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Abstract

Person re-identification (PRID) from side-mounted
rectilinear-lens cameras is a well-studied problem. On the
other hand, PRID from overhead fisheye cameras is new
and largely unstudied, primarily due to the lack of suitable
image datasets. To fill this void, we introduce the “Fish-
eye Re-IDentification Dataset with Annotations” (FRIDA)1,
with 240k+ bounding-box annotations of people, captured
by 3 time-synchronized, ceiling-mounted fisheye cameras in
a large indoor space. Due to a field-of-view overlap, PRID
in this case differs from a typical PRID problem, which we
discuss in depth. We also evaluate the performance of 10
state-of-the-art PRID algorithms on FRIDA. We show that
for 6 CNN-based algorithms, training on FRIDA boosts the
performance by up to 11.64% points in mAP compared to
training on a common rectilinear-camera PRID dataset.

1. Introduction
Knowing the number and location of people in public

spaces, office and school buildings, stores and shopping
malls, etc., is critical for public safety (fire, chemical haz-
ards), spatial analytics (optimization of office or store space
usage), HVAC energy reduction, and, recently, for pan-
demic management. Typically, people-detection systems
use standard surveillance cameras (equipped with rectilin-
ear lens) mounted high on walls above the scene of inter-
est. Since such cameras have a relatively narrow field of
view (FOV), a number of them must be installed and man-
aged which significantly increases the system complexity
and cost, especially in large spaces.

Recently, overhead fisheye cameras have been success-
fully proposed for people counting [23, 17, 9]. However,
even a fisheye camera with its large FOV cannot accurately
detect people at the FOV periphery (large distance from the
camera) due to extreme foreshortening and geometric dis-
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tortions. Clearly, in such spaces (e.g., a convention hall)
multiple overhead fisheye cameras are needed. However,
since the same person may appear in FOVs of multiple cam-
eras, person re-identification (PRID) is critical for accurate
people counting, tracking, etc.

While PRID for side-mounted, rectilinear-lens cameras
has been researched in depth [22, 6, 28, 31, 26, 27], we
are aware of only three works exploring fisheye PRID
[1, 2, 3], each with its own limitations and none releasing
their fisheye data. Therefore, to inspire more research in this
area, we are proposing a first-of-its-kind dataset, “Fisheye
Re-IDentification Dataset with Annotations” (FRIDA), that
was captured by three overhead fisheye cameras in a large
space and includes over 240,000 bounding-box annotations
of people. In addition to introducing FRIDA, we explore
its use for image-based PRID. An alternative use-case for
FRIDA is as a video-dataset for tracking, but this is not the
focus of our work.

Typical PRID datasets are not designed for people count-
ing and were captured by side-mounted, rectilinear-lens
cameras without FOV overlap. In this case, the goal is to
identify the same person in two images captured by two
cameras at different times. FRIDA, however, is meant for
people counting and was captured by time-synchronized,
overhead, fisheye cameras with fully-overlapping FOVs
(360◦×185◦). In this case, the goal is to identify the same
person in two images captured by two cameras at the same
time. This explains the difference between the gallery sets
of typical PRID datasets and FRIDA. In the former, for a
given query there may be multiple ground-truth gallery el-
ements, captured at different times. In FRIDA, for a given
query there may be at most one gallery element at a given
time instant. In case of occlusion, there is no gallery ele-
ment for a given query (see Section 3 for details).

We also evaluate the performance of 10 state-of-the-art
PRID methods on FRIDA: 6 methods developed for typical
PRID datasets [22, 6, 26, 31, 28, 13] and 4 methods devel-
oped for overhead fisheye cameras [3]. The results show
that training CNN-based methods on FRIDA (2-fold cross-
validation) improves performance by 4.99-11.64% points in
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mAP compared to training on a typical PRID dataset [29].
The main contributions of this work are:
• We introduce a new PRID dataset, FRIDA, for indoor

person re-identification using time-synchronized over-
head fisheye cameras. This is the first overhead fisheye
dataset for PRID and will be made publicly available.

• We evaluate the performance of 10 state-of-the-art
PRID methods on FRIDA using two metrics. We com-
pare the performance of 6 of those algorithms, when
training on FRIDA against training on the non-fisheye
Market-1501 dataset [29].

2. Related Work
2.1. Datasets

There exist several datasets for person re-identification
using side-mounted rectilinear-lens cameras. Table 1 lists
key statistics of the most common ones: VIPeR [11],
PRID 2011 [14], Airport [15], CUHK03 [18], GRID [20],
MSMT17 [25], Market-1501 [29] and iLIDS [30], but more
details can be found in [27]. All these datasets have been
designed with the goal of matching the image of a person
from the query set to an image from the gallery set, and the
query and gallery sets consist of images captured by differ-
ent cameras. Moreover, different cameras have no field-of-
view overlap so query and gallery images of the same iden-
tity have been captured at different time instants. Finally, in
most of these datasets there are, typically, multiple gallery
images having the same ID as the query image.

While there exist people-focused datasets captured by
overhead fisheye-lens cameras (PIROPO [7], BOMNI [8],
MW [21], HABBOF [17], CEPDOF [9], WEPDTOF [24]),
they have been developed with the goal of people detection
and, in some cases, tracking. However, each dataset only
consists of frames from a single camera which severely lim-
its the variability of body appearance, unlike in FRIDA.

Table 1. Commonly-used image datasets for person re-
identification. (BBox = bounding box)

Dataset Year # # Frame
BBoxes Cameras Resol.

VIPer [11] 2007 1,264 2 Fixed
iLIDS [30] 2009 476 2 Variable
GRID [20] 2009 1,275 8 Variable

PRID 2011 [14] 2011 24,541 2 Fixed
CUHK03 [18] 2014 13,164 2 Variable

Market-1501 [29] 2015 32,668 6 Fixed
Airport [15] 2017 39,902 6 Fixed

MSMT17 [25] 2018 126,441 15 Variable
FRIDA 2022 242,809 3 Fixed

2.2. Algorithms

Person re-identification using rectilinear-lens cameras is
a well-studied problem. Early approaches were model-

based [12, 10, 19, 16] and used hand-crafted features. Re-
cent approaches use deep learning [22, 6, 5, 4, 28, 31, 26,
27] and outperform the traditional methods.

Sun et al. proposed PCB [22] in which feature vectors
are uniformly partitioned in an intermediate layer to obtain
part-informed features. This structure allows to separately
focus on different parts of an image and extract local infor-
mation for each part. Zheng et al. proposed a network called
Pyramid [28] which does not only focus on part-informed
local features, but also accounts for global features in ad-
dition to gradual cues. Pyramid achieves this through a
coarse-to-fine model, which performs image matching by
leveraging information from different spatial scales. Chen
et al. proposed an attention-based network called ABD-
Net [6], which instead of a small portion of an image fo-
cuses on its wider aspect by means of a diverse attention
map. This is accomplished by combining two separate mod-
ules: one module focuses on context-wise relevance of pix-
els while the other module focuses on spatial relevance of
these pixels. Zhu et al. proposed a network called VA-
reID [31] that allows matching of people regardless of the
viewpoint from which they were captured. Instead of cre-
ating a separate space for each viewpoint (i.e., front, side,
back), they create a unified hyperspace which accommo-
dates viewpoints in-between the main viewpoints (e.g, side-
front, side-back, etc.). Recently, Wieczorek et al. proposed
a CTL model (Centroid Triplet Loss model) [26], which ex-
tends the triplet loss. When working with triplet loss, it is
typical to choose one positive sample and one negative sam-
ple for an anchor. However, in the CTL model, instead of
choosing a single sample, a centroid is computed over a set
of samples which significantly improves performance.

The methods above have been designed for and tested on
images from rectilinear-lens cameras. Very few PRID meth-
ods have been developed for overhead fisheye cameras. An
early approach, proposed by Barman et al. [1], matches im-
ages of people who appear at the same radial distance from a
camera (similar viewpoints). This is restrictive, and leads to
sub-par performance, since people often appear at different
distances from FOV centers in different cameras. Another
algorithm proposed by Blott et al. [2] applies tracking to
extract front-, back- and side-view images of a person. A
person-descriptor is built by fusing features extracted from
individual views. The algorithm does not perform PRID for
each pose/viewpoint. Moreover, there is no guarantee that
a person will appear at all 3 viewpoints during a recording,
thus limiting performance. Recently, Bone et al. [3] pro-
posed a PRID method for fisheye-lens cameras with over-
lapping FOVs. This approach leverages locations of peo-
ple in images instead of their appearance. Using a cali-
brated fisheye-lens model this method maps pixel-location
of a person in a query image to a pixel-location in a gallery
image. The mapped query-person location is compared to



Figure 1. Bird’s eye view of the space where FRIDA was collected.

locations of people in the gallery image to establish a match.
The advantage of this algorithm is that it does not rely on a
person’s appearance, but it requires camera calibration (in-
trinsic parameters) and the knowledge of camera position in
the 3D world (distance/rotation between cameras, mounting
height). No datasets were published from these studies.

3. FRIDA Dataset
FRIDA is the first PRID dataset captured indoors by mul-

tiple overhead fisheye cameras and will be made publicly
available2. In FRIDA, the cameras have fully-overlapping
FOVs (360◦× 185◦), unlike in typical PRID datasets, and
are time-synchronized (frames are captured at the same
time). FRIDA was collected in a 2,000ft2 room using 3
ceiling-mounted fisheye cameras (100in above the ground).
The bird’s eye view of the room is shown in Fig. 1, and
an example of time-synchronized frame triplet is shown in
Fig. 2. The frames were captured by three Axis M3057-
PLVE cameras at 2,048×2,048-pixel resolution and 1.5
frames/sec. Annotations in FRIDA consist of 242,809
bounding boxes drawn around people (Table 1).

FRIDA can be used in a number of ways: as an image-
based dataset for PRID, as a video-based dataset for people-
tracking, or just for people detection and counting. In this
paper, to demonstrate its most unique features, we treat it
as an image-based PRID dataset. Below, we discuss the
unique characteristics and challenges of FRIDA.

Annotations: At each time instant, three video frames
are available with manually drawn, human-aligned bound-
ing boxes for all people visible in each frame. Each bound-
ing box is represented by 6 parameters: x, y, w, h, α, ID,
where (x, y) are the coordinates of its center, (w, h) are its
width and height, α is its counter-clockwise rotation angle
with respect to the vertical axis of the image, and ID is the
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Figure 2. Example of three synchronously-captured fisheye images
with annotations from FRIDA (top: camera 2, middle: camera 1,
bottom: camera 3).
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Table 2. Detailed information about FRIDA (Fisheye Re-Identification Dataset with Annotations).

# frames # BBoxes # BBoxes
per frame

Scenarios/Challenges

Segment 1 7,017 66,810 3-15 People coming in and settling down; evenly distributed around the
room; mostly sitting (lower bodies mostly occluded)

Segment 2 3,471 53,460 13-18 People walking around the room; significant occlusions
Segment 3 6,207 103,141 13-17 Concentration of people in parts of the room; people standing and

staying close to each other; people strongly occluding each other
Segment 4 1,623 20,028 5-16 People leaving the room; occasional occlusions at entry/exit points

ID number of a person. Each person in the dataset is as-
signed a unique ID which is consistent in all frames of the
dataset. There are 20 unique ID numbers in FRIDA.

Scenarios: FRIDA consists of four segments where each
segment captures a different type of challenge (Table 2). In
segment #1, people enter the room, walk and sit down (peo-
ple are evenly distributed in the room). This segment re-
sembles a lecture where people remain seated for most of
the time and their lower bodies are mostly occluded. Seg-
ment #2 is the most crowded and dynamic segment. Peo-
ple are constantly moving which occasionally causes severe
occlusions, especially when people are close to each other.
This segment resembles a social meeting where people are
wandering around the room and talking to each other. Seg-
ment #3 is the longest one and has over 100,000 bounding
boxes. Participants gather at either end or in the middle of
the room. They stand close to each other leading to severe
occlusions. Segment #4 is the shortest, with people leaving
the room and causing occasional occlusions at the doors.

Single sample of ID in the gallery set: In typical PRID
datasets, for a given query element there are multiple sam-
ples in the gallery set with the query ID. In FRIDA, how-
ever, frames are captured at the same time instant and the
identities in one frame are treated as the query set while
identities in another frame are treated as the gallery set.
Therefore, for a given query element there can be at most
one sample with the query identity in the gallery set. In
some cases, due to occlusions, a person may not be visi-
ble from a camera. This may lead to a no-match scenario
at certain time instants for some query elements. Note that
FRIDA can also be used for typical PRID by constructing
the gallery from multiple images of the same ID captured at
different times, but this is not in the scope of this work.

Synchronous, overhead capture: Due to the overhead
placement of cameras and simultaneous capture, the view-
point of a person directly under one camera may be dra-
matically different from the viewpoint from another camera.
This is unlike in most other PRID datasets where it is com-
mon to capture a person from similar viewing angles (e.g.,
front, back, side, top) using different cameras. Then, if one
of the gallery elements has the same viewpoint as the query,
the chance of a match increases. However, in FRIDA, since
the query and gallery elements are synchronously recorded

by different overhead cameras, people never appear from
the same viewpoint. This can be seen in Fig. 2 where per-
son #14 is seen from the top in camera #1 view, from the
front in camera #3 view and from the back in camera #2
view. This makes the problem of PRID more challenging in
FRIDA compared to other datasets.

Fisheye distortions: Since FRIDA has been recorded by
fisheye cameras, images are subject to radial geometric dis-
tortions, especially close to FOV periphery. When a person
is located at a different distance to each camera, the person’s
appearance is geometrically distorted to a different degree
in each camera view. This makes the problem of PRID more
challenging in FRIDA compared to other datasets.

Resolution mismatch between query and gallery sets:
The synchronous, overhead capture and fisheye distortions
often lead to very differently-sized bounding boxes for the
same person (resolution mismatch). Examples can be seen
in Fig. 2, e.g., person #15 appears with very different res-
olutions in camera #2 and camera #3 views. In Fig. 3, we
demonstrate this resolution mismatch quantitatively. The
resolution ratio R between two bounding boxes B1 and B2

is defined as follows:

R =
min(Area(B1), Area(B2))

max(Area(B1), Area(B2))
. (1)

Each data point in the plot shows the number of bounding-
box pairs such that R ≤ ρ with 0 ≤ ρ ≤ 1. Note that, the
resolution mismatch is the largest (highest curve) between
cameras 2 and 3 since they are farthest apart (Fig. 1).

Figure 3. Bounding-box resolution mismatch for all camera pairs.



4. Experiments

4.1. Algorithms

In order to gauge challenges offered by FRIDA, we eval-
uated ten state-of-the-art PRID algorithms on it. Six of
these algorithms: PCB [22], Pyramid [28], ABD-Net [6],
VA-reID [31], CTL [26] and ResNet-50 [13], are CNN-
based and use person’s appearance for re-identification.
The remaining four algorithms are geometry-based and
use person’s location in fisheye images for re-identification
[3]. They differ in terms of the re-identification metric
used: point-to-point distance (PPD), point-to-set total dis-
tance (PSTD), point-to-set minimum distance (PSMD) and
count-based distance (CBD). FRIDA’s annotations serve
as the input for all methods: bounding-box RGB values
for appearance-based methods and bounding-box center
for geometry-based methods. In each algorithm, we used
hyper-parameters suggested in the corresponding paper.

4.2. Implementation Details

The testing procedure for all methods was the same. For
a given pair of video frames, we treated all people from one
frame as as the query set (images or locations) and those
from the other frame as the gallery set (images or locations).

In CNN-based methods, we fed the image of a person
(within the person’s bounding box) into a network and ex-
tracted a feature vector from the final convolutional layer
to serve as this image’s descriptor. We computed the co-
sine similarity between all normalized feature vectors of
the query and gallery sets, resulting in a score matrix for
each pair of frames3. We applied greedy matching to the
score matrix to match the query and gallery elements as fol-
lows. We found the highest matching score, considered the
corresponding elements to be a match and removed their
row and column from the table. We repeated this process
until no more removals were possible. We used this al-
gorithm since in FRIDA the fisheye cameras have a fully-
overlapping FOV and, therefore, a person can have at most
one match in another camera’s FOV (and can be removed
from the score matrix). This is different than testing on typ-
ical PRID datasets, where the matching of a given query
does not affect the matching of other query elements.

In geometry-based algorithms, we first performed cam-
era calibration as outlined in [3]. Using the calibrated cam-
era model, each algorithm maps pixel locations of people
(centers of bounding boxes) in the query frame (set) to
pixel locations in the gallery frame (set). The matching
is performed using different distance measures between the
mapped query locations and gallery locations. Importantly,
the geometric mapping depends on the height of a person
[3]. In PPD, the mapping is performed for an average per-

3Since cosine distance is symmetric, it is not important which frame is
chosen as the query set and which as the gallery set.

son’s height (168cm) and the Euclidean distance from the
mapped query location to a gallery location serves as the
distance measure. In PSTD, query locations are mapped
to the gallery frame for 21 different heights of a person
(128-208cm). The sum of the Euclidean distances from 21
mapped query locations to a gallery location serves as the
distance measure. The PSMD algorithm is very similar ex-
cept that the minimum of 21 Euclidean distances instead of
their sum is used as the distance measure. In CBD, again
21 mapped query locations are produced and the number of
such locations that are closest to a gallery location is used
to compute a distance measure. The distance measure com-
puted in each case is used to construct a distance matrix for
greedy matching as described above (except that the small-
est distance is considered a match). Since so-defined dis-
tance measures are not symmetric, we performed bidirec-
tional matching. For more details, see [3].

4.3. Dataset Splits
Despite more than 240,000 bounding boxes, FRIDA has

only 20 different identities, Since this is insufficient for sep-
arate training, validation and testing sets, we evaluate the
algorithms using 2-fold identity-wise cross-validation. We
use half of the identities in training and the other half in test-
ing, and then we swap the roles of identities and repeat the
process. Specifically, we created the training set by choos-
ing 50 random time stamps for each identity and taking 3
images (one from each camera) captured at this time (cam-
eras are synchronized). This allowed a rich training set with
many different viewpoints of the same person. We will pro-
vide the training sets we used as part of FRIDA. In the test-
ing sets, we use all frames with the specific identities.

We also trained the CNN-based networks on Market-
1501 [29] and tested them on FRIDA. Market-1501 is a
commonly-used PRID dataset composed of images cap-
tured by side-view, rectilinear-lens cameras (different cam-
eras capture a person at different times). For fairness, we
used the same cross-validation testing sets as when both
training and testing on FRIDA. We used the same testing
sets for the geometry-based algorithms.

4.4. Evaluation Metrics
We use the Query Matching Score (QMS) [3] and mean

Average Precision (mAP) as evaluation metrics. QMS is
very similar to the commonly-used Correct Matching Score
(CMS), and is defined as follows:

QMS =

∑N
n=1

∑
q∈Qn

1(q = q̂)∑N
n=1

∣∣Qn ∩Gn

∣∣
whereN denotes the number of frames,Qn, Gn are the sets
of query and gallery identities in frame number n, respec-
tively, and q̂ is the predicted identity of query q or “null” if
there is no match. The important difference between QMS



Table 3. Performance comparison of the appearance-based algorithms trained on Market-1501 and tested on FRIDA. The highest values
of QMS and mAP for each camera pair and for the cumulative are shown in boldface.

QMS [%] mAP [%]
C.1+C.2 C.1+C.3 C.2+C.3 Cumulative C.1+C.2 C.1+C.3 C.2+C.3 Cumulative

ResNet-50 [13] 57.63 73.99 45.33 59.04 70.03 79.41 59.33 69.63
PCB [22] 56.63 74.64 45.62 59.02 70.91 79.28 59.79 70.04
ABD [6] 61.26 73.68 44.22 59.78 70.80 77.93 58.71 69.19

Pyramid [28] 74.58 84.66 54.88 71.46 78.72 86.38 64.89 76.72
VA-ReID [31] 60.79 74.18 44.99 60.06 71.21 78.68 59.31 69.78

CTL [26] 66.92 83.68 42.88 64.59 72.57 84.99 57.44 71.72

Table 4. Performance comparison of the appearance-based algorithms trained on FRIDA and tested on FRIDA. The highest values for
QMS and mAP for each camera pair and for the cumulative are shown in boldface.

QMS [%] mAP [%]
C.1+C.2 C.1+C.3 C.2+C.3 Cumulative C.1+C.2 C.1+C.3 C.2+C.3 Cumulative

ResNet-50 [13] 64.93 75.79 50.11 63.67 76.20 81.60 68.00 75.30
PCB [22] 63.30 74.79 51.77 63.33 75.79 81.23 67.91 75.01
ABD [6] 75.31 83.18 62.05 73.57 82.43 85.16 74.81 80.83

Pyramid [28] 67.79 80.78 53.48 67.42 75.38 81.59 68.61 75.23
VA-ReID [31] 67.52 79.46 54.59 67.24 76.58 82.74 68.00 75.81

CTL [26] 77.30 90.11 64.76 77.44 82.7 89.79 75.17 82.58

and CMS is that QMS accounts for situations when there is
no match between a query and gallery elements (|Qn ∩Gn|
in the denominator). Basically, QMS gives the ratio of the
number of correct matches to the number of true matches.
We also compute the commonly-used mAP. It is important
to note that in our scenario there exists at most one match-
ing gallery-frame identity for a given query element. Unlike
in classical PRID, we can encounter a query whose identity
is absent from the gallery (due to complete occlusion). We
exclude such cases from the mAP calculation.

4.5. Results

In Table 3, we report results for the six appearance-
based CNN algorithms trained on Market-1501 and tested
on FRIDA. In Table 4, we report results for the same algo-
rithms, but both trained and tested on FRIDA. These results
are computed over all 4 segments of FRIDA for each cam-
era pair. We also report the cumulative QMS value which
is computed as the total number of correct matches from
all camera pairs and all segments divided by the total num-
ber of possible correct matches from all camera pairs and
all segments. In addition to QMS, we report mAP (the cu-
mulative mAP is computed in a manner analogous to cu-
mulative QMS). The common trend in both tables is that
all algorithms achieve the highest QMS/mAP for cameras 1
and 3, and the lowest for cameras 2 and 3. This was to be
expected since cameras 1 and 3 are the closest to each other
(Fig. 1); people are captured at a more similar resolution,
viewpoint and geometric distortion compared to other cam-
era pairs. Conversely, the distance between cameras 2 and
3 is the largest which makes PRID more challenging.

As Table 3 shows, when trained on Market-1501, Pyra-
mid [28] performs the best among the six appearance-based
methods and outperforms the second-best algorithm, CTL
[26], by 6.87% points in terms of cumulative QMS, and by
5.0% points in terms of cumulative mAP.

When these algorithms are trained on FRIDA (Table
4), CTL [26] outperforms other networks by 3.87-14.11%
points in cumulative QMS and by 1.75-7.57% points in cu-
mulative mAP. For cameras 1 and 3, CTL performs above
90% in terms of QMS. When trained on FRIDA, all net-
works achieve cumulative QMS above 63% and cumulative
mAP above 75%.

Comparing the performance of algorithms trained on
Market-1501 versus those trained on FRIDA, all the net-
works performed better when trained on FRIDA except
for Pyramid. In terms of cumulative QMS, the improve-
ment achieved by training ResNet-50, PCB, ABD, VA-
ReID and CTL on FRIDA ranges from 4.31% to 13.79%
points. In terms of cumulative mAP, these networks im-
prove by 4.97% to 11.64% points by training on FRIDA.
Considering the large number of bounding boxes in FRIDA,
these margins correspond to thousands of correct matches
between identities. It is impressive that training on Market-
1501 using 750 identities and 9,928 bounding boxes is out-
performed by training on FRIDA with only 10 identities and
less than 1,500 bounding boxes. This suggests that for an
effective PRID on overhead fisheye images, having a higher
variability of the viewpoint (including overhead) for each
identity is more important than having more identities with
less viewpoint variability. We note, however, that Pyramid
is an exception to this observation. This seems to suggest



Table 5. Performance comparison of the geometry-based algorithms [3] on FRIDA. The highest values for QMS and mAP for each
algorithm are shown in boldface.

QMS [%] mAP [%]
Seg.1 Seg.2 Seg.3 Seg.4 Cumulative Seg.1 Seg.2 Seg.3 Seg.4 Cumulative

PPD 99.51 87.39 80.60 90.77 88.02 99.49 94.47 90.13 93.95 93.93
PSMD 99.58 91.21 85.69 87.99 90.75 99.83 95.62 91.98 94.16 95.06
PSTD 99.69 88.08 81.79 91.03 88.76 99.60 94.69 90.22 94.19 94.06
CBD 99.17 92.18 89.81 93.69 93.11 99.69 96.82 95.41 96.51 96.97

that Pyramid is able to leverage a plurality of identities more
effectively than viewpoint variability.

Table 5 shows the performance of the geometry-based
PRID algorithms for each segment of FRIDA. Clearly, all
4 algorithms did extremely well on segment 1 in which
people are spread out fairly uniformly in the room and are
never very close to each other. On the other hand, in seg-
ment 3 people stand very close to each other posing diffi-
culties for location-based matching, resulting in the lowest
performance among all segments. As expected, the algo-
rithm based on the PPD distance metric (single query lo-
cation mapping using an average person’s height) achieves
the lowest performance among the four algorithms. Algo-
rithms using a range of person’s height perform better with
the CBD-based algorithm achieving the best performance
in terms of the cumulative QMS (93.11%) and cumulative
mAP (96.97%). This is consistent with observations in [3].

For a fair comparison between appearance-based and
geometry-based methods, we focus on the cumulative QMS
and cumulative mAP values in Tables 3–5, computed over
all FRIDA segments and accumulated over all camera pairs.
It is clear that each geometry-based algorithm outperforms
all appearance-based methods by a huge margin. However,
it should be noted that in geometry-based algorithms a care-
ful calibration must be performed once for each camera
model (intrinsic parameters) prior to deployment. During
installation cameras must be level-mounted and their extrin-
sic parameters (camera installation height, distance and ro-
tation between cameras) must be measured or calibrated, a
process known as system commissioning. Since this infor-
mation may not be available in some scenarios, geometry-
based algorithms would not be applicable in those cases.
On the other hand, the appearance-based methods do not
require any information about room setup and are easier to
deploy in new scenarios.

5. Conclusions

We introduced FRIDA, the first image dataset for per-
son re-identification from overhead fisheye cameras. The
dataset is unique not only for the camera type used but also
for their overlapping fields of views that is often encoun-
tered when counting people in large spaces. This leads to a
new type of PRID - matching of people “seen” by different
cameras at the same time.

We evaluated the performance of 10 state-of-the-art
PRID algorithms on FRIDA. Six of these algorithms were
CNN appearance-based methods while four algorithms
were based on geometry. The geometry-based algorithms
performed significantly better than the appearance-based
methods. The best-performing geometry-based method
reaches almost 97% in cumulative mAP, computed across
all dataset segments and camera pairs. This is close to a per-
fect re-identification. Only in high-density scenarios (peo-
ple close to each other causing severe occlusions), does its
performance drop to about 95%. However, geometry-based
algorithms require calibration of each camera type used and
additional measurements for each camera layout.

The appearance-based methods do not perform quite
as well, even when trained on FRIDA, with the best one
achieving below 83% in cumulative mAP. This suggests
there is much space for improvement in appearance-based
methods. On the other hand, they require no calibration or
measurements, and can be applied “out of the box”.

We demonstrated that training CNN-based PRID meth-
ods on fisheye images improves performance when testing
on fisheye images, which is not surprising. However, more
research is needed to achieve reliable fisheye PRID in chal-
lenging scenarios (occlusions, high density of people). We
hope FRIDA will inspire more research in this direction,
and also serve as a benchmark for people detection, track-
ing and video-based PRID studies based on overhead fish-
eye cameras.
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