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Abstract—This paper studies incremental relay strategies for
a two-user Gaussian relay-interference channel with an in-band-
reception and out-of-band-transmission relay, where the link
between the relay and the two receivers is modelled as a degraded
broadcast channel. It is shown that generalized hash-and-forward
(GHF) can achieve the capacity region of this channel to within a
constant number of bits in a certain weak-relay regime, where the
transmitter-to-relay link gains are not unboundedly stronger than
the interference links between the transmitters and the receivers.
The GHF relaying strategy is ideally suited for the broadcasting
relay because it can be implemented in an incremental fashion,
i.e., the relay message to one receiver is a degraded versionof the
message to the other receiver. A generalized-degree-of-freedom
(GDoF) analysis in the high signal-to-noise ratio (SNR) regime
reveals that in the symmetric channel setting, each common
relay bit can improve the sum rate roughly by either one bit
or two bits asymptotically depending on the operating regime,
and the rate gain can be interpreted as coming solely from the
improvement of the common messages rate, or alternatively in
the very weak interference regime as solely coming from the rate
improvement of the private messages. Further, this paper studies
an asymmetric case in which the relay has only a single single
link to one of the destinations. It is shown that with only one
relay-destination link, the approximate capacity region can be
established for a larger regime of channel parameters. Further,
from a GDoF point of view, the sum-capacity gain due to the
relay can now be thought as coming from either signal relaying
only, or interference forwarding only.

Index Terms—Approximate capacity, generalized hash-and-
forward (GHF), generalized degrees of freedom, Han-Kobayashi
strategy, interference channel, relay channel.

I. I NTRODUCTION

Interference is a key limiting factor in modern communica-
tion systems. In a wireless cellular network, the performance
of cell-edge users is severely limited by intercell interference.
This paper considers the use of relays in cellular networks.The
uses of relays to combat channel shadowing and to extend
coverage for wireless systems have been widely studied in
the literature. The main goal of this paper is to demonstrate
the benefit of relaying for interference mitigation in the
interference-limited regime.

Consider a two-cell wireless network with two base-stations
each serving their respective receivers while interferingwith
each other, as shown in Fig. 1. The deployment of acell-edge
relay, which observes a linear combination of the two transmit
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signals from the base-stations and is capable of independently
communicating with the receivers over a pair of relay links,
can significantly help the receivers mitigate intercell interfer-
ence. This model is often referred to as an in-band-reception
and out-of-band-transmission relay-interference channel, as
the relay-to-receiver transmission can be thought of as taking
place on a different frequency band.

A particular feature of the channel model considered in
this paper is that the relay-to-receivers link is modeled asa
Gaussian broadcast channel. This is motivated by the fact that
the relay’s transmission to the remote receivers often takes
place in a wireless medium. Consequently, the same relay
message can be heard by both receivers and can potentially
help both receivers at the same time. Further, it is convenient
(and without loss of generality as shown later for the achiev-
ability scheme and the converse proved in this paper) to model
the relay-to-receiver links as digital links with capacitiesC1

andC2 respectively, but where one relay message is required
to be a degraded version of the other relay message, as in a
Gaussian broadcast channel. The goal of this paper is to devise
an incremental relaying strategy and to quantify its benefitfor
this particular relay-interference channel.

A. Related Work

The classic two-user interference channel consists of two
transmitter-receiver pairs communicating in the presenceof
interference from each other. Although the capacity regionof
the two-user Gaussian interference channel is still not known
exactly, it can be approximated to within one bit [1] using a
Han-Kobayashi power splitting strategy [2].

The use of cooperative communication for interference
mitigation has received much attention recently. For example,
[3]–[5] studied the Gaussian Z-interference channel with a
unidirectional receiver cooperation link, and [6]–[9] studied
the Gaussian interference channel with bi-directional transmit-
ter/receiver cooperation links. In addition, the Gaussianinter-
ference channel with an additional relay node has also been
studied extensively in the literature. Depending on the types
of the links between the relay and the transmitters/receivers,
the relay-interference channel can be categorized as having
in-band transmission/reception [10]–[17], out-of-band trans-
mission/reception [18]–[20], out-of-band transmission and in-
band reception [21]–[24], or in-band transmission and out-of-
band reception [25], the last of which is directly related to
the channel model in this paper. In the following, we review
different transmission schemes and relaying strategies that
have emerged for each of these cases.

For interference channels equipped with an in-band trans-
mission and reception relay, the relay interacts with both trans-
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Fig. 1. A two-cell network with an in-band reception and out-of-band-
broadcasting relay for interference mitigation

mitters and receivers in the same frequency band. Relaying
strategies that have been investigated in the literature include
decode-and-forward, compress-and-forward, and amplify-and-
forward. For example, [12], [13] show that decoding-and-
forwarding either the intended signal or the interfering signal
to a receiver can both be beneficial. The former is termed
as signal relaying, the latter interference forwarding. Decode-
and-forward and half-duplex amplify-and-forward strategies
are also studied in [14], [16]. When combining decode-and-
forward relaying strategy and the Han-Kobayashi rate splitting
input scheme, [17] gives an achievable rate region that has a
shape similar to the Chong-Motani-Garg (CMG) region for
the interference channel [26]. The exact capacity for this type
of relay-interference channel is in general open, but thereis
a special potent-relay case [11] for which the sum capacity is
known in some specific regimes.

The difficulty in establishing the capacity of the interference
channel with in-band transmission/reception relay is in part
due to the fact that the relay’s received and transmit signals
intertwine with that of the underlying interference channel. To
simplify the matter, the interference channel with an out-of-
band transmission/reception relay has been studied in [18]–
[20]. In this channel model, the relay essentially operateson a
separate set of parallel channels. Based on signal relayingand
interference forwarding strategies, [18] identifies the condition
under which the capacity region can be achieved with sepa-
rable or nonseparable coding between the out-of-band relay
and the underlying interference channel. Further, [19] studies
this channel model in a symmetric setting and characterizes
the sum capacity to within1.15 bits. The transmission scheme
of [19] involves further splitting of the common messages in
the Han-Kobayashi scheme and a relay strategy that combines
nested lattice coding and Gaussian codes. It is shown that in
the strong interference regime, the use of structured codesis
optimal.

Another variation of the relay-interference channel involves
an out-of-band reception and in-band transmission relay. This
channel is studied in [21], in which the transmitter further
splits the transmit signal according to the Han-Kobayashi
scheme; the relay decodes only part of the message depending
the capacity of the transmitter-relay links; the rest of the
codewords are transmitted directly from the sources to the
destinations without the help of the relay. With this partial
decode-and-forward relaying scheme, the sum capacity is
found under a so-called strong relay-interference condition.

The interference channel with an in-band reception/out-of-
band transmission relay has been briefly discussed in [25], and
studied in [22], [23] for a case where the relay-destination
links are shared between the two receivers. Conventional
decode-and-forward and compress-and-forward relay strate-
gies are not well matched for helping both receivers simultane-
ously with a common relayed message. Thus, [22], [23] con-
sider a generalized hash-and-forward (GHF) strategy, which
generalizes the conventional compress-and-forward scheme,
and is shown to achieve the capacity region of this channel
model to within a constant number of bits in the regime where
the shared relay-destination link rate is sufficiently small.
The channel model under consideration in this paper further
extends the shared relay-destinations link to be a degraded
broadcast channel. We focus on a different weak-relay regime.
The main objective is similar: to efficiently use the relay bits
to simultaneously benefit both users and to achieve capacity
to within a constant gap.

Finally, the GHF relay strategy used in this paper is es-
sentially the same as the noisy network coding [27]–[29] and
the quantize-map-and-forward relay strategies [30]. The result
of this paper can be thought of as an effort in generalizing
these relay strategies to a particular case of the multiple
unicast setting, for which constant-gap result continues to hold
for certain channel-parameter regimes. Related works for the
multiple unicast problem include [31]–[33].

B. Main Contributions

This paper considers a relay-interference channel with in-
band reception and out-of-band degraded broadcasting links
from the relay to the receivers. The key features of the
transmission strategy and the main results of the paper are
as follows.

1) Incremental Relaying:This paper uses a GHF relaying
strategy to take advantage of the in-band reception link and
the out-of-band broadcasting link from the relay to the re-
ceivers. In GHF, the relay quantizes its observation, whichis
a linear combination of the transmitted signals, using afixed
quantizer, then bins and forwards the quantized observation to
the receivers. This strategy of fixing the quantization level is
near optimal when a certainweak-relaycondition is satisfied,
and is ideally matched to the degraded broadcasting relay-to-
receiver links with capacitiesC1 and C2, because it allows
an incremental binning strategy at the relay. Assuming that
C1 ≤ C2, the relay may first bin its quantized observation
into 2nC1 bins and send the bin index to both receivers, then
further divide each bin into2n(C2−C1) sub-bins and sends the
extra bin index to receiver2 only. Thus, the relay message to
the first receiver is a degraded version of the message to the
second receiver.

2) Oblivious Power Splitting:The transmission scheme
used in this paper consists of a Han-Kobayashi power splitting
strategy [2] at the transmitter. The common-private power
splitting ratio in such a strategy is crucial. In a study of the
interference channel with conferencing links [6], Wang and
Tse used the power splitting strategy of Etkin, Tse and Wang
[1] where the private power is set at the noise level at the
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receivers. This is sensible for the conferencing-receivermodel
considered in [6], but not necessarily so for the interference
channel with an independent relay, unless again a certainweak-
relay condition is satisfied. This strategy of fixing the power
splitting at the transmitter to be independent of the relay is
termed oblivious power splittingin [23]. Oblivious power
splitting is used in this paper as well.

3) Constant Gap to Capacity in the weak-relay Regime:
The main result of this paper is that when the relay links are
not unboundedly stronger than the interfering links, i.e.,

max

{ |g1|2
|h12|2

,
|g2|2
|h21|2

}

= ρ < ∞, (1)

for some fixedρ, the capacity of the relay-interference channel
with a broadcast link can be achieved to within a constant gap,
where the gap is a function ofρ but otherwise independent of
channel parameters. This operating regime is called theweak-
relay regimein this paper.

The main result of this paper is motivated by the results in
[22] and [23], which studies a two-user interference channel
augmented with a shared digital relay link to the receivers of
rate R0, and obtains a constant-gap-to-capacity result under
a certain small-R0 condition using GHF and oblivious power
splitting. The relay strategy studied in this paper goes one
step further in that the relay-to-receivers link is modeledas a
degraded broadcast channel. Moreover, the weak-relay regime
studied in this paper is a counterpart of the small-R0 regime
studied in [23], as can be visualized in the practical setup
of Fig. 1. When the mobiles are close to their respective
cell centers, the relay link capacitiesC1 and C2 are small,
thereby satisfying the small-R0 condition of [23]. In the more
practically important regime where the mobile terminals are
close to the cell edge, the channel falls into the weak-relay
regime of this paper. An interesting feature of the result in
this paper is that the gap to capacity is a function ofρ, the
relative channel strength between the interfering channeland
the channel to the relay; the gap becomes smaller asρ → 1.
In the limiting case withρ = 1, corresponding to the situation
where the mobiles are at the cell edge, the capacity region can
be achieved to within12 log

5+
√
33

2 = 1.2128 bits.
A technical contribution of this paper is a particular set

of capacity region outer bounds which are established by
giving different combinations of side information (genies) to
the receivers and by applying the known outer-bound results
of the Gaussian interference channel [1] and the single-input
multiple-output (SIMO) Gaussian interference channel [34]. It
is shown that there are two constraints for the individual rates
R1 andR2, twelve constraints for the sum rateR1 +R2, six
constraints for2R1 + R2, and six constraints forR1 + 2R2.
Furthermore, the outer bounds established in this paper hold
for all channel parameters. This set of outer bounds is tightto
within a constant gap in the weak-relay regime.

To obtain insights from the performance gain brought by
the relay, this paper further investigates the improvementin
the generalized degrees of freedom (GDoF) per user for the
relay-interference channel due to a broadcasting link. In the
symmetric setting, it is shown that a common broadcast link
can improve the sum capacity by two bits per each relay bit in

the very weak, moderately weak, and very strong interference
regimes, but by one bit per each relay bit in other regimes. This
asymptotic behavior can be interpreted by noting that the relay
link essentially behaves like a deterministic channel in the high
signal-to-noise-ratio (SNR) regime. Further, in the symmetric
setting, the sum-capacity gain due to the relay can be thought
of as solely coming from the rate improvement of the common
messages, or alternatively in a very weak interference regime
as solely coming from the rate improvement of the private
messages.

In asymmetric settings, the improvement in the sum ca-
pacity by the relay can be interpreted in different ways. To
illustrate this point, this paper investigates a special case of
the channel model, where the relay link is available to only
one but not both destinations. In this case, the relay may
forward information about both the intended signal and the
interference, and the capacity can benefit from both signal-
relaying and interference-forwarding. This paper shows that a
constant-gap-to-capacity result can be derived for this setting
under a more relaxed weak-relay condition that requires only
|g2| ≤ √

ρ|h21| (and not|g1| ≤ √
ρ|h12|). Moreover, this paper

shows that in term of GDoF, when the relay link is above a
certain threshold, the sum-capacity gain is equivalent to that
of that of a single relay link from user1. When the relay link
is below the threshold, the sum-capacity gain is equivalentto
that of a single relay link from user2.

Finally, the results of this paper show that GHF is sufficient
for achieving the approximated capacity region of an in-
band reception and out-of-band transmission Gaussian relay-
interference channel in the weak-relay regime. Thus, more
recently proposed relay techniques based on compute-and-
forward [35] or lattice coding [36] is not necessary in this
regime as far as constant gap to capacity is concerned . Outside
of the weak-relay regime, the optimal relay strategies remain
an open problem; lattice coding strategies may be helpful.

C. Organization of This Paper

The rest of the paper is organized as follows. Section
II introduces the Gaussian relay-interference channel model,
derives capacity region outer bounds that hold for all channel
parameters and an achievable rate region, and presents the
main constant-gap theorem and the GDoF analysis. Section III
deals with the relay-interference channel with a single relay
link, derives the corresponding constant-gap result, and gives
a quantitative analysis on the relation between signal relaying
and interference forwarding. Section IV concludes the paper.

II. GAUSSIAN RELAY-INTERFERENCECHANNEL :
GENERAL CASE

A. Channel Model and Definitions

A Gaussian relay-interference channel consists of two
transmitter-receiver pairs and an independent relay. Eachtrans-
mitter communicates with the intended receiver while causing
interference to the other transmitter-receiver pair. The relay
receives a linear combination of the two transmit signals and
helps the transmitter-receiver pairs by forwarding a message
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Fig. 2. Gaussian relay-interference channel with two independent digital
relay links

to receiver1 and another message to receiver2 through rate-
limited digital links with capacitiesC1 and C2 respectively.
We start by treating a channel model with independent relay
links, and later show that requiring one relay message to be a
degraded version of the other is without loss of approximate
optimality. As shown in Fig. 2,X1, X2 and Y1, Y2 are real-
valued input and output signals, respectively, andYR is the
observation of the relay. The receiver noises are assumed to
be independent and identically distributed (i.i.d.) Gaussian ran-
dom variables with variance one, i.e.,Zi ∼ N (0, 1), i = 1, 2
andR. The input-output relationship can be described by

Y1 = h11X1 + h21X2 + Z1, (2)

Y2 = h22X2 + h12X1 + Z2, (3)

YR = g1X1 + g2X2 + ZR, (4)

wherehij is the channel gain from transmitteri to receiverj,
andgj is the channel gain from transmitterj to the relay, all
real valued. The powers of the input signals are normalized to
one, i.e.,E[|Xi|2] ≤ 1, i = 1, 2.

Define the signal-to-noise ratios and interference-to-noise
ratios as follows:

SNRi = |hii|2, SNRri = |gi|2, i = 1, 2

INR1 = |h12|2, INR2 = |h21|2.
Define functionsα(·) andβ(·) as

α(x) =
1

2
log(2x+2+ρ), β(x) =

1

2
+
1

2
log

(

1 +
1 + ρ

x

)

,

(5)
wherelog(·) is base2 andρ is defined as

ρ , max

{ |g1|2
|h12|2

,
|g2|2
|h21|2

}

. (6)

This paper considers a weak-relay regime whereρ is a finite
constant.

B. Outer Bounds and Achievable Rate Region

We first present outer bounds and achievability results that
are applicable to the relay-interference channel model with
two independent digital relays as shown in Fig. 2.

Theorem 1 (Capacity Region Outer Bounds). The capacity
region of the Gaussian relay-interference channel as depicted

in Fig. 2 is contained in the outer boundC given by the set
of (R1, R2) for which

R1 ≤ 1

2
log(1 + SNR1)

+min

{

C1,
1

2
log

(

1 +
SNRr1

1 + SNR1

)}

(7)

R2 ≤ 1

2
log(1 + SNR2)

+min

{

C2,
1

2
log

(

1 +
SNRr2

1 + SNR2

)}

(8)

R1 +R2 ≤ 1

2
log(1 + SNR2 + INR1)

+
1

2
log

(

1 +
SNR1

1 + INR1

)

+ C1 + C2 (9)

R1 +R2 ≤ 1

2
log(1 + SNR1 + INR2)

+
1

2
log

(

1 +
SNR2

1 + INR2

)

+ C1 + C2 (10)

R1 +R2 ≤ 1

2
log

(

1 + INR2 +
SNR1

1 + INR1

)

+
1

2
log

(

1 + INR1 +
SNR2

1 + INR2

)

+ C1 + C2

(11)

R1 +R2 ≤ 1

2
log

(

1 +
SNR1

1 + INR1 + SNRr1

)

+
1

2
log(1 + SNR2(1 + φ2

2SNRr1)

+SNRr2 + INR1 + SNRr1) + C1 (12)

R1 +R2 ≤ 1

2
log(1 + SNR1 + INR2)

+
1

2
log

(

1 +
SNR2 + SNRr2

1 + INR2

)

+ C1 (13)

R1 +R2 ≤ 1

2
log

(

1 +
SNR1

1 + INR1 + SNRr1
+ INR2

)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1) + C1 (14)

R1 +R2 ≤ 1

2
log

(

1 +
SNR2

1 + INR2 + SNRr2

)

+
1

2
log(1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNRr2) + C2 (15)

R1 +R2 ≤ 1

2
log(1 + SNR2 + INR1)

+
1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

+ C2 (16)

R1 +R2 ≤ 1

2
log

(

1 +
SNR2

1 + INR2 + SNRr2
+ INR1

)

+
1

2
log

(

1 +
SNR1(1 + φ2

1SNRr2) + SNRr1

1 + INR1

+INR2 + SNRr2) + C2 (17)
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R1 +R2 ≤ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1 + SNRr1

)

+
1

2
log(1 + SNR2(1 + φ2

2SNRr1) + SNRr2

+INR1 + SNRr1) (18)

R1 +R2 ≤ 1

2
log

(

1 +
SNR2 + SNRr2

1 + INR2 + SNRr2

)

+
1

2
log(1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNRr2) (19)

R1 +R2 ≤ 1

2
log

(

1 +
SNR1(1 + φ2

1SNRr2) + SNRr1

1 + INR1 + SNRr1

+INR2 + SNRr2)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2 + SNRr2

+INR1 + SNRr1) (20)

2R1 +R2 ≤ 1

2
log (1 + SNR1 + INR2)

+
1

2
log

(

1 + INR1 +
SNR2

1 + INR2

)

+
1

2
log

(

1 +
SNR1

1 + INR1

)

+ 2C1 + C2 (21)

2R1 +R2 ≤ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1 + SNRr1

)

+
1

2
log
(
1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNRr2)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2 + SNRr2

+INR1 + SNRr1) (22)

2R1 +R2 ≤ 1

2
log(1 + SNR1 + INR2)

+
1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1) + C1 (23)

2R1 +R2 ≤ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

+
1

2
log

(

1 +
SNR2

1 + INR2 + SNRr2
+ INR1

)

+
1

2
log
(
1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNR2) + C2 (24)

2R1 +R2 ≤ 1

2
log(1 + SNR1 + INR2)

+
1

2
log

(

1 +
SNR1

1 + INR1 + SNRr1

)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1) + 2C1 (25)

2R1 +R2 ≤ 1

2
log(1 + SNR1 + INR2)

+
1

2
log

(

1 + INR1 +
SNR2

1 + INR2

)

+
1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

+C1 + C2, (26)

and R1 + 2R2 bounded by (21)-(26) with indices1 and 2
switched, whereφ2

1 andφ2
2 are defined as

φ2
1 =

∣
∣
∣
∣

g1h21

g2h11
− 1

∣
∣
∣
∣

2

, φ2
2 =

∣
∣
∣
∣

g2h12

g1h22
− 1

∣
∣
∣
∣

2

. (27)

Proof: The above outer bounds can be proved in a genie-
aided approach. See Appendix A for details.

Theorem 2 (Achievable Rate Region). Let P denote the set
of probability distributionsP (·) that factor as

P (q, w1, w2, x1, x2, y1, y2, yR, ŷR1, ŷR2)

= p(q)p(x1, w1|q)p(x2, w2|q)p(y1, y2, yR|x1, x2, q)

p(ŷR1, ŷR2|yR, q). (28)

For a fixed distributionP ∈ P , let R(P ) be the set of all rate
pairs (R1, R2) satisfying

0 ≤ R1 ≤ d1 +min
{
(C1 − ξ1)

+,∆d1
}
, (29)

0 ≤ R2 ≤ d2 +min
{
(C2 − ξ2)

+,∆d2
}
, (30)

R1 +R2 ≤ a1 + g2 +min
{
(C1 − ξ1)

+,∆a1
}

+min
{
(C2 − ξ2)

+,∆g2
}
, (31)

R1 +R2 ≤ a2 + g1 +min
{
(C1 − ξ1)

+,∆g1
}

+min
{
(C2 − ξ2)

+,∆a2
}
, (32)

R1 +R2 ≤ e1 + e2 +min
{
(C1 − ξ1)

+,∆e1
}

+min
{
(C2 − ξ2)

+,∆e2
}
, (33)

2R1 +R2 ≤ a1 + g1 + e2 +min
{
(C1 − ξ1)

+,∆a1
}

+min
{
(C1 − ξ1)

+,∆g1
}

+min
{
(C2 − ξ2)

+,∆e2
}
, (34)

R1 + 2R2 ≤ a2 + g2 + e1 +min
{
(C2 − ξ2)

+,∆a2
}

+min
{
(C2 − ξ2)

+,∆g2
}

+min
{
(C1 − ξ1)

+,∆e1
}
, (35)

where

a1 = I(X1;Y1|W1,W2, Q), (36)

d1 = I(X1;Y1|W2, Q), (37)

e1 = I(X1,W2;Y1|W1, Q), (38)

g1 = I(X1,W2;Y1|Q), (39)

∆a1 = I(X1; ŶR1|Y1,W1,W2, Q), (40)

∆d1 = I(X1; ŶR1|Y1,W2, Q), (41)

∆e1 = I(X1,W2; ŶR1|Y1,W1, Q), (42)

∆g1 = I(X1,W2; ŶR1|Y1, Q), (43)

ξ1 = I(YR; ŶR1|Y1, X1,W2, Q), (44)

anda2,∆a2, d2,∆d2, e2,∆e2, g2,∆g2, andξ2 are defined by
(36)-(44) with indices1 and 2 switched. Then

R =
⋃

P∈P

R(P ) (45)
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is an achievable rate region for the Gaussian relay-
interference channel as shown in Fig. 2.

Proof: The achievable scheme consists of a Han-
Kobayashi strategy at the transmitters and a generalized hash-
and-forward strategy at the relay. They are the same strategies
as adopted in [23] except that unlike the GHF relaying scheme
in [23, Theorem 2], where the relay quantizes the received
signal and broadcasts its bin index to both receivers through
a shared digital link, the relay here quantizes the received
signal with two different quantization resolutions, then sends
the bin indices of the quantized signals to the receivers through
separated digital links of ratesC1 andC2. The following is a
sketch of the encoding/decoding process.

Encoding: Each transmit signal is comprised of a common
message of rateTi and a private message of rateSi. The
common message codewordsWn

i (j), j = 1, 2, · · · , 2nTi of
lengthn are generated according to the probability distribution
Πn

i=1p(wi|q), whereq ∼ p(q) serves as the time-sharing ran-
dom variable. Based on the common message codewords, user
i generates codewordsXn

i (j, k), k = 1, 2, · · · , 2nSi of length
n following the conditional distributionΠn

i=1p(xi|wi, q). Each
input messageθi ∈ [1, 2, · · · , 2Si+Ti ], i = 1, 2 is mapped to
a message pair(si, ti) ∈ [1, · · · , 2Si]× [1, · · · , 2Ti ], then sent
to the destinations asXn

i (si, ti). At the relay, the quantization
codebook is generated according to the probability distribution
p(ŷR1, ŷR2|yR, q). After receivingY n

R , the relay quantizesY n
R

into Ŷ n
R1 andŶ n

R2, then binsŶ n
R1 to 2nC1 bins, and binŝY n

R1 to
2nC1 bins, and sends the bin indices to the receivers through
the digital links.

Decoding: The decoding process follows the Han-
Kobayashi framework:Xn

1 andWn
2 are decoded by receiver

1 with the help of the index of the relayed messageŶ n
R1;

Xn
2 andWn

1 are decoded by receiver2 with the help of the
index of the relayed messagêY n

R2. To decode, receiver1 first
constructs a list of candidates for the relayed messageŶ n

R1,
then jointly decodesXn

1 , Wn
2 andŶ n

R1 using typicality decod-
ing. Similarly, receiver2 jointly decodesXn

2 , Wn
1 and Ŷ n

R2.
Following the error probability analysis in [23, Theorem 2], the
rate tuple(S1, T1, S2, T2) satisfying the following constraints
is achievable:

Constraints at receiver 1:

S1 ≤ min{I(X1;Y1|W1,W2, Q) + (C1 − ξ1)
+,

I(X1;Y1, ŶR1|W1,W2, Q)} (46)

S1 + T1 ≤ min{I(X1;Y1|W2, Q) + (C1 − ξ1)
+,

I(X1;Y1, ŶR1|W2, Q)} (47)

S1 + T2 ≤ min{I(X1,W2;Y1|W1, Q) + (C1 − ξ1)
+,

I(X1,W2;Y1, ŶR1|W1, Q)} (48)

S1 + T1 + T2 ≤ min{I(X1,W2;Y1|Q) + (C1 − ξ1)
+,

I(X1,W2;Y1, ŶR1|Q)} (49)

Constraints at receiver 2:

S2 ≤ min{I(X2;Y2|W1,W2, Q) + (C2 − ξ2)
+,

I(X2;Y2, ŶR2|W1,W2, Q)} (50)

S2 + T2 ≤ min{I(X2;Y2|W1, Q) + (C2 − ξ2)
+,

I(X2;Y2, ŶR2|W1, Q)} (51)

S2 + T1 ≤ min{I(X2,W1;Y2|W2, Q) + (C2 − ξ2)
+,

I(X2,W1;Y2, ŶR2|W2, Q)} (52)

S2 + T2 + T1 ≤ min{I(X2,W1;Y2|Q) + (C2 − ξ2)
+,

I(X2,W1;Y2, ŶR2|Q)} (53)

The achievable rate region consists of all rate pairs(R1, R2)
such thatR1 = S1 + T1 and R2 = S2 + T2. Applying the
Fourier-Motzkin elimination procedure [37] gives the achiev-
able rate region (29)-(35).

We remark here that although both Theorem 1 and The-
orem 2 are stated for the digital noise-free relay-destination
links, it can be easily verified that both results continue tohold
when the digital links are replaced by analog additive Gaussian
noise channels. The fact that the achievable rate region forthe
analog channel is at least as large as the rate region for the
digital channel is obvious since one can always digitize the
analog link. The fact that the outer bound continues to hold
can be verified by going through the proof of that converse
in Appendix A. The outer bounds in the converse involve
terms like I(Xn

1 ;Y
n
1 , V n

1 ), which is in turn upper bounded
by I(Xn

1 ;Y
n
1 ) +nC1. It is easy to show that when the digital

link C1 is replaced by an analog link with inputXa1 and
outputYa1, the mutual information term is upper bounded by
I(Xn

1 ;Y
n
1 ) + I(Xn

a1;Y
n
a1). As a result, all the outer bounds

in Theorem 1 continue to hold in the case of the analog relay
link with C1 replaced byI(Xa1;Ya1) and C2 replaced by
I(Xa2;Ya2).

C. Constant Gap in the Weak-Relay Regime

We now specialize to the Gaussian case, and show that under
the weak-relay condition (1), the achievable rate region and the
outer bounds of the Gaussian relay-interference channel with
independent relay links can be made to be within a constant
gap to each other. The relaying strategy that achieves this
capacity to within a constant gap turns out to be naturally
suited for the Gaussian relay-interference channel with a
degraded broadcasting relay, thus establishing the constant-
gap result for the broadcasting-relay case as well.

Assuming Gaussian codebooks and a Gaussian quantization
scheme, the key design parameters are the choice of common-
private power splitting ratio at the transmitters and the quan-
tization level at the relay. Our choice of design parameters
is inspired by that of Wang and Tse [6], where the capacity
region of a Gaussian interference channel with rate-limited
receiver cooperation is characterized to within a constantgap.
Two key observations are made in [6]. First, the Etkin-Tse-
Wang strategy [1] of setting the private power to be at the
noise level at the opposite receiver is used. Second, the relay
quantizes its observation at the private signal level in order to
preserve all the information of interest to the destinations. At
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the destinations, a joint decoding (see [22], [30], [38], [39])
is performed to recover the source messages.

Consider now the optimal power splitting in a Gaussian
relay-interference channel with independent relay links.The
Etkin-Tse-Wang strategy, i.e., setting private powersPip as

P1p = min{1, h−2
12 }, P2p = min{1, h−2

21 }. (54)

is near optimal for the Gaussian interference channel with
conferencing receivers, but is not necessarily so for relay-
interference channel shown in Fig. 2 in its most general
form. Consider an extreme scenario ofC1,C2 → ∞. In this
case, the relay fully cooperates with both receivers, so the
relay-interference channel becomes a single-input multiple-
output (SIMO) interference channel with two antennas at the
receivers. Thus, the private powers at the transmitters must be
set at the effective noise level for the two-antenna output in
order to achieve capacity to within constant bits [34] [40],i.e.,

P1p = min{1, (g21+h2
12)

−1}, P2p = min{1, (g22 +h2
21)

−1}.
(55)

WhenC1 andC2 are finite, the optimal power splitting strategy
is expected to be a function of not onlyh12 andh21 but also
g1, g2, C1 andC2, lying somewhere between (54) and (55).

This complication can be avoided, however, if we focus
on the weak-relay regime (1), namely|g1| ≤ √

ρ|h12| and
|g2| ≤ √

ρ|h21| for some finite constantρ. In this case, the
power splittings (54) and (55) differ by at most a constant
factor. The main result of this section shows that in this weak-
relay regime, the Etkin-Tse-Wang’s original power splitting
(54) is sufficient for achieving the capacity of the Gaussian
relay-interference channel to within a constant gap (whichis
a function ofρ).

Consider next the optimization of the quantization level.
Applying the insight of [6] to the Gaussian relay-interference
channel with independent relay links shown in Fig. 2, the
quantized messages for two receivers can be expressed as

ŶR1 = g1U1 + g1W1 + g2W2 +

of no interest atY1

︷ ︸︸ ︷

g2U2 + ZR +η1 (56)

ŶR2 = g1W1 + g2U2 + g2W2 + g1U1 + ZR
︸ ︷︷ ︸

of no interest atY2

+η2 (57)

whereWi andUi are common message and private message
respectively, andηi ∼ N (0, qi) is the quantization noise,i =
1, 2. Therefore, a reasonable choice of the quantization levels
for receiver1 and receiver2 is

q1 = 1 + g22P2p, q2 = 1 + g21P1p. (58)

Now observe that in the weak-relay regime, i.e.,|g1| ≤√
ρ|h12|, |g2| ≤ √

ρ|h21|, the above quantization levels (with
Etkin-Tse-Wang power splitting) are between1 and the con-
stantρ+1. Thus, we can choose the quantization levels to be
a constant and optimize it between1 andρ+ 1.

Theorem 3 (Constant Gap in the Weak-Relay Regime). For
the Gaussian relay-interference channel with independentre-
lay links as depicted in Fig. 2, in the weak-relay regime, using
the generalized hash-and-forward relaying scheme with quan-

tization levelsq1 = q2 =

√
ρ2+16ρ+16−ρ

4 , whereρ is defined

in (6), and using the Han-Kobayashi scheme with Etkin-Tse-
Wang power splitting strategy,Xi = Ui +Wi, i = 1, 2, where
Ui and Wi are both Gaussian distributed with the powers
of U1 and U2 set according toP1p = min{1, h−2

12 } and
P2p = min{1, h−2

21 }, respectively, the achievable rate region
given in Theorem 2 is within

δ =
1

2
log

(

2 +
ρ+

√

ρ2 + 16ρ+ 16

2

)

(59)

bits of the capacity region outer bound in Theorem 1.

Proof: The main step is to show that using superposition
codingXi = Ui + Wi, i = 1, 2, whereUi ∼ N (0, Pip) and
Wi ∼ N (0, Pic) with Pip+Pic = 1, P1p = min{1, h−2

12 }, and
P2p = min{1, h−2

21 }, each of the achievable rate constraints
in (29)-(35) is within a finite gap to the corresponding upper
bound in (7)-(26). Specifically, it is shown in Appendix C that

(i) Individual rate (29) is within

δR1
= max {α(q1), β(q1)} (60)

bits of the upper bound (7), whereα(·) andβ(·) are as defined
in (5);

(ii) Individual rate (30) is within

δR2
= max {α(q2), β(q2)} (61)

bits of the upper bound (8);
(iii) Sum rates (31), (32), and (33) are within

δR1+R2
= max {α(q1) + α(q2), α(q1) + β(q2),

β(q1) + α(q2), β(q1) + β(q2)} (62)

bits of the upper bounds (9)-(20);
(iv) 2R1 +R2 rate (34) is within

δ2R1+R2
= max {2α(q1) + α(q2), 2β(q1) + α(q2),

α(q1) + β(q1) + α(q2),

2α(q1) + β(q2), 2β(q1) + β(q2)

α(q1) + β(q1) + β(q2)} (63)

bits of the upper bounds (21)-(26);
(v) R1 + 2R2 rate (35) is within

δR1+2R2
= max {α(q1) + 2α(q2), α(q1) + 2β(q2),

α(q1) + β(q2) + α(q2),

β(q1) + 2α(q2), β(q1) + 2β(q2),

β(q1) + β(q2) + α(q2)} (64)

bits of the upper bounds not shown explicitly in Theorem 1 but
can be obtained by switching the indices1 and2 of (21)-(26).

Sinceα(·) is a monotonically increasing function andβ(·)
is a monotonically decreasing function. In order to minimize
the above gaps overq1 andq2, the quantization levels should
be set such that

α(q∗1) = β(q∗1) = α(q∗2) = β(q∗2), (65)

which results inq∗1 = q∗2 =

√
ρ2+16ρ+16−ρ

4 . Substitutingq∗1
andq∗2 into the above gaps, we prove that the constant gap is
δ bits per dimension, whereδ is given in (59).
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Fig. 3. Evolution of the generalized hash-and-forward relay scheme

Note that the finite capacity gap is an increasing function
of ρ: smallerρ results in a smaller gap. In the case thatρ = 1,
i.e., |g1| ≤ |h12| and |g2| ≤ |h21|, the optimal quantization
levels areq∗1 = q∗2 =

√
33−1
4 , and the gap to the capacity is

given by 1
2 log

(
5+

√
33

4

)

= 1.2128 bits.

D. Gaussian Relay-Interference Channel with a Broadcasting
Relay

The GHF relaying scheme originally stated in Theorem 2
requires independent relay links. As shown in Fig. 3(a), the
relay observationY n

R undergoes two separate quantization and
binning processes to obtain the two messages for the two
receivers. However, in the weak-relay regime, Theorem 3
shows that using an identical quantization level for the two
receivers is without loss of approximate optimality, thus a
common quantization process can be shared between the two
receivers. Further, since the sameŶ n

R is binned into bins of
sizes2nC1 and2nC2 , this is equivalent to first binninĝY n

R into
2nC1 bins (assumingC1 ≤ C2) then further binning each bin
into 2n(C2−C1) sub-bins, as shown in Fig. 3(b). The message
sent to receiver 2 can be thought of as the refinement of the
message sent to receiver 1. This is exactly the incremental
relaying strategy we seek for the Gaussian interference channel
with a broadcasting relay, where the message to receiver 1
is a degraded version of the message to receiver 2. Finally,
if C1 = C2 = C, the relay-interference channel reduces to
the universal relaying scheme studied in [23], where a digital
link is shared between the relay and the receivers, as shown

in Fig. 3(c). We note here that the outer bounds for the
independent relay link case (Theorem 1) continues to hold
for the degraded broadcast relay case.

Corollary 1. The constant-gap-to-capacity result stated in
Theorem 3 holds also for the Gaussian relay-interference
channel with degraded broadcasting relay links, where (assum-
ing C1 ≤ C2) the message sent through the link with capacity
C1 must be a degraded version of the message sent through
the link with capacityC2.

E. Comments on the Strong-Relay Regime

The constant-gap result in this paper holds only in the weak-
relay regime of|g1| ≤ √

ρ|h12| and|g2| ≤ √
ρ|h21|, whereρ is

finite. The main difficulty in extending this result to the general
case is that both the choice of the Han-Kobayashi power
splitting ratio and the GHF relay strategy are no longer optimal
in the strong-relay regime. As mentioned earlier, the Etkin-
Tse-Wang power splitting is not optimal when the relay links
gi, i = 1, 2 grow unboundedly stronger than the interference
links h12 and h21. Further, GHF may not be an appropriate
relay strategy. To see this, assume a channel model with
separate relay links and consider an extreme scenario where
the relay linksgi, i = 1, 2 go to infinity, while all other channel
parameters are kept constant. This special case is known as the
cognitive relay-interference channel [41]. The capacity region
outer bound of Theorem 1 for this case reduces to

R1 ≤ 1

2
log(1 + SNR1) + C1 (66)

R2 ≤ 1

2
log(1 + SNR2) + C2 (67)

R1 +R2 ≤ 1

2
log(1 + SNR2 + INR1)

+
1

2
log

(

1 +
SNR1

1 + INR1

)

+ C1 + C2 (68)

R1 +R2 ≤ 1

2
log(1 + SNR1 + INR2)

+
1

2
log

(

1 +
SNR2

1 + INR2

)

+ C1 + C2 (69)

R1 +R2 ≤ 1

2
log

(

1 + INR2 +
SNR1

1 + INR1

)

+
1

2
log

(

1 + INR1 +
SNR2

1 + INR2

)

+ C1 + C2

(70)

2R1 +R2 ≤ 1

2
log (1 + SNR1 + INR2)

+
1

2
log

(

1 + INR1 +
SNR2

1 + INR2

)

+
1

2
log

(

1 +
SNR1

1 + INR1

)

+ 2C1 + C2 (71)

R1 + 2R2 ≤ 1

2
log (1 + SNR2 + INR1)

+
1

2
log

(

1 + INR2 +
SNR1

1 + INR1

)

+
1

2
log

(

1 +
SNR2

1 + INR2

)

+ C1 + 2C2, (72)
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which is in fact the outer bound of the underlying interference
channel expanded byC1 bits in theR1 direction andC2 in
the R2 direction. In this special case, a decode-and-forward
strategy can easily achieve the capacity region to within a
constant gap. This is because the relay is capable of decoding
all the source messages, so it can simply forward the bin
indices of the privates messages to achieve(R1+C1, R2+C2)
for any achievable rate pair(R1, R2) in the absence of
the relay. Etkin-Tse-Wang power splitting with decode-and-
forward then achieves the outer bound to within a constant
gap. In contrast, GHF cannot achieve the capacity region to
within a constant gap in this case.

F. Generalized Degrees of Freedom

We can gain further insights into the effect of relaying on
the Gaussian interference channel by analyzing the GDoF of
the sum rate in the symmetric channel setting. Consider the
case whereINR1 = INR2 = INR, SNR1 = SNR2 = SNR,
SNRr1 = SNRr2 = SNRr, andC1 = C2 = C. In the high
SNR regime, similar to [1], [6], define

α := lim
SNR→∞

log INR

log SNR
, (73)

β := lim
SNR→∞

log SNRr

log SNR
, (74)

κ := lim
SNR→∞

C
1
2 log SNR

. (75)

The GDoF of the sum capacity is defined as

dsum = lim
SNR→∞

Csum
1
2 log SNR

∣
∣
∣
∣
fixed α,β,κ

(76)

As a direct consequence of the constant-gap result,dsum can
be characterized in the weak-relay regime as follows.

Corollary 2. For the symmetric Gaussian relay-interference
channel in the weak-relay regime (i.e.,β ≤ α), the GDoF of
the sum capacity is given by the following. When0 ≤ α < 1

dsum = min {2− α+min{β, κ}, 2max{α, 1− α}+ 2κ,

2max{α, 1 + β − α}} . (77)

Whenα ≥ 1

dsum = min {α+ κ, α+ β, 2(1 + κ), 2max{1, β}} . (78)

Note that whenα = 1, the GDoF of the sum capacity is
in fact not well defined. This is because bothINR = γSNR

(whereγ 6= 1 is finite) andINR = SNR result in the same
α = 1. However, in the case ofINR = SNR, the channel
becomes ill conditioned, i.e.φ1 = φ2 = 0, which results in a
dsum other than the one in (78). In other words, multiple values
of dsum correspond to the sameα = 1. This is similar to the
situation of [6, Theorem 7.3]. Applying the similar argument
that the event{INR = SNR} is of zero measure, we have the
GDoF of the sum capacity as shown in (78) almost surely.

When the relay links and the interference links share the
same channel gain, i.e.α = β, the GDoF of the sum capacity
reduces to

dsum = min {2 + κ− α, 2max{α, 1− α} + 2κ, 2} (79)
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Fig. 4. The GDoF gain due to the relay in a symmetric Gaussian relay-
interference channel for theα = β case

for 0 ≤ α < 1, and

dsum = min {α+ κ, 2(1 + κ), 2α} , (80)

for α ≥ 1. Interestingly, this is the same as the sum capacity
(in GDoF) of the Gaussian interference channel with rate-
limited receiver cooperation [6]. Therefore, the same sum
capacity GDoF gain can be achieved with either receiver
cooperation or with an independent in-band-reception and
out-of-band-transmission relay assuming that the source-relay
links are the same as the interfering links of the underlying
interference channel (i.e.α = β).

Fig. 4 shows the GDoF gain due to the relay for theα = β

case. There are several interesting features. Whenκ = 0.2,
the GDoF curve remains the “W” shape for the conventional
Gaussian interference channel [1]. The sum-capacity gain is
2κ in the very and moderately weak interference regimes
(when0.2 ≤ α ≤ 0.6) or the very strong interference regime
(α ≥ 2.2), and isκ in other regimes (23 ≤ α ≤ 2). As κ

gets larger, the left “V” branch of the “W” curve becomes
smaller, and it disappears completely at the critical pointof
κ = 0.5. As κ keeps increasing, the right “V” of the “W”
curve also eventually disappears. The detailed sum-capacity
gains for different values ofα are listed in Table I.

G. Interpretation via the Deterministic Relay Channel

In the Han-Kobayashi framework, each input signal of the
interference channel consists of both a common message
and a private message. The sum-capacity gain due to the
relay in the relay-interference channel therefore in general
includes improvements in both the common and the private
message rates. This section illustrates that in the asymptotic
high SNR regime, the rate improvement can be interpreted
as either a private rate gain alone, or a common rate gain
alone. Further, the one-bit-per-relay-bit or the two-bits-per-
relay-bits GDoF improvement shown in the previous section
can be interpreted using a deterministic relay model. The rest
of this section illustrates this point for the symmetric Gaussian
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TABLE I
SUM -CAPACITY GDOF GAIN DUE TO THE RELAY FOR THE SYMMETRICGAUSSIAN RELAY-INTERFERENCE CHANNEL FOR THEα = β AND κ ≤ 1

2
CASE

Range ofα α ≤ κ κ ≤ α ≤
2−κ

3

2−κ

3
≤ α ≤ 2

3

2

3
≤ α ≤ 2 2 ≤ α ≤ 2 + κ α ≥ 2 + κ

Gain 2α 2κ 2− 3α+ κ κ α+ κ− 2 2κ

relay-interference channel in theα = β andκ ≤ 1
2 case as an

example.
1) Very Weak Interference Regime:For the symmetric

Gaussian interference channel, in the very weak interference
regime of0 ≤ α ≤ 1

2 , common messages do not carry any
information (although it can be assigned nonzero powers as in
the Etkin-Tse-Wang power splitting strategy). SettingX1 and
X2 to be private messages only is capacity achieving in terms
of GDoF ( [1], [42]–[44]).

AssigningX1 andX2 to be private only is also optimal for
GDoF for the symmetric Gaussian relay-interference channel
in the very weak interference regime. This is because when
X1 and X2 are both private messages and are treated as
noises atY2 andY1 respectively, the relay-interference channel
asymptotically becomes two deterministic relay channels in
the high SNR regime. Consider the relay operation forY1

as illustrated in Fig. 5(a). When noise variances ofZ1 and
ZR go down to zero, the observation at the relay becomes
YR = gX1 + gX2 and the received signal at receiver1
becomesY1 = hdX1 + hcX2. In this case, the relay’s
observation is a deterministic function ofX1 and Y1, i.e.
YR = gX1 +

g
hc

(Y1 − hdX1). ThusX1 and Y1, along with
the relayYR form a deterministic relay channel of the type
studied in [45]. According to [45], the achievable rate of user
1 is given by

R1 = min {I(X1;Y1, YR), I(X1;Y1) + C}

= min

{
1

2
log(1 + h2

d),
1

2
log

(

1 +
h2
d

h2
c

)

+ C

}

→ min{1, 1− α+ κ}, (81)

resulting in one-bit improvement for each relay bit in the
regimeκ ≤ α ≤ 1

2 . Similarly, as illustrated in Fig. 5(b),X2,
Y2, andYR form another deterministic relay channel withX2

as the input,Y2 as the output, andYR as the relay. Thus, the
achievable rate of user2 is the same as user1, resulting in the
same one-bit-per-relay-bit improvement. Further, as shown in
[45], a hash-and-forward relay strategy achieves the capacity
for deterministic relay channels. As the hashing operationis
the same for both case, the same relay bit can therefore benefit
both receivers at the same time, resulting in two-bit increase
in sum capacity for one relay bit, as first pointed out in [22].

2) Moderately Weak and Strong Interference Regimes:The
above interpretation, which states that the GDoF improvement
in the very weak interference regime comes solely from the
private rate gain, is not the only possible interpretation.The
rate gain can also be interpreted as improvement in common
information rate — an interpretation that applies not only to
the very weak interference regime, but in fact to all regimes
(for the symmetric rate with symmetric channels). In the
following, we illustrate this point by focusing on a two-
stage Han-Kobayashi strategy, where common messages are
decoded first, then the private messages. This is the same

two-stage Han-Kobayashi scheme used in [1] for the Gaussian
interference channel without the relay.

Specifically, the relay uses the same GHF relaying strategy
as in Theorem 3, but it is now designed to help the common
messages only. Here, both common messagesWn

1 and Wn
2

are decoded and subtracted at both receivers with the help of
the GHF relay first (while treating private messages as noise),
the private messages are then decoded at each receiver treating
each other as noise. The decoding of the private message at
the second stage results in

Ru =
1

2
log

(

1 +
SNRp

1 + INRp

)

→ max{0, 1− α}, (82)

Note that the relay does not help the private rate.
In the common-message decoding stage,Wn

1 andWn
2 are

jointly decoded at both receiver1 and receiver2 with the
help of the GHF relay. As a result,(Wn

1 ,W
n
2 , Y

n
1 , Y n

R ) forms
a multiple-access relay channel at receiver1 with Wn

1 ,W
n
2

as the inputs,Y n
1 as the output andY n

R as the relay. The
achievable rate region of such a multiple-access channel with
a GHF relay is given by

Rw1 ≤ I(W1;Y1|W2)

+min
{

(C− ξ)+, I(W1; ŶR|Y1,W2)
}

Rw2 ≤ I(W2;Y1|W1)

+min
{

(C− ξ)+, I(W2; ŶR|Y1,W1)
}

Rw1 +Rw2 ≤ I(W1,W2;Y1)

+min
{

(C− ξ)+, I(W1,W2; ŶR|Y1)
}

.

With the Etkin-Tse-Wang input strategy (i.e.P1p =
min{1, h−2

12 }, P2p = min{1, h−2
21 }) and the GHF relaying

scheme withq1 = q2 =

√
ρ2+16ρ+16−ρ

4 , it can be shown
that the common-message rate region for the receiver 1 in the
high SNR regime in term of GDoF is given as follows. When
0 ≤ α ≤ 1

Rw1 ≤ α

Rw2 ≤ min{α, κ+max{2α− 1, 0}}
Rw1 +Rw2 ≤ α+min{α, κ}.

Whenα ≥ 1

Rw1 ≤ min{α, 1 + κ}
Rw2 ≤ α

Rw1 +Rw2 ≤ α+ κ.

Due to symmetry, the rate region for the multiple-access relay
channel at receiver2 can be obtained by switching the indices
1 and2.

Note that in suitable interference regimes, both the indi-
vidual rate and the sum rate can potentially be increased by
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Fig. 5. Asymptotic deterministic relay channels in the veryweak interference regimeκ ≤ α ≤ 1

2
.

one bit for each relay bit. This is again a consequence of the
fact that the relay operation has a deterministic relay channel
interpretation in the high SNR regime. For example, in the
strong interference regime where1 ≤ α ≤ 2+κ, the sum rate
of the multiple-access relay channel benefits by one bit for
each relay bit in the high SNR regime as shown in Fig. 6(a).
In the very strong interference regime, the interference can be
decoded, subtracted or can serve as side information, therefore
the individual rate increases by one bit for each relay bit as
shown in Fig. 6(b).

Now, the achievable rates of common messages can be
obtained by intersecting the two rate regions. Taking the
achievable rates of private messages in (82) into account, it
is easy to verify that this two-stage Han-Kobayashi scheme
achieves the sum capacity in (79) and (80). As depicted in
Fig. 4, the sum-capacity gain due to the relay can be one-bit-
per-bit or two-bits-per-bit. In the following, we demonstrate
in Fig. 7 how these gains are obtained by pictorially showing
the intersection of the two common-message rate regions for
different values ofα.

• When α ≤ κ, as can be seen from Fig. 7(a), the
two rate regions are identical and are both given by
{(Rw1, Rw2) : Rw1 ≤ α,Rw2 ≤ α}. The intersection of
the two is the same rectangle with the top-right corner
located at (α, α). This gives a2α-bit gain over the
baseline, which is located at the origin.

• As α increases to κ ≤ α ≤ 1
2 , the base-

line rate pair is still at the origin. With the help
of the relay, the two common-message rate regions
become rectangles{(Rw1, Rw2) : Rw1 ≤ α,Rw2 ≤ κ}
and{(Rw1, Rw2) : Rw1 ≤ κ,Rw2 ≤ α} respectively. As
shown in Fig. 7(b), the intersection of the two gives a
square with the top-right corner located at(κ, κ). As a
result, the sum-capacity gain is2κ bits.

• As α increases to12 ≤ α ≤ 1, the common-message rate
regions at receivers1 and2 become pentagons. However,
depending on the value ofα, the sum rate improves
by different amounts. Whenα ≤ 2−κ

3 , as shown in
Fig. 7(c), the intersection of the two pentagon regions
gives a square shape with the top-right corner located at
(2α−1+κ, 2α−1+κ). Compared with(2α−1, 2α−1)
achieved without the relay, a sum-capacity gain of2κ

bits is obtained. However, whenα ≥ 2−κ
3 , as depicted

in Fig. 7(d), the intersection of the two rate regions
is still a pentagon with the sum-capacity limited by
Rw1 + Rw2 ≤ 2 − α + κ. In this case, depending on
the value ofα, the sum-rate gain is2− 3α+κ bits when
2−κ
3 ≤ α ≤ 2

3 , and isκ bits when2
3 ≤ α ≤ 1. (The latter

case is shown in Fig. 7(d).)
• When1 ≤ α ≤ 2+ κ, the common-message rate regions

are again pentagons and the interpretation is similar to
the 2−κ

3 ≤ α ≤ 1 case. Fig. 7(e) shows an example
of 1 ≤ α ≤ 1 + κ. In this case, the two rate regions
are identical pentagons with the sum capacity limited by
Rw1 + Rw2 ≤ α + κ. Compared with the baseline sum
capacity, aκ-bits gain is obtained. When1 + κ ≤ α ≤
2 + κ, the intersection of the two common-message rate
regions again gives a sum-capacity ofα + κ. However,
since the baseline sum capacity becomes saturated when
whenα ≥ 2 ( [1], [46], [47]), the sum-capacity gain over
the baseline isκ bits when1 ≤ α ≤ 2, and isα+ κ− 2
bits when2 ≤ α ≤ 2 + κ.

• Finally, α ≥ 2 + κ falls into the very strong interference
regime. The intersection of the two common-message rate
regions is a rectangle with the top-right corner located at
(1 + κ, 1 + κ) as shown in Fig. 7(f). The sum-capacity
gain is thus2κ bits in the very strong interference regime.

III. G AUSSIAN RELAY-INTERFERENCECHANNEL WITH A

SINGLE DIGITAL L INK

The result of the previous section shows that for the sym-
metric channel, the sum-capacity improvement can be thought
as coming solely from the improvement of the common
message rate, or in a very weak interference regime as coming
solely from the improvement of the private message rates.
Thus, the function of the relay for the symmetric rate in
symmetric channel is solely in forwarding useful signals. This
interpretation does not necessarily hold for the asymmetric
cases. In this section, we study a particular asymmetric channel
to illustrate the composition of the sum-capacity gain. We
are motivated by the fact that the relay’s observation in
a relay-interference channel is a linear combination of the
intended signal and the interfering signal. Clearly, forwarding
the intended signal and the interfering signal can both be



TO APPEAR IN IEEE TRANSACTIONS ON INFORMATION THEORY 12
PSfrag replacements

X1

X2

Y1

Z1

ZR

hd

hc
g

g

relay

C

YR

(a) Y1 decodes bothX1 andX2.

PSfrag replacements

X1 Y1

Z1

ZR

hd

g

relay

C

YR

(b) X2 is decoded and serves as side information.

Fig. 6. Asymptotic deterministic relay channels in the strong and very strong interference regimes.

PSfrag replacements

Rw1

Rw2

α

α

κ

κ

0.5

0.5

1

1

0

∆Rw = 2α

With relay

Without relay

(a) 0 ≤ α ≤ κ

PSfrag replacements

Rw1

Rw2

α

α

κ

κ

0.5

0.5

1

1

0

∆Rw = 2κ

With relay

Without relay

(b) κ ≤ α ≤ 1

2

PSfrag replacements

Rw1

Rw2

α

α

κ

κ

0.5

0.5

1

1

0

∆Rw = 2κ

With relay

Without relay

(c) 1

2
≤ α ≤

2−κ

3

PSfrag replacements

Rw1

Rw2

α

ακ

κ

0.5

0.5

1

1

0

∆Rw = κ

With relay

Without relay

(d) 2

3
≤ α ≤ 1

PSfrag replacements

Rw1

Rw2

α

α

κ

κ

0.5

0.5

1

1

0

∆Rw = κ

With relay

Without relay

(e) 1 ≤ α ≤ 1 + κ

PSfrag replacements

Rw1

Rw2

α

κ

κ

0.5

0.5

1

1

0

∆Rw = 2κ

With relay

Without relay

1 + κ

1 + κ

(f) α ≥ 2 + κ

Fig. 7. Generalized-degree-of-freedom gain due to relaying is roughlyκ or 2κ depending on how the two common-message multiple-access regions are
intersected

beneficial (e.g. [12]). This section illustrates that depending
on the different channel parameters, the sum-rate gain from
forwarding both intended signal and interference signal hap-
pens to be the same as that of forwarding intended signal only
or forwarding interference signal only.

Specifically, we focus on a particular asymmetric model
as shown in Fig. 8, where the digital relay link exists only
for receiver 1, and not for receiver2, i.e., C2 = 0. This
section first derives a constant-gap-to-capacity result for this
channel. Note that this channel is a special case of the
general channel model studied in the previous section, but

the constant-gap-to-capacity result can be established inthis
special case for a broader set of channels. Unlike the weak-
relay assumption|g1| ≤ √

ρ|h12| and |g2| ≤ √
ρ|h21| made in

the previous section, this section assumes that|g2| ≤ √
ρ|h21|

only with no constraints ong1 or h12. Under this channel
setup, it can be shown that in the high SNR regime, the sum
capacity improvement can also be obtained as if only the
intended signal is forwarded or only the interference signal
is forwarded. Note that this conclusion applies to the case of
a single relay-destination link only, and not necessarily to the
general case with two relay-destination links.
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A. Capacity Region to within Constant Gap in the Weak-Relay
Regime

Since the channel model studied in Fig. 8 is a special
case of the general Gaussian relay-interference channel, we
first simplify the achievable rate region in Theorem 2 to the
following corollary by settingC2 = 0. The only difference
in the coding scheme is that instead of performing two
quantizations as in the general relay-interference channel, the
relay in Fig. 8 does one quantization of the received signalYR

into ŶR1 and sends the bin index of̂YR1 to receiver1 through
the digital linkC1.

Corollary 3. For the Gaussian relay-interference channel with
a single digital link as shown in Fig. 8, the following rate
region is achievable:

0 ≤ R1 ≤ d1 +min
{
(C1 − ξ1)

+,∆d1
}

(83)

0 ≤ R2 ≤ d2 (84)

R1 +R2 ≤ a1 + g2 +min
{
(C1 − ξ1)

+,∆a1
}

(85)

R1 +R2 ≤ a2 + g1 +min
{
(C1 − ξ1)

+,∆g1
}

(86)

R1 +R2 ≤ e1 + e2 +min
{
(C1 − ξ1)

+,∆e1
}

(87)

2R1 +R2 ≤ a1 + g1 + e2 +min
{
2(C1 − ξ1)

+,

(C1 − ξ1)
+ +∆a1,∆a1 +∆g1

}
(88)

R1 + 2R2 ≤ a2 + g2 + e1 +min
{
(C1 − ξ1)

+,∆e1
}
,

(89)

where all the parameters are as defined in Theorem 2.

The proof follows directly from Theorem 2. Note that in
(88), we apply the fact that∆a1 ≤ ∆g1. Likewise, the capacity
region outer bound in Theorem 1 also simplifies whenC2 = 0.
We can now prove the following constant-gap theorem for the
Gaussian relay-interference channel with a single digitallink.

Theorem 4. For the Gaussian relay-interference channel with
a single digital link as depicted in Fig. 8, with the same
signaling strategy as in Theorem 3, i.e. a combination of the
Han-Kobayashi scheme with Etkin-Tse-Wang power splitting
strategy and the GHF relaying scheme with the fixed quanti-

zation levelq1 =

√
ρ2+16ρ+16−ρ

4 , in the weak-relay regime of
|g2| ≤ √

ρ|h21|, the achievable rate region in Corollary 3 is
within δ bits of the capacity region outer bound in Theorem 1
(with C2 set to zero), whereδ is defined in Theorem 3.

Proof: Although the signalling scheme and the constant
gap result resemble those of Theorem 3, Theorem 4 is not
simply obtained by settingC2 = 0 in Theorem 3, since
the weak-relay condition has been relaxed. In the following,
we prove the constant-gap result by directly comparing each
achievable rate expression with its corresponding upper bound.

Applying the inequalities of Lemma 1 and following along
the same lines of the proof of Theorem 3 in Appendix C, it
is easy to show that each of the achievable rates in (83)-(89)
achieves to within a constant gap of its corresponding upper
bound in Theorem 1 (withC2 set to zero) in the weak-relay
regime. The constant gaps are shown as follows:

(i) Individual rate (83) is within

δR1
= max {α(q1), β(q1)} (90)

bits of (7).

(ii) Individual rate (84) is within

δR2
=

1

2
(91)

bits of (8).

(iii) Sum rates (85), (86) and (87) are within

δR1+R2
=

1

2
+max {α(q1), β(q1)} (92)

bits of their upper bounds (9), (16), (10), (15), (11), and (17).
Specifically,

• The first term of (85) is within12 +β(q1) bits of (9). The
second term is within12 + α(q1) bits of (16).

• The first term of (86) is within1
2 + β(q1) bits of (10).

The second term is within12 + α(q1) bits of (15).
• The first term of (87) is within1

2 + β(q1) bits of (11).
The second term is within12 + α(q1) bits of (17).

Therefore, the achievable sum rate in (85)-(87) is within a
constant gap of the sum-rate upper bound specified by (9)-(20)
in the weak-relay regime.

(iv) 2R1 +R2 rate (88) is within

δ2R1+R2
=

1

2
+max {2α(q1), α(q1) + β(q1), 2β(q1)} (93)

bits of the upper bounds (21), (26), and (24). Specifically, the
first term of (88) is within1

2 +2β(q1) bits of (21). The second
term is within 1

2 +α(q1) + β(q1) bits of (26). The third term
is within 1

2 + 2α(q1) bits of (24).

(v) R1 + 2R2 rate (89) is within

δR1+2R2
= 1 +max {α(q1), β(q1)} (94)
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bits of the upper bounds

2R1 +R2 ≤ 1

2
log (1 + SNR2 + INR1)

+
1

2
log

(

1 + INR2 +
SNR1

1 + INR1

)

+
1

2
log

(

1 +
SNR2

1 + INR2

)

+ C1 (95)

2R1 +R2 ≤ 1

2
log(1 + SNR2 + INR1)

+
1

2
log

(

1 +
SNR2

1 + INR2 + SNRr2

)

+
1

2
log

(

1 +
SNR1(1 + φ2

1SNRr2) + SNRr1

1 + INR1

+INR2 + SNRr2) , (96)

which are not shown explicitly in Theorem 1 but can be
obtained by switching the indices1 and 2 of (21) and (25)
followed by settingC2 = 0.

Sinceα(·) is an increasing function andβ(·) is a decreasing
function, to minimize the gaps above, we need

α(q∗1) = β(q∗1), (97)

which results in the quantization levelq∗1 =

√
ρ2+16ρ+16−ρ

4 .
With this optimal quantization level applied to the gaps above,
we prove that the achievable rate region (83)-(89) is within

max

{

1

2
,
1

2
log

(

2 +
ρ+

√

ρ2 + 16ρ+ 16

2

)}

=
1

2
log

(

2 +
ρ+

√

ρ2 + 16ρ+ 16

2

)

(98)

bits of the capacity region.

B. Generalized Degree of Freedom

We now derive the GDoF of the channel depicted in Fig. 8,
for the case where the underlying interference channel is sym-
metric, i.e.,INR1 = INR2 = INR andSNR1 = SNR2 = SNR.
In the high SNR regime, define

βi := lim
SNR→∞

log SNRri

log SNR
, i = 1, 2, (99)

κ1 := lim
SNR→∞

C1
1
2 log SNR

, (100)

Applying Theorem 4, we have the following result on the
GDoF:

Corollary 4. In the weak-relay regime whereβ2 ≤ α,
the GDoF sum capacity of the symmetric relay-interference
channel with a single digital link is given by the following.
For 0 ≤ α < 1

dsum =







min{2− α, 2max(α, 1− α) + κ1,max(α, 1 − α)
+max(β1, 1 + β2 − α, α)}, β1 ≤ 1

min{2− α+ κ1, 2max(α, 1 − α) + κ1,

1 + β1 − α}, β1 ≥ 1

and forα ≥ 1

dsum = min{α, 2 + κ}. (101)
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Fig. 9. Impact of the relay-destination link on sum capacity

Table II and Fig. 9 illustrate the GDoF gain due to the
relay where the direct links, the interference links and the
links to the relay are symmetric for both users, and where
α = β1 = β2. The main feature here is that there is no gain
in sum capacity for23 ≤ α ≤ 2. In other regimes ofα, the
sum-capacity gain is roughly one bit per relay bit.

C. Signal Relaying vs. Interference Forwarding

In the relay-interference channel, the relay observes a cor-
rupted version of the weighted sum of two source signalsX1

andX2, and forwards a description to the receiver. Intuitively,
the observations about both source signals are helpful. Forthe
receiver1, the observation aboutX1 helps receiver1 reinforce
the signal intended for it; the observation aboutX2 helps
receiver1 mitigate the interference. The former can be thought
of as signal relaying, the latter interference forwarding.

In this section, we show that the sum-capacity gain in a
Gaussian interference channel due to a single relay link is
equivalent to that achievable with signal relaying alone or
with interference forwarding alone, depending on the channel
parameters. Toward this end, we first set the source-relay link
from X2 to zero, i.e.,g2 = 0, and compute the GDoF of
the sum capacity. In this case, the sum-capacity gain must
be solely due to forwarding intended signalX1. Similarly,
we can also setg1 = 0, and compute the GDoF of the
sum-capacity gain due solely to forwarding interference signal
X2. By comparing these rates we show that interestingly
when the relay link of user1 is under certain threshold, i.e.,
β1 ≤ 1 − α+ β2, the sum-capacity gain is equivalent to that
achievable by interference forwarding. Whenβ1 ≥ 1−α+β2,
the sum-capacity gain is equivalent to that achievable by signal
relaying.

More specifically, withg2 = 0, the sum-capacity can be
computed as

dSR =







min{2− α, 2max(α, 1 − α) + κ1,max(α, 1− α)
+max(β1, 1− α, α)}, β1 ≤ 1

min{2− α+ κ1, 2max(α, 1 − α) + κ1,

1 + β1 − α}. β1 ≥ 1
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TABLE II
SUM -CAPACITY GDOF GAIN DUE TO THE RELAY FOR THE SYMMETRICGAUSSIAN RELAY-INTERFERENCE CHANNEL WITH A SINGLE DIGITAL RELAY

LINK FOR α = β1 = β2

Range ofα α ≤ κ κ ≤ α ≤
2−κ

3

2−κ

3
≤ α ≤ 2

3

2

3
≤ α ≤ 2 2 ≤ α ≤ 2 + κ α ≥ 2 + κ

Gain α κ 2− 3α 0 α− 2 κ

1.2
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Similarly, let g1 = 0. The sum-capacity GDoF obtained by
forwarding interference signal is

dIF = min{2− α, 2max(α, 1− α) + κ1,max(α, 1 − α)

+max(1 + β2 − α, α)}. (102)

Comparing (101), (102), and (102), it is easy to verify that

dsum =

{
dIF when β1 ≤ 1 + β2 − α

dSR when β1 ≥ 1 + β2 − α
. (103)

Therefore, we observe the following threshold effects. When
the relay link from user1 is weak, the sum-capacity gain
is equivalent to a channel with a single source-relay link
from X2. As the source-relay link fromX1 grows stronger
and crosses a thresholdβ1 ≥ 1 + β2 − α , β∗

1 , the sum-
capacity gain becomes equivalent to that of a single source-
relay link fromX1. Note that this is a GDoF phenomenon in
the high SNR regime. In the general SNR regime, the sum-
capacity gain contains contributions from both signal relaying
and interference forwarding.

To visualize the interaction of signal relaying and interfer-
ence forwarding, a numerical example is provided in Fig. 10.
The channel parameters are set toα = 0.5, β2 = 0.2, and
κ1 = 0.5. The GDoF of the sum capacity is plotted as a
function of β1. The sum capacity of the interference channel
without the relay serves as the baseline:

dBL = min {2− α, 2max(α, 1 − α)} . (104)

Fig. 10 shows the sum-capacity gain due to the relay. When
β1 ≤ β∗

1 = 0.7, the gain (labeled asR1) is equivalent to
that by forwarding interference signal only. Whenβ ≥ 0.7,
the gain (labeled asR2) is equivalent to that by forwarding
intended signal only.

IV. CONCLUSION

This paper investigates GHF as an incremental relay strategy
for a Gaussian interference channel augmented with an out-
of-band broadcasting relay, in which the relay message to

one receiver is a degraded version of the message to the
other receiver. We focus on a weak-relay regime, where the
transmitter-to-relay links are not unboundedly stronger than
the interfering links of the interference channel, and showthat
GHF achieves to within a constant gap to the capacity region
in the weak-relay regime. Further, in a symmetric setting, each
common relay bit can be worth either one or two bits in the
sum capacity gain, illustrating the potential for a cell-edge
relay in improving the system throughput of a wireless cellular
network.

Furthermore, the Gaussian relay-interference channels with
a single relay link is also studied. The capacity region is
characterized to within a constant gap for a larger range of
channel parameters. It is shown that in the high SNR regime,
the sum-capacity improvement is equivalent either to that of a
single source-relay link from user1 or that of a single source-
relay link from user2.

APPENDIX

A. Proof of Theorem 1

DefineV n
1 as the output of the digital linkC1, andV n

2 as
the output of the digital linkC2. The outer bounds are proved
as follows:

(i) Individual-rate bounds: First, the first term of (7) is
the simple cut-set upper bound forR1. For the second term,
starting from Fano’s inequality, we have

n(R1 − ǫn) ≤ I(Xn
1 ;Y

n
1 , V n

1 ) (105)

≤ I(Xn
1 ;Y

n
1 , Y n

R , Xn
2 )

≤ n

2
log(1 + SNR1 + SNRr1).

The outer bound ofR2 in (8) can be proved in the same way.
(ii) Sum-rate bounds:

• First, (9)-(11) are obtained from Fano’s inequalities, i.e.,

n(R1 +R2 − ǫn) (106)

≤ I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

= I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 ) + I(Xn

1 ;V
n
1 |Y n

1 )

+I(Xn
2 ;V

n
2 |Y n

2 )

≤ I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 ) + h(V n

1 ) + h(V n
2 )

≤ nCsum(0) + nC1 + nC2,

whereCsum(0) is the sum capacity of the interference
channel without relay. Clearly, the sum-rate gain due to
the digital relay is upper bounded by the rates of digital
links. Although the sum-rate capacityCsum(0) is not
known in general, its upper bound has been studied in
literature [1], [34], [42]–[44], [48]. Applying the sum-
rate outer bounds in [34], we obtain (9)-(11).
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• Second, (12)-(14) can be obtained by the following steps:

n(R1 +R2 − ǫn) (107)

≤ I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )
(a)

≤ I(Xn
1 ;Y

n
1 ) + h(V n

1 ) + I(Xn
2 ;Y

n
2 , Y n

R ),

where in (a) we give genieY n
R to receiver2 and apply the

fact thatŶR is a function ofYR. Note thatI(Xn
1 ;Y

n
1 ) +

I(Xn
2 ;Y

n
2 , Y n

R ) is upper bounded by the sum capacity of
the SIMO interference channel withXn

1 andXn
2 as the

input, andY n
1 and(Y n

2 , Y n
R ) as the output. The sum-rate

outer bound of such a SIMO interference channel has
been studied in [34], which along withh(V n

1 ) ≤ nC1

gives the outer bounds of (12)-(14).
• Third, (15)-(17) can be similarly derived following the

same steps of (12)-(14) with indices1 and2 switched.
• Fourth, (18)-(20) can be obtained by givingY n

R as a genie
to both receivers, i.e.,

n(R1 +R2 − ǫn) (108)

≤ I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ I(Xn
1 ;Y

n
1 , Y n

R ) + I(Xn
2 ;Y

n
2 , Y n

R ),

which is upper bounded by the sum capacity of the
SIMO interference channel withXn

1 andXn
2 as input, and

(Y n
1 , Y n

R ) and(Y n
2 , Y n

R ) as output. Applying the result in
[34], we have (18)-(20).

(iii) 2R1 +R2 bounds: Six upper bounds on2R1 +R2.

• First, (21) is simply the cut-set bound, i.e.,

n(2R1 +R2 − ǫn) (109)

≤ 2I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ 2I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 ) + 2h(V n

1 ) + h(V n
2 ),

where2I(Xn
1 ;Y

n
1 )+I(Xn

2 ;Y
n
2 ) is upper bounded by the

2R1+R2 bound of the interference channel withXn
1 and

Xn
2 as the input, andY n

1 and Y n
2 as the output, which

together withh(V n
1 ) ≤ nC1 andh(V n

2 ) ≤ nC2 gives the
upper bound in (21).

• Second, (22) can be derived by giving genieY n
R to both

receivers:

n(2R1 +R2 − ǫn) (110)

≤ 2I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ 2I(Xn
2 ;Y

n
1 , Y n

R ) + I(Xn
2 ;Y

n
2 , Y n

R ),

which is upper bounded by the2R1 + R2 bound of the
SIMO interference channel withXn

1 andXn
2 as the input,

and(Y n
1 , Y n

R ) and(Y n
2 , Y n

R ) as the output. Applying the
result of [34], we obtain (22).

• Third, (23) can be obtained by giving genies
(Xn

2 , Y
n
R , Sn

1 ) to Y n
1 in one of the twoR1 expressions

and (Sn
2 , Y

n
R ) to Y n

2 , where geniesSn
1 and Sn

2 are
defined as

Sn
1 = h12X

n
1 + Z2, Sn

2 = h21X
n
2 + Z1. (111)

According to Fano’s inequality, we have

n(2R1 +R2 − ǫn) (112)

≤ 2I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ I(Xn
1 ;Y

n
1 , Y n

R , Sn
1 , X

n
2 ) + I(Xn

1 ;Y
n
1 ) + h(V n

1 )

+I(Xn
2 ;Y2, Y

n
R , Sn

2 )
(a)

≤ I(Xn
1 ;Y

n
1 , Y n

R , Sn
1 |Xn

2 ) + h(Y n
1 )− h(Sn

2 ) + nC1

+I(Xn
2 ;S

n
2 ) + I(Xn

2 ;Y
n
2 , Y n

R |Sn
2 )

= I(Xn
1 ;S

n
1 ) + I(Xn

1 ;Y
n
1 , Y n

R |Sn
1 , X

n
2 ) + h(Y n

1 )

−h(Sn
2 ) + nC1 + h(Sn

2 )− h(Zn
1 )

+h(Y n
2 , Y n

R |Sn
2 )− h(Sn

1 )− h(Y n
R |Y n

2 , Xn
2 )

= h(Y n
1 )− h(Zn

1 ) + h(Y n
1 , Y n

R |Sn
1 , X

n
2 ) + nC1

−h(Zn
1 , Z

n
R) + h(Y n

2 , Y n
R |Sn

2 )− h(Zn
2 , Z

n
R)

−I(Y n
R ;Xn

1 |Xn
2 , Y

n
2 )

≤ h(Y n
1 )− h(Zn

1 ) + h(Y n
1 , Y n

R |Sn
1 , X

n
2 ) + nC1

−h(Zn
1 , Z

n
R) + h(Y n

2 , Y n
R |Sn

2 )− h(Zn
2 , Z

n
R),

where in (a) we use the fact thatXn
1 is independent with

Xn
2 . Note that, the last inequality of (112) is maximized

by Gaussian inputsXn
1 andXn

2 with i.i.d N (0, 1) entries,
because

– h(Y n
1 ) is maximized by Gaussian distributions, and

– h(Y n
1 , Y n

R |Sn
1 , X

n
2 ) and h(Y n

2 , Y n
R |Sn

2 ) are both
maximized by Gaussian inputs since the conditional
entropy under a power constraint is maximized by
Gaussian distributions.

Applying Gaussian distributions to the last inequality of
(112), we have (23).

• Fourth, (24) can be obtained by giving genieY n
R to Y n

1 ,
i.e.,

n(2R1 +R2 − ǫn) (113)

≤ 2I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ 2I(Xn
1 ;Y

n
1 , Y n

R ) + I(Xn
2 ;Y

n
2 ) + h(V n

2 ),

where2I(Xn
1 ;Y

n
1 , Y n

R ) + I(Xn
2 ;Y

n
2 ) is upper bounded

by the2R1+R2 bound of the SIMO interference channel
with Xn

1 andXn
2 as the input, and(Y n

1 , Y n
R ) andY n

2 as
the output. Applying the result of [34] and the fact that
h(V n

2 ) ≤ nC2, we obtain (24).
• Fifth, (25) can be obtained by giving genieY n

R to Y n
2 ,

i.e.,

n(2R1 +R2 − ǫn) (114)

≤ 2I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ 2I(Xn
1 ;Y

n
1 ) + 2h(V n

1 ) + I(Xn
2 ;Y

n
2 , Y n

R ),

where2I(Xn
1 ;Y

n
1 ) + I(Xn

2 ;Y
n
2 , Y n

R ) is upper bounded
by the2R1+R2 bound of the SIMO interference channel
with Xn

1 andXn
2 as the input, andY n

1 and(Y n
2 , Y n

R ) as
the output. Applying the result of [34] and the fact that
h(V n

1 ) ≤ nC1, we obtain (25).
• Sixth, (26) can be obtained by giving genies

(Xn
2 , Y

n
R , Sn

1 ) to Y n
1 in one of the twoR1 expressions,
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andSn
2 to Y n

2 , i.e.,

n(2R1 +R2 − ǫn) (115)

≤ 2I(Xn
1 ;Y

n
1 , V n

1 ) + I(Xn
2 ;Y

n
2 , V n

2 )

≤ I(Xn
1 ;Y

n
1 , Y n

R , Sn
1 , X

n
2 ) + I(Xn

1 ;Y
n
1 ) + h(V n

1 )

+I(Xn
2 ;Y

n
2 , Sn

2 ) + h(V n
2 )

≤ I(Xn
1 ;S

n
1 ) + I(Xn

1 ;Y
n
1 Y n

R |Sn
1 , X

n
2 ) + h(Y n

1 )

−h(Sn
2 ) + I(Xn

2 ;S
n
2 ) + I(Xn

2 ;Y
n
2 |Sn

2 )

+nC1 + nC2

≤ h(Sn
1 )− h(Zn

2 ) + h(Y n
1 , Y n

R |Sn
1 , X

n
2 )

−h(Zn
1 , Z

n
R) + h(Y n

1 )− h(Sn
2 ) + h(Sn

2 )− h(Zn
1 )

+h(Y n
2 |Sn

2 )− h(Sn
1 ) + nC1 + nC2

= h(Y n
1 )− h(Zn

1 ) + h(Y n
1 , Y n

R |Sn
1 , X

n
2 )

−h(Zn
1 , Z

n
R) + h(Y n

2 |Sn
2 )− h(Zn

2 ) + nC1 + nC2,

which is maximized by Gaussian distributions ofXn
1

and Xn
2 with i.i.d entries followingN (0, 1). Applying

Gaussian distributions to (115), we obtain (26).

B. Useful Inequalities

This appendix provides several inequalities that are useful
to prove the constant-gap theorems.

Lemma 1. For ∆ai, ai,∆di, di,∆ei, ei,∆gi, gi and ξi, i =
1, 2 as defined in (36)-(44), withQ set as a constant, when
Wi, Xi are generated from a superposition coding ofXi =
Ui + Wi with Ui ∼ N (0, Pip) and Wi ∼ N (0, Pic), where
Pip + Pic = 1 and P1p = min{1, h−2

12 }, P2p = min{1, h−2
21 },

and when the GHF quantization variables are set toŶR1 =
YR + e1, ŶR2 = YR + e2, where e1 ∼ N (0, q1) and e2 ∼
N (0, q2), in the weak-relay regime of|g1| ≤ √

ρ|h12|, |g2| ≤√
ρ|h21|, the mutual information terms in (36)-(44) can be

bounded as follows:

a1 ≥ 1

2
log

(

1 +
SNR1

1 + INR1

)

− 1

2
, (116)

a1 +∆a1 ≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1),(117)

d1 ≥ 1

2
log(1 + SNR1)−

1

2
, (118)

d1 +∆d1 ≥ 1

2
log(1 + SNR1 + SNRr1)− α(q1), (119)

e1 ≥ 1

2
log

(

1 +
SNR1

1 + INR1
+ INR2

)

− 1

2
, (120)

e1 +∆e1 ≥ 1

2
log

(

1 +
SNR1(1 + φ2

1SNRr2) + SNRr1

1 + INR1

+INR2 + SNRr2)− α(q1), (121)

g1 ≥ 1

2
log(1 + SNR1 + INR2)−

1

2
(122)

g1 +∆g1 ≥ 1

2
log
(
1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNRr2)− α(q1), (123)

ξ1 ≤ 1

2
log

(

1 +
1 + ρ

q1

)

= β(q1)−
1

2
, (124)

and the lower bounds ofa2, a2 +∆a2, d2, d2 +∆d2, e2, e2 +
∆e2, g2, g2+∆g2 and the upper bound ofξ2 can be obtained
by switching the indices of1 and 2 in (116)-(124).

Proof: First, define the signal-to-noise and interference-
to-noise ratios of the private messages as

SNR1p = |h11|2P1p, SNR2p = |h22|2P2p, (125)

INR1p = |h12|2P1p, INR2p = |h21|2P2p, (126)

SNRr1p = |g1|2P1p, SNRr2p = |g2|2P2p, (127)

which can be lower bounded or upper bounded as follows:

SNR1p = |h11|2P1p

= min

{

|h11|2,
|h11|2
|h12|2

}

= min

{

SNR1,
SNR1

INR1

}

≥ SNR1

1 + INR1
, (128)

and

0 ≤ INR1p = min{1, INR1} ≤ 1, (129)

and

SNRr1p = |g1|2P1p

= min

{

|g1|2,
|g1|2
|h12|2

}

= min

{

SNRr1,
SNRr1

INR1

}

≥ SNRr1

1 + INR1
. (130)

Since |g1| ≤ √
ρ|h12|, SNRr1p is upper bounded byρ.

Therefore

ρ ≥ SNRr1p ≥ SNRr1

1 + INR1
. (131)

Switching the indices of1 and2, we have

SNR2p ≥ SNR2

1 + INR2
, (132)

1 ≥ INR2p ≥ 0, (133)

ρ ≥ SNRr2p ≥ SNRr2

1 + INR2
. (134)

Now, starting from (116), we prove the inequalities one by
one.

• First, (116) is lower bounded by

a1 = I(X1;Y1|W1,W2)

=
1

2
log

(
1 + SNR1p + INR2p

1 + INR2p

)

(a)

≥ 1

2
log(1 + SNR1p)−

1

2
(b)

≥ 1

2
log

(

1 +
SNR1

1 + INR1

)

− 1

2
, (135)

where (a) holds because0 ≤ INR2p ≤ 1 and (b) is due
to the fact thatSNR1p ≥ SNR1

1+INR1

.
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a1 +∆a1 = I(X1;Y1|W1,W2) + I(X1; ŶR1|Y1,W1,W2)

=
1

2
log

(
(q1 + 1)(1 + SNR1p + INR2p) + SNRr1p + SNRr2p(1 + φ2

1SNR1p)

(q1 + 1)(1 + INR2p) + SNRr2p

)

≥ 1

2
log(1 + SNR1p + SNRr1p)−

1

2
log((q1 + 1)(1 + INR2p) + SNRr2p)

(a)

≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1), (136)

• Second, (117) is lower bounded by (136), where (a) holds
becauseSNR1p ≥ SNR1

1+INR1

, SNRr1p ≥ SNRr1

1+INR1

, and

1

2
log((q1 + 1)(1 + INR2p) + SNRr2p)

≤ 1

2
log((q1 + 1)(1 + 1) + ρ)

= α(q1). (137)

• Third, (118) is lower bounded by

d1 = I(X1;Y1|W2)

=
1

2
log

(
1 + SNR1 + INR2p

1 + INR2p

)

≥ 1

2
log(1 + SNR1)−

1

2
. (138)

• Fourth, (119) is lower bounded by (139).
• Fifth, (120) is lower bounded by

e1 = I(X1,W2;Y1|W1)

=
1

2
log

(
1 + SNR1p + INR2

1 + INR2p

)

≥ 1

2
log

(

1 +
SNR1

1 + INR1
+ INR2

)

− 1

2
.(140)

• Sixth, (121) is lower bounded by (141).
• Seventh, (122) is lower bounded by

g1 = I(X1,W2;Y1)

=
1

2
log

(
1 + SNR1 + INR2

1 + INR2p

)

≥ 1

2
log(1 + SNR1 + INR2)−

1

2
. (142)

• Eighth, (123) is lower bounded by (143).
• Ninth, (124) is upper bounded by

ξ1 = I(YR : ŶR1|Y1, X1,W2)

=
1

2
log

(

1 +
1

q1

(

1 +
SNRr2p

1 + INR2p

))

≤ 1

2
log

(

1 +
1 + ρ

q1

)

(144)

C. Proof of Theorem 3

In this appendix, we show that using the Han-Kobayashi
power splitting strategy with the private message power set
to P1p = min{1, h−2

12 } and P2p = min{1, h−2
21 }, all the

achievable rates in (29)-(35) are within constant bits of their

corresponding outer bounds in Theorem 1. Note that, in the
following proof, inequalities in Appendix B are implicitlyused
without being mentioned.

(i) First, (29) is within constant bits of (7), and (30) is within
constant bits of (8). To see this, the first term of (29) is lower
bounded by

d1 + (C1 − ξ1)
+

≥ 1

2
log(1 + SNR1)−

1

2
+ C1 − ξ1

≥ 1

2
log(1 + SNR1) + C1 −

(
1

2
+

1

2
log

(

1 +
1 + ρ

q1

))

(145)

which is within β(q1) bits of the first term of (7).
According to Lemma 1, the second term of (29) is lower

bounded by

d1 +∆d1 ≥ 1

2
log(1 + SNR1 + SNRr1)− α(q1),

(146)

which is within α(q1) bits of the second term of (7). As a
result, the gap between (29) and (7) is bounded by

δR1
= max {α(q1), β(q1)} . (147)

Due to symmetry, (30) is within

δR2
= max {α(q2), β(q2)} (148)

bits of the upper bound (8).
(ii) Second, (31)-(33) are within constant bits of their upper

bounds (9)-(20). To see this, inspecting the expressions ofthe
achievable sum rates, it is easy to see that each of (31)-(33)
has four possible combinations: having bothC1 andC2, having
C1 only, havingC2 only, and having none ofC1 andC2. In
the following, we show that, when specialized into the above
four combinations, (31)-(33) are within constant gap to the
upper bounds (9)-(20). The constant gaps are given byδ

(C1,C2)
R1+R2

,

δ
(C1,0)
R1+R2

, δ(0,C2)
R1+R2

, andδ(0,0)R1+R2
(to be defined later) respectively,

each corresponding to a specific combination.
• First, when having bothC1 andC2, (31)-(33) become

R1 +R2 ≤ a1 + g2 + (C1 − ξ1)
+ + (C2 − ξ2)

+,

(149)

R1 +R2 ≤ a2 + g1 + (C1 − ξ1)
+ + (C2 − ξ2)

+,

(150)

R1 +R2 ≤ e1 + e2 + (C1 − ξ1)
+ + (C2 − ξ2)

+,

(151)
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d1 +∆d1 = I(X1;Y1|W2) + I(X1; ŶR1|Y1,W2)

=
1

2
log

(
(q1 + 1)(1 + SNR1 + INR2p) + SNRr1 + SNRr2p(1 + φ2

1SNR1)

(q1 + 1)(1 + INR2p) + SNRr2p

)

≥ 1

2
log(1 + SNR1 + SNRr1)− α(q1). (139)

e1 +∆e1 = I(X1,W2;Y1|W1) + I(X1,W2; ŶR1|Y1,W1)

=
1

2
log

(
(q1 + 1)(1 + SNR1p + INR2) + SNRr1p + SNRr2(1 + φ2

1SNR1p)

(q1 + 1)(1 + INR2p) + SNRr2p

)

≥ 1

2
log

(

1 +
SNR1(1 + φ2

1SNRr2) + SNRr1

1 + INR1
+ INR2 + SNRr2

)

− α(q1). (141)

g1 +∆g1 = I(X1,W2;Y1) + I(X1,W2; ŶR1|Y1)

=
1

2
log

(
(q1 + 1)(1 + SNR1 + INR2) + SNRr1 + SNRr2(1 + φ2

1SNR1)

(q1 + 1)(1 + INR2p) + SNRr2p

)

≥ 1

2
log
(
1 + SNR1(1 + φ2

1SNRr2) + SNRr1 + INR2 + SNRr2

)
− α(q1). (143)

which are within constant bits of (9)-(11) respectively.
To show this, first, according to Lemma 1, (149) is lower
bounded by

a1 + g2 + (C1 − ξ1)
+ + (C2 − ξ2)

+

≥ 1

2
log

(

1 +
SNR1

1 + INR1

)

− 1

2

+
1

2
log(1 + SNR2 + INR1)−

1

2
+C1 − ξ1 + C2 − ξ2, (152)

which is within

δ
(C1,C2)
R1+R2

= β(q1) + β(q2) (153)

bits of the upper bound (9). Due to symmetry, (150) is
within δ

(C1,C2)
R1+R2

bits of the upper bound (10) as well. Now
applying Lemma 1, (151) is lower bounded by

e1 + e2 + (C1 − ξ1)
+ + (C2 − ξ2)

+

≥ 1

2
log

(

1 +
SNR1

1 + INR1
+ INR2

)

− 1

2

+
1

2
log

(

1 +
SNR2

1 + INR2
+ INR1

)

− 1

2

+C1 − ξ1 + C2 − ξ2, (154)

which is within δ
(C1,C2)
R1+R2

bits of the upper bound (11).
Therefore, when specialized to the form with bothC1

andC2 as shown in (149)-(151), (31)-(33) have a gap of
δ
(C1,C2)
R1+R2

bits to their upper bounds (9)-(11).
• Second, when havingC1 only, (31)-(33) become

R1 +R2 ≤ a1 + g2 +∆g2 + (C1 − ξ1)
+, (155)

R1 +R2 ≤ a2 +∆a2 + g1 + (C1 − ξ1)
+, (156)

R1 +R2 ≤ e1 + e2 +∆e2 + (C1 − ξ1)
+, (157)

where (155) is lower bounded by

a1 + g2 +∆g2 + (C1 − ξ1)
+

≥ 1

2
log

(

1 +
SNR1

1 + INR1

)

− 1

2
+ C1 − ξ1

+
1

2
log
(
1 + SNR2(1 + φ2

2SNRr1) + SNRr2

+INR1 + SNRr1)− α(q2), (158)

which is within

δ
(C1,0)
R1+R2

= α(q2) + β(q1) (159)

bits of the upper bound (12), and (156) is lower bounded
by

a2 +∆a2 + g1 + (C1 − ξ1)
+

≥ 1

2
log

(

1 +
SNR2 + SNRr2

1 + INR2

)

− α(q2)

+
1

2
log(1 + SNR1 + INR2)−

1

2
+ C1 + ξ1,

(160)

which is withinδ(C1,0)
R1+R2

bits of the upper bound (13), and
(157) can be lower bounded by

e1 + e2 +∆e2 + (C1 − ξ1)
+

≥ 1

2
log

(

1 +
SNR1

1 + INR1
+ INR2

)

− 1

2
+ C1 − ξ1

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1)− α(q2), (161)

which is within δ
(C1,0)
R1+R2

bits of the upper bound (14).
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• Third, when havingC2 only, (31)-(33) become

R1 +R2 ≤ a1 +∆a1 + g2 + (C2 − ξ2)
+, (162)

R1 +R2 ≤ a2 + g1 +∆g1 + (C2 − ξ2)
+, (163)

R1 +R2 ≤ e1 +∆e1 + e2 + (C2 − ξ2)
+. (164)

Due to the symmetry between (162)-(164) and (155)-
(157), and the symmetry between their upper bounds, we
can see that (162), (163) and (164) are within

δ
(0,C2)
R1+R2

= α(q1) + β(q2) (165)

bits of the upper bounds (15), (16), and (17) respectively.
• Fourth, when having none ofC1 and C2, (31)-(33)

become

R1 +R2 ≤ a1 +∆a1 + g2 +∆g2, (166)

R1 +R2 ≤ a2 +∆a2 + g1 +∆g1, (167)

R1 +R2 ≤ e1 +∆e1 + e2 +∆e2, (168)

where (166) is lower bounded by

a1 +∆a1 + g2 +∆g2

≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1)

+
1

2
log
(
1 + SNR2(1 + φ2

2SNRr1) + SNRr2

+INR1 + SNRr1)− α(q2), (169)

which is within

δ
(0,0)
R1+R2

= α(q1) + α(q2) (170)

bits of the upper bound (18). Due to symmetry, (167)
is within δ

(0,0)
R1+R2

bits of the upper bound (19) as well.
Further, (168) can be lower bounded by

e1 +∆e1 + e2 +∆e2

≥ 1

2
log

(

1 +
SNR1(1 + φ2

1SNRr2) + SNRr1

1 + INR1

+INR2 + SNRr2)− α(q1)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1)− α(q2), (171)

which is within δ
(0,0)
R1+R2

bits of the upper bound (20).
Therefore, when specialized into the form with none of
C1 andC2, (31)-(33) is withinδ(0,0)R1+R2

bits of their upper
bounds (18)-(20).

Overall, the gap between the achievable sum-rates (31)-(33)
and the upper bounds in (9)-(20) is upper bounded as follows:

δR1+R2
= max

{

δ
(C1,C2)
R1+R2

, δ
(C1,0)
R1+R2

, δ
(0,C2)
R1+R2

, δ
(0,0)
R1+R2

}

. (172)

(iii) Third, the achievable rate (34) is within constant bits
of upper bounds (21)-(26). To see this, note that (34) has8

different forms as follows:

a1 + (C1 − ξ1)
+ + g1 + (C1 − ξ1)

+ + e2 + (C2 − ξ2)
+,(173)

a1 +∆a1 + g1 +∆g1 + e2 +∆e2,(174)

a1 +∆a1 + g1 + (C1 − ξ1)
+ + e2 +∆e2,(175)

a1 +∆a1 + g1 +∆g1 + e2 + (C2 − ξ2)
+,(176)

a1 + (C1 − ξ1)
+ + g1 + (C1 − ξ1)

+ + e2 +∆e2,(177)

a1 +∆a1 + g1 + (C1 − ξ1)
+ + e2 + (C2 − ξ2)

+,(178)

a1 + (C1 − ξ1)
+ + g1 +∆g1 + e2 +∆e2,(179)

a1 + (C1 − ξ1)
+ + g1 +∆g1 + e2 + (C2 − ξ2)

+,(180)

where (179) is redundant compared with (175) and (180) is re-
dundant compared with (178) due to the fact that∆g1 ≥ ∆a1.
Therefore, there are six active rate constraints in total. In the
following, we prove that all active achievable rates of2R1+R2

in (173)-(178) are within constant bits of their corresponding
upper bounds in (21)-(26).

• First, (173) is lower bounded by

a1 + (C1 − ξ1)
+ + g1 + (C1 − ξ1)

+ + e2 + (C2 − ξ2)
+

≥ 1

2
log

(

1 +
SNR1

1 + INR1

)

− 1

2
+ C1 − ξ1

+
1

2
log(1 + SNR1 + INR2)−

1

2
+ C1 − ξ1

+
1

2
log

(

1 +
SNR2

1 + INR2
+ INR1

)

− 1

2
+ C2 − ξ2,

(181)

which is within

δ
(2C1,C2)
2R1+R2

= 2β(q1) + β(q2) (182)

bits of the upper bound (21).
• Second, (174) is lower bounded by

a1 +∆a1 + g1 + g1 +∆g1 + e2 +∆e2

≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1)

+
1

2
log
(
1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNRr2)− α(q1)

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1)− α(q2), (183)

which is within

δ
(0,0)
2R1+R2

= 2α(q1) + α(q2) (184)

bits of the upper bound (22).
• Third, (175) is lower bounded by

a1 +∆a1 + g1 + (C1 − ξ1)
+ + e2 +∆e2

≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1)

+
1

2
log(1 + SNR1 + INR2)−

1

2
+ C1 − ξ1

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1)− α(q2), (185)
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which is within

δ
(C1,0)
2R1+R2

= α(q1) + α(q2) + β(q1) (186)

bits of the upper bound (23).
• Fourth, (176) is lower bounded by

a1 +∆a1 + g1 +∆g1 + e2 + (C2 − ξ2)
+

≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1)

+
1

2
log
(
1 + SNR1(1 + φ2

1SNRr2) + SNRr1

+INR2 + SNRr2)− α(q1)

+
1

2
log

(

1 +
SNR2

1 + INR2
+ INR1

)

− 1

2
+ C2 − ξ2,

(187)

which is within

δ
(0,C2)
2R1+R2

= 2α(q1) + β(q2) (188)

bits of the upper bound (24).
• Fifth, (177) is lower bounded by

a1 + (C1 − ξ1)
+ + g1 + (C1 − ξ1)

+ + e2 +∆ẽ2

≥ 1

2
log

(

1 +
SNR1

1 + INR1

)

− 1

2
+ C1 − ξ1

+
1

2
log(1 + SNR1 + INR2)−

1

2
+ C1 − ξ1

+
1

2
log

(

1 +
SNR2(1 + φ2

2SNRr1) + SNRr2

1 + INR2

+INR1 + SNRr1)− α(q2), (189)

which is within

δ
(2C1,0)
2R1+R2

= α(q2) + 2β(q1) (190)

bits of the upper bound (25).
• Sixth, (178) is lower bounded by

a1 +∆a1 + g1 + (C1 − ξ1)
+ + e2 + (C2 − ξ2)

+

≥ 1

2
log

(

1 +
SNR1 + SNRr1

1 + INR1

)

− α(q1)

+
1

2
log(1 + SNR1 + INR2)−

1

2
+ C1 − ξ1

+
1

2
log

(

1 +
SNR2

1 + INR2
+ INR1

)

−1

2
+ C2 − ξ2, (191)

which is within

δ
(C1,C2)
2R1+R2

= α(q1) + β(q1) + β(q2) (192)

bits of the upper bound (26).

Therefore, the gap between the achievable rate (34) and
the corresponding upper bounds (21)-(26) is bounded by the
following constant

δ2R1+R2
= max

{

δ
(2C1,C2)
2R1+R2

, δ
(0,0)
2R1+R2

, δ
(C1,0)
2R1+R2

, δ
(0,C2)
2R1+R2

,

δ
(2C1,0)
2R1+R2

, δ
(C1,C2)
2R1+R2

}

. (193)

Due the the symmetry between (35) and (34), and the
symmetry between their corresponding upper bounds, it is
easy to see that (35) is also within constant gap to the upper
bounds. The constant gapδR1+2R2

can be obtained by simply
switching indices of1 and2 in δ2R1+R2

.
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