle three lines)
show that our method could predict boundaries closer to
the ground truth than ActionFormer, demonstrating that pre-
dicting boundary confidence is critical for one-stage action
detection. In addition, our method captures more hard ac-

tions with overlapping than ActionFormer, such as “close
cupboard” in the 73rd second and “put box” in the 72th sec-
ond. ActionFormer misses these actions most likely due
to imprecise predictions that lack a measure of confidence,
especially for actions with similar visual content (such as
frames in the top line: “move board” and “put box”, “close
cupboard” and “open cupboard”).

4.3. Ablations

Effect of confidence scaling: In Section 3.2, we assume
two ways to produce the boundary confidence. The first is to
directly produce boundary confidence from the top layers.
The second is to produce confidence tokens and scale them
to boundary confidence, which achieves better performance
(see Table 4). The results demonstrate that designing with
scaling can better keep the consistency of predicting and
optimizing, and boost the performance.
Boundary refinement: To demonstrate that our bound-
ary head can achieve more refined boundaries, we present
the accumulative percentage of actions which correctly de-



Figure 3. Qualitative results on the EPIC-KITCHENS-100 validation set. Ground truth and predictions are shown with colour-coded class
labels (see legend). The bottom two lines are ground truth (GT) and our prediction (Ours) for the whole video sequence. The middle three
lines show ground truth (GT), our prediction (Ours) and ActionFormer’s [48] prediction (AF) for a zoomed-in region. The top line shows
visual content of selected frames. Results demonstrate that our method is good at dense actions and boundary refinement.
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Figure 4. Accumulative percentage of actions which is correctly detected within x seconds difference from ground truth. Acceptance
difference x is shown on the x-axis. Results are shown for starting and ending on EPIC-KITCHENS-100 (left) and THUMOS14 (right)
dataset. Our model outperforms ActionFormer [48] in all cases.

Figure 5. Comparing detection results to ActionFormer [48] at different action lengths on the validation set of EPIC-KITCHENS-100. We
divide actions to five groups based on lengths (in seconds): XS (0, 2], S (2, 4], M (4, 6], L (6, 8], and XL (8, inf). Left: action task. Middle:
verb task. Right: noun task.

tect within a certain threshold of the boundary error. We
define the boundary error as temporal difference between
ground truth start/end and predicted start/end, in seconds.
As shown in Figure 4, our boundary head can detect actions
with more precise boundaries compared to ActionFormer
[48] on both the EPIC-KITCHENS-100 and THUMOS14
datasets. We observe a greater improvement achieved on the
EPIC-KITCHENS-100 dataset, which contains actions with
a wider range of lengths, demonstrating that our method is

more effective for more complex sequences.

Effect of sigma: The hyperparameter σ in Equation 1 de-
termines the degree of scaling when weighting confidence
tokens to output boundary confidence. Table 5 shows that
the results change slightly with σ from 4 to 6 at a step size
of 0.5, with the best results at σ = 5.5. In addition, the
results show reasonable robustness to the change in σ.

Confidence score combinations: Our method produces
confidence scores for its three outputs: action, start bound-



Scaling Task Val (mAP@IoU)
0.1 0.2 0.3 0.4 0.5 Avg.

%
Verb 23.66 22.61 21.09 19.02 16.54 20.58
Noun 22.92 21.68 20.30 18.64 16.07 19.92
Action 18.19 17.63 16.59 15.38 13.64 16.29

!
Verb 23.75 22.68 22 19.19 16.73 20.71
Noun 23.58 22.40 21.03 19.27 16.39 20.53
Action 19.19 18.61 17.47 16.30 14.33 17.18

Table 4. Effect of confidence tokens scaling. Without scaling
(%) means directly using the predicted confidence token as the
boundary confidence. Scaling (!) means scaling to boundary
confidence using Equation 1. Results are shown for the action task
in the validation set of EPIC-KITCHENS-100. Bold for best.

σ
Val (mAP@IoU)

0.1 0.2 0.3 0.4 0.5 Avg.
4 18.83 18.33 17.12 15.90 13.86 16.81
4.5 18.78 18.28 17.19 15.89 14.16 16.86
5 18.96 18.46 17.24 16.04 14.31 17.00
5.5 19.19 18.61 17.47 16.30 14.33 17.18
6 18.93 18.43 17.22 16.02 14.29 16.98

Table 5. Comparison of different values of hyper-parameters σ
in Equation 1 of boundary head. Results are shown for the action
task in the validation set of EPIC-KITCHENS-100. Bold for best.

ary and end boundary. At inference, just one confidence
score is required for proposal suppression. Table 6 ablates
how our three scores can be combined. We can see that
the best performance is found when multiplying the action
confidence by the square root of the product of the bound-
ary confidences. Note that the boundary confidence on its
own does not work, since it is hard to distinguish between
whether a proposal is an action or background, and what
action it is based just on the boundary.
Effect of action length: A successful action detection
method should perform well over a wide range of ac-
tion lengths. Figure 5 shows the average mAP on EPIC-
KITCHENS-100 verb, noun and action of our method com-
pared to ActionFormer [48] with our classification head,
which demonstrates the effect of including boundary con-
fidence. Although improvements are found at all action
lengths, the largest improvement is on the longest actions.
This is most likely due to longest actions being hard to
regress given the long relative distances, but our boundary
head helps to alleviate this issue because it uses the region
around the boundary to compute the confidence.
Multi-task Classification: On EPIC-KITCHENS-100, un-
like ActionFormer, our classification head handles com-
pound verb/noun actions by only selecting the combinations
of the top-v predicted verbs and top-n predicted nouns. Ta-
ble 7 ablates this choice. In all cases, n = 3v as there are
three times as many noun classes compared to verb classes.
Clearly just relying on very low numbers causes a signif-

icant performance penalty, as the redundant proposal sup-
pression relies on multiple action confidences. Performance
is relatively stable above v = 5 and n = 15. Our main re-
sults use v = 10 and n = 30.

5. Conclusion
In this paper, we propose a novel boundary head and in-

corporate it into a one-stage anchor-free pipeline to estimate
boundary confidence scores and produce refined boundaries
for temporal action detection. Our method achieves state-
of-the-art results on commonly used action detection bench-
marks, including a significant improvement on the challeng-
ing EPIC-KITCHENS-100 dataset, which contains dense
actions of various lengths. Detailed ablations show the ben-
efits of incorporating boundary confidences and the effect of
different parameters, establishing their importance in han-
dling compound, egocentric actions. In future work, we
aim to explore temporal action sequence contexts and multi-
modality based on language models.
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