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Abstract—We consider an online preemptive scheduling prob-
lem where jobs with deadlines arrive sporadically. A commitment
requirement is imposed such that the scheduler has to either
accept or decline a job immediately upon arrival. The scheduler’s
decision to accept an arriving job constitutes a contract with the
customer; if the accepted job is not completed by its deadline
as promised, the scheduler loses the value of the corresponding
job and has to pay an additional penalty depending on the
amount of unfinished workload. The objective of the online
scheduler is to maximize the overall profit, i.e., the total value
of the admitted jobs completed before their deadlines less the
penalty paid for the admitted jobs that miss their deadlines.
We show that the maximum competitive ratio is3 − 2

√

2 and
propose a simple online algorithm to achieve this competitive
ratio. The optimal scheduling includes a threshold admission and
a greedy scheduling policies. The proposed algorithm has direct
applications to the charging of plug-in hybrid electrical vehicles
(PHEV) at garages or parking lots.

Index Terms—Deadline scheduling; competitive ratio analysis;
commitment requirement; PHEV charging scheduling.

I. I NTRODUCTION

In a conventional setting of deadline scheduling, jobs arrive
sporadically, each with prescribed processing time, deadline,
and value. Upon arrival, jobs are queued until their respective
deadlines, during which time an online scheduler can schedule
any pending jobs in the system. In general, there is no guaran-
tee that a submitted job will be completed by its deadline. In
fact, a customer who submits a job does not know whether the
job will be completed until after the deadline. For example,
an online scheduler may accept a job into the system but later
choose to work on another more profitable job instead.

In this paper, we consider a variation of the deadline
scheduling problem by imposing a commitment requirement
at the arrival of a job. In particular, if a job is accepted
and successfully completed, the scheduler receives a certain
reward. If the scheduler is unable to complete an accepted
job, it pays a penalty. The scheduler receives neither reward
nor penalty if it declines a job upon arrival.

The deadline scheduling problem considered in this paper
has a direct application in scheduling the charging of plug-in
hybrid electric vehicles (PHEV) in parking lots or garages.In
this case, each car arrives with a certain charge level, and the
customer has some idea about how long the car can be left
at the facility (e.g., approximately the duration in which the
customer will be shopping before picking up the car). Upon
submitting a request, the customer is either turned away or told
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the car will be charged at a certain price. And the customer is
informed that if the car is not charged to the requested level
by the deadline, a compensation will be made (e.g., with a
voucher for future charges).

While the requirement of immediate commitment reduces
the number of unsatisfactory customers and the amount of
penalty, it brings nontrivial complications to the deadline
scheduling problem. The difficulty comes from the fact that
optimal decision on whether to turn away a customer seems
to depend on the kind of jobs to arrive in the future. Had
the scheduler known that there is a highly profitable job to
arrive, it would have declined some of the less profitable ones.
Our goal is to maximize the profit by optimally trading off
accepting more customers against avoiding excessive penalties
due to unfinished jobs. To accommodate general arrivals
and workload, we aim at optimizing thecompetitive ratio
that characterizes the worst-case profit relative to that ofan
optimal offline scheduling algorithm, for which we establish
the optimal competitive ratio and give an online scheduling
algorithm to achieve the optimum competitive ratio.

A. Related Work

Without the commitment requirement, there is a consider-
able literature on the deadline scheduling problem, starting
from the seminal work of Liu and Layland [1]. The problem
is often divided into the underloaded and overloaded regimes.
The former corresponds to the case when there exists an
offline scheduling algorithm that can complete all jobs arrived
whereas the latter corresponds to the case when some jobs
cannot be completed even for the best offline scheduling al-
gorithm. For the underloaded scenarios, it has been shown that
simple online scheduling algorithms such as earliest deadline
first (EDF) [1], [2] and least laxity first (LLF) [3] achieve the
same performance as the optimal offline scheduling algorithm.
The assumption of underloaded overall workload, however, is
restrictive and unverifiable in practice. Locke showed in [4]
that both EDF and LLF can perform poorly in the presence of
overload. There were efforts to develop an online scheduling
algorithm with performance guarantee in terms of competitive
ratio (see Definition 1), even when the system is overloaded.
Online scheduling algorithms with competitive ratio1/4 were
proposed in [5], [6] and1/4 was proved to be optimal
competitive-ratio-wise for the deadline scheduling problem
without commitment.

One of the first work that proposes the idea of commitment
is [7] (commitment is termed as immediate notification), in
which Bar-Noyet. al. considered the application of video on
demand where customers submit movie request and the sched-
uler manages to either accept or decline the request within



a specific “notification time” after the request releases. Bar-
Noy et. al.studied the competitive ratio when the “notification
time” varies from zero (immediate notification) to proportional
to the length of the movie requested.

Later, scheduling with immediate notification and imme-
diate decision has been studied in [8] (single processor,
immediate notification), [9] (multiple processors, immediate
notification), and [10], [11] (multiple processors, immediate
decision). Immediate decision requires that, in addition to
providing to the customers an immediate feedback regarding
admission or declination, the scheduler also has to provideto
the customer upon job release the specific scheduled time of
the job, if accepted. The proportional value model was consid-
ered in [8], while [10], [9] considered the unit length jobs with
unit value. An online scheduling algorithm with immediate
decision is proposed in [10] with asymptotic competitive ratio
(e−1)/e, while the authors of [11] showed(e−1)/e to be an
asymptotic upper bound of any online algorithms. However,
the authors of [8], [9], [10], [11] dealt with non-preemptive
scheduling with no non-completion penalty involved.

With the commitment requirement online preemptive
scheduling with deadlines becomes much more challenging
in the presence of overload. The authors of [12] and the
author of [13] gave separately two preemptive scheduling
algorithms for multiple processors with immediate notification
and non-completion penalty with the proportional value model
(vi = pi, see Section II). In [12], [13] the non-completion
penalty associated with a job with valuevi = pi is set
as ρvi with the penalty parameterρ ≥ 0. The competitive
ratio results given in [12], [13] are(mina>1+ρ(2a + 3)(1 +
ρ

a−ρ
+ 1

a−ρ−1 ))
−1 and(2ρ+ 3+ 2

√

ρ2 + 3ρ+ 2)−1, respec-
tively. Even for the situation with no non-completion penalty
(ρ = 0), the competitive ratio results given in [12], [13]
reduces to(mina>1(2a + 3)(1 + 1

a−1 ))
−1 = (7 + 2

√
10)−1

and (3 + 2
√
2)−1, respectively, which is at most as good as

our result3 − 2
√
2 in this paper for single processor with

non-completed portion penalized. On the other hand, there
are no arguments in [12], [13] establishing upper bounds
of competitive ratio ever achievable to quantify how far the
proposed algorithms are away from optimality.

There is a series of work by Hou, Borkar and Kumar [14],
[15], [16] and Jaramillo, Srikant and Ying [17], [18] dealing
with the deadline scheduling problem with a different setup
from that adopted in this paper. Specifically, the channel (the
counterpart in [14], [15], [16], [17], [18] of the processor
in this paper) is modeled as a stationary, irreducible Markov
process with a finite state space (unreliable channel model),
whereas the processor is always dedicated to scheduling the
jobs in this paper. Due to the unreliable channel model,
the packet transmission (the counterpart of the job in this
paper) may take a random amount of time to go through,
whereas the job length in this paper is deterministic upon
arrival. Each client (transmitter) specifies a delay requirement
(transmissions which take longer than the delay requirement is
invalid), which corresponds to the deadlines in this paper.The

packet arrival process is assumed to be a stationary, irreducible
Markov process with finite state space for each client, whereas
the job arrival process can be arbitrary and quite bursty in this
paper. Thus, the stochastic model of the processor (channel),
the job (packet) arrival process and the job length (packet
transmission duration) is available in [14], [15], [16], [17],
[18]. On the other hand, the job arrival as well as the job length
can be arbitrary for the future job released in this paper. There
is also difference in the metric used; the feasibility optimality
is studied in [14], [15], [16], [17], [18],i.e., the overall packet
arrival is assumed to be underloaded, whereas the overloaded
scenario is treated in this paper with the metric competitive
ratio.

The problem of PHEV charging scheduling in public garage
has been considered in [19], [20], [21]. An energy economic
analysis of PHEV charging using solar photovoltaic panels
at workplace parking garage is conducted in [20] with the
conclusion that PHEV charging facility in public garage is ben-
eficial to both the car owners as well as the facility operator.
The authors of [19] aggregated a system architecture model,
an operation model and a PHEV battery model to simulate
PHEV charging in a municipal parking lot. The method of
particle swarm optimization is employed to allocate energyto
PHEVs in [21]. The performance of the scheduling policies
proposed in [19], [20], [21] are validated via simulation results.
This paper adopts a deadline scheduling framework with
non-completion penalty that suits well for PHEV charging
application and proposes an online scheduling algorithm with
worst case performance guarantee.

B. Summary of Results

In this paper, we impose a penalty on unfinished work-
load and obtain results on the optimal competitive ratio for
the online preemptive deadline scheduling with commitment.
We propose an online scheduling algorithm DSC (acronym
for Deadline Scheduling with Commitment) with competitive
ratio 3 − 2

√
2 = 17.16%. We also provide a converse via

an adversary argument and show that no online scheduling
algorithm exists with a better competitive ratio, thus further
establishing the optimality of DSC competitive-ratio-wise.
Comparing with the optimal competitive ratio1/4 = 25%
without the commitment requirement in [5], [6], we observe
a performance loss of7.84% competitive-ratio-wise with the
additional commitment obligation.

II. PROBLEM FORMULATION

A job T = (r, p, d, v) is represented by a quadruple
specified by the release timer, processing timep, deadlined,
and valuev. We assume the so-called proportional value model
[8] where the valuev of a job is proportional to its processing
time p, or without loss of generality,v = p. A job T is called
tight if r + p = d, which implies that the scheduler must
either work on the job or decline it immediately. Preemption
is allowed at no cost in scheduling (i.e., a preempted job can
be resumed from the point of preemption at a later time). In
our scheduling problem an input instanceI includesn jobs



T1, . . . , Tn to be scheduled on a single processor, where the
integern is the total number of jobs released for instanceI
(the total number of jobs can differ over input instances). In
general, we are interested in a collection of instances in the
input instance setI.

Use Sonline to denote online scheduler andSoffline the offline
scheduler. An online schedulerSonline knows the parameters
of job Ti only at the release timeri. Deadlines are firm,
i.e., completing a job after its deadline yields zero value.
The scheduling is done with commitment,i.e., upon the
release of each job, the scheduler has to decide whether to
accept or decline the job request. Each accepted job incurs
a non-completion penalty equal to the unfinished workload
(shortage) if it is not completed by its deadline. The profit
obtained by the scheduler is the total value of all completed
jobs, minus all penalties paid. This specific non-completion
penalty suits the application of PHEV charging well since
the utility is delivered to the car owner continuously as the
battery charging level increases, unlike some computing jobs
in high performance computing grids for which the utility can
be obtained only upon the completion of all the computation
steps.

Given an instanceI, we denote bySonline(I) (Soffline(I)) as the
total profit (or value) obtained by the schedulerSonline (Soffline).
Our objective is to make the online scheduler competitive
across all instances inI.

In contrast to the online scheduler, an offline schedulerSoffline

is clairvoyant and knows the entire input instance a priori.
Due to the prior knowledge of the job parameters, the offline
scheduler is able to make commitment decisions. We denote
by S∗

offline the optimal offline scheduler.
The problem is to design an online scheduling algorithm

with worst-case performance guarantee (relative to the optimal
offline scheduling algorithm) even in the presence of overload.
The performance guarantee is given in terms of competitive
ratio defined below.

Definition 1. Competitive ratio: An online algorithmSonline is
α-competitive for an input instance setI if minI∈I

Sonline(I)
S∗

offline(I)
≥

α whereI varies over all possible input instances inI.

That is, anα-competitive online algorithm is guaranteed to
achieve at leastα fraction of the optimal offline value under
any input instanceI in the input instance setI. For the rest
of the paper the input instance setI is fixed to be the set
of all input instancesI such thatI contains finite number of
jobs and each job satisfiesdi ≥ ri + pi (otherwise, neither
the online nor the offline scheduler is able to complete the
job by its deadline and the job can thus be deleted from the
input instanceI). Note that both underloaded and overloaded
input instances are included in the input instance setI defined
above.

III. O PTIMAL DEADLINE SCHEDULING WITH

COMMITMENT

Compared with the traditional deadline scheduling without
the commitment requirement, the additional difficulty imposed

by the commitment obligation to the online scheduler depends
on the overall workload of the jobs released: when the overall
workload is underloaded, simple scheduling algorithms such
as EDF and LLF achieve competitive ratio 1 by simply
admitting all jobs released; the restriction to the underloaded
case precludes the need of admission control. In this section,
we describe an online scheduling algorithm DSC dealing
with the overloaded scenario and establish its optimality in
competitive ratio. Specifically, we show3−2

√
2 as the optimal

worst-case performance of online algorithms relative to the
(optimal) offline counterpart. We summarize these results in
the following theorem followed by a detailed description of
DSC.

Theorem 1. For the input instance setI specified in Section
II,

1) The competitive ratio3− 2
√
2 is achievable by DSC.

2) 3− 2
√
2 upper bounds the competitive ratio ever achiev-

able by any online scheduling algorithms.

In other words, there is a loss of7.84% competitive-ratio-
wise with the additional commitment obligation when we
compare the optimal competitive ratio1/4 = 25% without the
commitment requirement ([5], [6]) with the result in Theorem
1 (3− 2

√
2 = 17.16%).

A. DSC Scheduling Algorithm

The key idea behind DSC is to evaluate the admission
decision based on the comparison of the potential profit
associated with accepting and declining a job, if the job is
“difficult” to accommodate into the current schedule. Even
assuming the scheduler accepts the job just released, thereare
plenty of alternatives in the specific schedule of the job just
released as well as the other pending jobs in the system (due
to the acceptance of the new job, it may be necessary to update
the schedule of the other jobs). DSC evaluates the profits
associated with the two options by restricting to one alternative
in the many ways of updating of the schedule after accepting
the newly released job. Specifically, if the newly released job
can be appended in the end of the current schedule while still
being within its deadline (the job is “easy” to accommodate
into the current schedule, see the blue, green and red jobs
in Fig. 1, Fig. 2 and Fig. 6, respectively for illustration),
the job is accepted and appended in the end of the current
schedule. Otherwise (the job is “difficult” to accommodate
into the current schedule, see the green and brown jobs in
Fig. 3 and Fig. 7, respectively for illustration), the two options
are weighed separately, described in detail in later paragraphs.
If the option of accepting the job is chosen, the schedule
is updated by tight-scheduling the newly released job in the
interval [d− p, d] wherep andd are the processing time and
deadline of the newly released job, respectively. Then the part
of the previous schedule after timed− p is moved to start at
time d, or the end of the current schedule, whichever comes
later in time (see the red job in Fig. 8 for illustration). This
moving may lead to some of the moved jobs to miss their
deadlines. Therefore the schedule is again updated to remove



the part of the moved jobs that comes after their deadlines.
The decision process can be interpreted as follows. When the
scheduler decides to accept the newly released job, the job
is profitable once accepted but difficult to accommodate into
the current schedule. Therefore in order to accommodate the
newly released profitable job, the scheduler sacrifices the jobs
in the current schedule in the time interval[d− p, d], some of
which may have deadlines far into the future, thus still have
potential in completion even after the moving.

To give the procedure to compute the profit associated with
the two options, we first define the notions ofpeace-scheduled
andcontention-scheduledjobs. We term a jobpeace-scheduled
if it is scheduled without affecting other already scheduled
jobs (by the appendable statement on line 4), andcontention-
scheduledif it is scheduled with moving some already admit-
ted and unfinished jobs to a later time (by the not appendable
statement on line 6 to 10).

In between two consecutive admission decisions of
contention-scheduled jobs, all the jobs are peace-scheduled
and the accepted jobs are always appended in the end of the
schedule. The procedure to determine the profit for accept-
ing and declining the jobs that cannot be appended can be
described as follows. First execute (virtually) on the current
tentative schedule the procedure associated with the decision to
accept the difficult-to-accommodate job (including scheduling
the newly released job in[d−p, d] and postponing the previous
jobs in [d−p, d]) and find out the jobs in the current tentative
schedule that are affected in the received processing time.
Denote byJaffect the set of jobs in the current tentative schedule
that are affected in the received processing time. The profit
associated with the option of declining can be computed as
the value of the subset of jobs inJaffect anticipated to complete
by the current tentative schedule, less the portion of penalty
attributed to the subset of jobs. The profit associated with
the option of accepting can be computed as the value of the
newly released job, less the portion of penalty attributed to the
acceptance of the newly released job (due to affecting the jobs
in Jaffect). See Fig. 4, Fig. 5, Fig. 8 and Fig. 9 for illustration
of the profits and the decision after comparing the profits. Fig.
10 depicts the final schedule of this instance.

To summarize, the dynamics of the system with DSC
scheduler can be described as follows: the scheduler maintains
a tentative schedule at all times; when a job request is released,
the scheduler checks whether it is possible to append the new
job at the end of the current tentative schedule while meeting
its deadline. If the deadline can be met, then the job is admitted
and appended in the end of the current tentative schedule.
Otherwise, the scheduler determines whether to admit the job
based on the profits of the options of accepting and declining.
If the profit associated with accepting is not sufficiently large,
then the job is simply declined service. Otherwise, the job
is scheduled in the time interval[di − pi, di]; the previous
schedule after timedi − pi is then moved to start at time
di, or the end of the current schedule, whichever comes later
in time, and the scheduler further checks whether there are
any moved jobs that already missed their deadlines after the
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Figure 1.

moving, deletes them and moves the jobs accordingly to fill
the gap left by the jobs deleted.

We now describe the details of the DSC algorithm. The
pseudo code of DSC is given below. At time0 the scheduler
starts the infinite loop in which the schedule is updated upon
each job release.

DSC Scheduling Algorithm procedure

1: loop
2: upon event: jobTarr is released
3: if Tarr appendablethen
4: appendTarr to the end of the tentative schedule;
5: else
6: if Profitaccept > (1 + β)Profitdecline then
7: appendTarr at the end bydarr
8: move and modify the schedule afterdarr − parr

accordingly
9: else

10: declineTarr

11: end if
12: end if
13: end loop

As indicated in the algorithm pseudo codeTarr gets admit-
ted and appended to the current schedule if it is appendable
(line 4). Otherwise, the profits Profitaccept and Profitdecline
associated with admitting and decliningTarr respectively get
compared. If admittingTarr assumes better profit (line 6),
thenTarr is admitted and appended at the end bydarr (i.e.,
scheduled in the time interval[darr − parr, darr]), and the
current schedule afterdarr − parr is moved and modified
accordingly (line 7 and 8). Otherwise, if admittingTarr does
not have better profit,Tarr is declined service (line 10).
The threshold1 + β will be optimized after we derive the
competitive ratio as a function ofβ (see Section III-D). The
appendable case takesO(1) per job. while the non-appendable
case takesO(n) per job, wheren is the number of jobs in the
current schedule.

We state the differences between the DSC algorithm and the
algorithms in [5], [6] for the situation without commitment:
the contention of the processor is resolved using the profit (i.e.,
job values minus penalties) instead of the job value alone.

B. Analyzing the Structure of DSC Algorithm

Denote a continuous busy interval (a continuous time in-
terval in which the processor is busy executing jobs) by
B = [t, t]. We start the analysis of the structure of DSC
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algorithm by classifying the continuous busy intervals created
by the execution of DSC into two different types with different
structures. The first type busy interval corresponds to the
situation where there is no processing time corresponding to
contention-scheduled jobs. In this case, all jobs admittedare
peace-scheduled and finish successfully byt, the time at which
the processor finishes the tentative schedule and gets idle.The
second type busy interval corresponds to the situation where
there are some contention-scheduled jobs inside the continuous
busy interval.

Denote byTB, PB and CB the total profit obtained in
schedule from all jobs, from peace-scheduled jobs and from
contention-scheduled jobs duringB, respectively. Note that
the penalty is included in the profitTB and CB. For every
continuous busy intervalB it holds that

TB = PB + CB. (1)

Denote byB the union of all continuous busy intervals.
The length ofB will be denoted by|B|. We refer to its total,
peace-scheduled and contention-scheduled value obtainedin
schedule byT, P andC, respectively.

Lemma 1 upper bounds the total processing time in a
continuous busy intervalB with TB, PB andCB.

Lemma 1. The total processing time ofB = [t, t] satisfies

|B| ≤ PB + (1 +
1

β − 1
)CB = TB +

1

β − 1
CB . (2)

Lemma 2 upper bounds the deadlines of the jobs that are
declined during the continuous busy intervalB. Note that there
are no jobs declined when the processor is idle under DSC
algorithm.

Lemma 2. SupposeTi was declined during the continuous
busy intervalB = [t, t]. Then

di − t−
∑

rj∈B

sj ≤ (1 + β)TB ,

wheresj is the shortage (at timet) of job Tj that is admitted
in B (rj ∈ B).



Lemma 3 provides a useful fact for the peace-scheduled
jobs that eventually fail.

Lemma 3. SupposeTi’s are peace-scheduled jobs that even-
tually failed. ThenTi’s are such that[ri, di] ⊂ B.

Proof: If Ti is peace-scheduled at timeri, thenTi is in-
cluded in the schedule since timeri. Assume that[ri, di] ⊂ B

does not hold. Therefore there exists time instantτ ∈ [ri, di]
such that the processor is idle at timeτ . However, this con-
tradicts the way the DSC algorithm runs due to the following
argument. At timeτ Ti is not finished yet becauseTi failed
eventually. Therefore the scheduler can work onTi at timeτ
in the tentative schedule either with the goal of completing
Ti for its value or with the goal of reducing the penalty
associated withTi. Thus either way the processor should be
busy, contradicting the assumed fact that the processor is idle
at timeτ . This contradiction proves[ri, di] ⊂ B.

C. Upper Bounding Optimal Offline Value

Given a collection of jobsI, denote the optimal value that an
offline algorithm can obtain from scheduling the set of jobsI
by S∗

offline(I). We derive an upper bound ofS∗
offline(I) for I being

the set of released jobs. We partition the collection of jobs
I = Sc∪Sp∪F p∪F c∪D whereSc (Sp) denotes the successful
contention-scheduled (peace-scheduled) jobs,F c (F p) denotes
the failed contention-scheduled (peace-scheduled) jobs and D
the declined jobs under DSC algorithm.

SinceS∗
offline(S

c∪Sp∪F p∪F c∪D) ≤ S∗
offline(S

p)+S∗
offline(S

c∪
F c ∪ F p ∪ D), we upper bound the two terms separately.
We upper bound the termS∗

offline(S
c ∪ F p ∪ F c ∪ D) by

considering the optimal offline algorithm forSc∪F p∪F c∪D
under aprocessing-time-granted-valuesetting. (The granted-
value setting is first used in [6] to treat the no commitment
case.) Specifically, the offline scheduler receives an additional
granted valuebesides the value obtained fromSc∪F c∪F p∪D.
The amount of granted value depends on the offline schedule:
unit value will be granted for unit processing time inB that
is not used for executing jobs inSc ∪ F p ∪ F c ∪D.

Under the granted-value setting the optimal offline scheduler
must consider that scheduling a job might reduce the granted
value (since processing time inB is used). Executing a jobTi

results in a gain ofvi and a loss of the granted value for the
processing time ofTi that is executed inB.

One offline schedule under the granted-value setting is to
schedule no jobs inSc ∪ F p ∪ F c ∪D (therefore leaving the
entireB period untouched) and get only the (whole) granted
value. This scheduling-nothing schedule obtains a value of
|B|. Since Lemma 1 upper bounds the total processing time
in a continuous busy interval, we can upper bound the total
processing time inB, and thus the value obtained by the
scheduling-nothing schedule.

However, the optimal offline schedule under the granted-
value setting may use some processing time ofB to schedule
certain jobs inSc∪F p∪F c∪D to obtain more value than the
scheduling-nothing schedule. To upper boundS∗

offline(S
c∪F p∪

F c ∪ D) under the granted-value setting, we take the value

of the scheduling-nothing schedule as a benchmark and turn
to upper bounding the net gain the optimal schedule can have
over the scheduling-nothing schedule by completing some jobs
in Sc ∪ F p ∪ F c ∪D.

We first observe that any jobTi ∈ F c∪Sc will be such that
[ri, di] ⊂ B, since at the timeri, Ti is contention-scheduled
in the interval[di − pi, di]. Therefore the busy period covers
[ri, di]. We also observe by Lemma 3 that a peace-scheduled
job Tf ∈ F p which eventually fails also satisfies[ri, di] ⊂ B.
By the definition of the granted value we can see that under
the optimal offline algorithm, no job is scheduled entirely in B

because the granted value lost would be equal to the value of
the job. Therefore the optimal offline schedule will not choose
to schedule any jobs inSc ∪ F p ∪ F c.

Since we are interested in scheduling jobs inSc ∪ F p ∪
F c ∪D such that only small amount ofB processing time is
used (thus small loss of granted value), we leverage the fact
that when a jobTd ∈ D is declined during busy intervalB,
the deadline ofTd can not be too far with respect to the end
of B, given by Lemma 2. Lemma 4 provides the earliest time
for an offline scheduler to execute a job inD outsideB.

Lemma 4. SupposeTd ∈ D is declined by the online
scheduler at timerd and rd ∈ B = [t, t]. Then, ifTd is to
be executed by the offline scheduler anywhere outsideB it
must be aftert.

Proof: The proof can be easily done using the factrd ∈
B = [t, t], leading to[rd, t] ⊂ B.

Lemma 5 upper bounds the net gain the optimal offline
scheduler will obtain over the scheduling-nothing benchmark,
restricted to the jobs that are declined duringB.

Lemma 5. Under the granted-value setting the total net gain
obtained by the offline algorithm from scheduling the jobs in
Sc ∪ F p ∪ F c ∪ D released inB = [t, t] is no greater than
(1 + β)TB +

∑

rj∈B sj .

Proof: According to Lemma 2 ifTi was declined during
the busy intervalB = [t, t]. Then

di − t ≤ (1 + β)TB +
∑

rj∈B

sj ,

wheresj is the shortage (at timet) of job Tj that is admitted
in B and the summation ofrj ∈ B is summing over all jobs
Tj that are admitted inB.

On the other hand under the granted-value setting the net
gain obtained by the offline algorithm from scheduling the
jobs inSc∪F p∪F c∪D released inB = [t, t] can only come
from D and the earliest timeTd can be executed by the offline
scheduler outsideB is t.

Therefore the net gain obtained by the offline algorithm
from scheduling the jobs inSc ∪F p ∪F c ∪D in B = [t, t] is
bounded by

max
Ti∈DB

di − t ≤ (1 + β)TB +
∑

rj∈B

sj ,

whereDB is the subset ofD released inB.



Lemma 6 upper bounds the total shortage
∑

rj∈B sj (at time
t).

Lemma 6.
∑

rj∈B sj ≤ |B| − TB.

Proof: Since eachTj that is not finished inB contributes
sj to

∑

rj∈B sj and−sj to TB, and eachTj that is finished
in B contributes0 to

∑

rj∈B sj , vj to TB andvj to |B|, the
lemma is proved.

D. Proving Theorem 1

We now prove Theorem 1 after bounding the net gain of
scheduling the jobs inSc ∪ F p ∪ F c ∪D.

Proof: Lemma 5 bounds the maximum net gain for each
busy interval. By construction, each job is accounted for in
exactly one continuous busy interval. Therefore, summing
over all busy intervals we conclude using Lemma 6 that
under the granted value setting the total net gain during the
entire execution horizon obtained by the offline algorithm from
scheduling the jobs ofSc∪F p∪F c∪D is bounded by|B|+βT,
whereB is the union of all the busy intervals.

Combining the upper bound of the total net gain and the
value of the scheduling-nothing benchmark,i.e., the processing
time in B, yields

S∗
offline(I) ≤ S∗

offline(S
c ∪ F p ∪ F c ∪D) + S∗

offline(S
p)

≤ |B|+ (|B|+ βT) + value(Sp)

≤ 2|B|+ βT + value(Sp)

≤ (β + 2)T +
2

β − 1
C + P (3)

≤ (β + 2)T +
2

β − 1
C +

2

β − 1
P (4)

≤ (β + 2 +
2

β − 1
)T

≤ (3 + 2
√
2)T, (5)

where Eq. (3) is obtained from summing Lemma 1 over all
continuous busy intervals, Eq. (4) holds whenβ ≤ 3, and Eq.
(5) is obtained by optimizing overβ, which yieldsβ = 1+

√
2

and
S∗

offline(I) ≤ (3 + 2
√
2)T, (6)

whereI = Sp ∪Sc ∪F p ∪F c ∪D is the set of released jobs.
Since the value of the optimal offline schedule is at most

S∗
offline(I) and the profit obtained by DSC algorithm isT, the

competitive ratio3− 2
√
2 is shown to be achievable by DSC

algorithm.

IV. U PPERBOUND ON COMPETITIVE RATIO

An adversary argument establishes the upper bound on the
competitive ratio ever achievable by any online scheduler.
Specifically, we construct a job input instanceI, such that
the competitive ratio for the constructed job input instance is
upper bounded by3− 2

√
2.

Consider the input instanceI constructed by the adversary
which contains a sequence of tight jobs (ri + pi = di). The
first tight job T0 is released at time0 with processing length

x0 = 1. The offline adversary observes the action of the
online scheduler and then decides future job releases. Upon
the release ofT0 the online scheduler can choose either to
admit or to decline the jobT0.

If declined, the offline adversary will choose to release no
more jobs and eventually the offline adversary obtainsx0 while
the online scheduler0.

If admitted, the adversary will choose to release another
tight job T1 at time ǫ, with processing lengthx1. Then
similarly the online scheduler can choose either to admit orto
decline the jobT1 upon arrival.

Similarly, if declined, the offline adversary will choose to
release no more jobs and eventually the offline adversary
obtainsx1 while the online schedulerx0.

If admitted, the adversary released another tight jobT2 at
time 2ǫ, with processing lengthx2.

The whole process keeps going until the online scheduler
chooses to decline the first job in the process. For the(n+2)th
release the offline adversary releases the tight jobTn+1 at
time (n + 1)ǫ, with processing lengthxn+1. Then similarly
the online scheduler can choose either to admit or to decline
the jobTn+1 upon arrival.

If declined, the offline adversary will choose to release no
more jobs and eventually the offline adversary obtainsxn+1

while the online schedulerxn −
∑n−1

j=0 xj , where
∑n−1

j=0 xj is
the non-completion penalty paid by the online scheduler (the
non-completion penalty should ideally include a term withǫ,
however, the adversary will chooseǫ to be arbitrarily small
and the term can be left out in the following derivation).

For the above job release up toTm+1 (i.e., even the
online scheduler chooses to admit up to jobTm+1, the offline
adversary will not release new jobs), the competitive ratioever
achievable for the above constructed input instance is

max{σ1, σ2, . . . , σn+1, . . . , σm+1,
xm+1 −

∑m

j=0 xj

xm+1
}, (7)

whereσi+1 =
xi−

∑i−1

j=0
xj

xi+1
, for i = 0, 1, . . . ,m.

Now we design the processing lengthsxi to upper bound
the value of Eq. (7). We first set all terms but the last inside
the minimum in Eq. (7) to be1/c.

cx0 = x1

c(x1 − x0) = x2

...

c(xn −
n−1
∑

j=0

xj) = xn+1 (8)

c(xn+1 −
n
∑

j=0

xj) = xn+2 (9)

...

c(xm −
m−1
∑

j=0

xj) = xm+1



We can then obtain the recursion by subtracting Eq. (8) from
Eq. (9),

x0 = 1, x1 = c, c(xn+1 − 2xn) = xn+2 − xn+1, (10)

with the characteristic function

x2 − (c+ 1)x+ 2c = 0. (11)

We still need the last term inside the maximum in Eq. (7)
to be no greater than1/c,

xm+1 −
∑m

j=0 xj

xm+1
≤ 1

c
. (12)

Rewrite Eq. (12) to be

xm+1 −
∑m

j=0 xj

xm+1
≤

xm −∑m−1
j=0 xj

xm+1
, (13)

which implies
xm+1 ≤ 2xm, (14)

and further (due to Eq. (10))

xm+2 ≤ xm+1. (15)

For any1 ≤ c < 3 + 2
√
2 the characteristic function has

two complex roots and there existsm such that Eq. (12) is
satisfied. Therefore we can usec arbitrarily close to3 + 2

√
2

to construct the sequence of tight jobs with processing length
x0, x1, . . . , xm+1, for which the best competitive ratio ever
achievable is1/c. Taking the limit ofc → 3+2

√
2 yields the

conclusion that the best competitive ratio ever achievableis
(3 + 2

√
2)−1 = 3 − 2

√
2, matching the competitive ratio of

DSC.

V. CONCLUSION

We consider the problem of online preemptive job schedul-
ing with deadlines and commitment requirement for the appli-
cation of PHEV garage charging scheduling. We propose an
online scheduling algorithm DSC and analyze its competitive
ratio in the presence of overload. We show that the competitive
ratio of DSC is3 − 2

√
2 = 17.16%. We also show that no

online scheduling algorithm can achieve a better competitive
ratio, which establishes the optimality of DSC competitive-
ratio-wise. Comparing with the optimal competitive ratio of
1/4 = 25% without the commitment requirement, our result
quantifies the performance loss (in terms of competitive ratio)
due to the commitment obligation to be7.84%. The multi-
processor scheduling and the average performance of the DSC
algorithm under a stochastic setup will be investigated in future
work.
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