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Abstract—Scrip is a generic term for any substitute for real
currency; it can be converted into goods or services sold by the
issuer. In the classic scrip system model, one agent is helped by
another in return for one unit of scrip. In this paper, we present
an upgraded model, the one-to-n scrip system, where users need
to find n agents to accomplish a single task. We provide a detailed
analytical evaluation of this system based on a game-theoretic
approach. We establish that a nontrivial Nash equilibrium exists
in such systems under certain conditions. We study the effect of
n on the equilibrium, on the distribution of scrip in the system
and on its performance. Among other results, we show that the
system designer should increase the average amount of scrip in
the system when n increases in order to optimize its efficiency. We
also explain how our new one-to-n scrip system can be applied
to foster cooperation in two privacy-enhancing applications.

I. INTRODUCTION

Over the last two centuries, non-governmental currencies,
known as scrip, have been issued by private companies or local
communities for many different purposes. For instance, to pay
employees in isolated mining or logging camps, company scrip
was used in lieu of regular money. More recently, community-
issued scrip, such as the Detroit Community Scrip, has been
issued in order to restore economic confidence, and help
consumers make ends meet [3]. In the last decade, scrip
systems have been proposed in order to thwart free riding in
online environments (e.g., file sharing or resource sharing [17],
[30]). The free-rider problem is particularly serious in peer-to-
peer (P2P) networks such as BitTorrent, LimeWire or Gnutella,
in which most users (85 percent) do not share any files [16].

Although scrip systems can help ensure fairness and prevent
free riding, such systems are exposed to similar behavior as in
real-world economies that lead to the same monetary issues.
The Capitol Hill Baby Sitting Co-Op [28], a concrete scrip
system created by a group of parents working on Capitol Hill,
faced a recession and a monetary crash due to its monetary pol-
icy. Several researchers further studied the dynamics of scrip
systems, based on these issues [14], [20], [21]. Among other
results, they show that agents following threshold strategies
led to a nontrivial Nash equilibrium. They show the impact
of the amount of scrip in circulation on the efficiency of
the system. In particular, they show that efficiency (social
welfare) increases with the average amount of scrip per agent,
until some point where the system experiences a monetary
crash. At that point, no agent is willing to work anymore and
social welfare falls to zero. Finally, they consider different
“irrational” behaviors, such as altruists and hoarders, and

identify the impact of sybils and collusion on scrip systems.
The original scrip system assumes one transaction at a time,

where one agent provides a service to another and gets paid
one dollar1 for it (one-to-one exchange) [14]. Previous work
has brought a number of relevant results. However, there is an
urgent need to extend the one-to-one scrip system to a system
involving more than one dollar and two agents at a time in
order to tackle new challenges led by modern IT systems, such
as fostering cooperation in privacy-enhancing applications.

Privacy-enhancing technologies, such as anonymity net-
works [10], [9], [13], [25], provide valuable privacy benefits
for Internet users. Among other benefits, anonymity networks
can prevent price discrimination in e-commerce by concealing
IP addresses. They are also used by journalists or human rights
activists to circumvent censorship in dictatorial countries. For
instance, there was a dramatic increase of Tunisian Tor [2]
users during the Jasmine Revolution in January 2011 [1].

Many privacy-preserving mechanisms require cooperation
among multiple users in order to achieve a good level of
privacy. However, cooperation is not free, and its inherent
cost often prevents users from collaborating. For example,
in anonymity systems, running a relay node costs a non-
negligible amount of bandwidth and processing power. Back in
2003, Acquisti et al. already highlighted the need of incentives
to offer and use anonymity services [5]. Whereas the use of
anonymity networks has improved since then, the number of
relays is still much lower than the number of clients, and the
client-to-relay ratio keeps growing. In 2009, there were 1,500
Tor relays for approximately 100,000 simultaneously active
Tor clients [22], whereas, in June 2011, there were 2,500 relays
for 300,000 to 400,000 clients [1].

Among other incentives for acting as a relay in anonymity
networks, several schemes propose to make use of micropay-
ments to reward users relaying others’ anonymous traffic [6],
[8], [12] . These previous works have mainly contributed to
the design of anonymous and secure micropayments. However,
they did not evaluate the monetary issues that could appear in
such systems. Assuming an anonymous circuit requires the
cooperation of n relays, each client has to own (at least) n
dollars in order to reward each of these n relays. In order to
earn enough scrip to afford such a relaying service, each client
will then have to serve - relay anonymous traffic - for other
users in the anonymity network.

1We refer to the unit of scrip as the dollar.



This leads us to define and study the one-to-n scrip system:
one agent requests n other agents to fulfill a service and pays
each of them one dollar. This scheme also better complies
with current file sharing systems, such as BitTorrent, where
an agent downloads multiple equal-size chunks from different
neighboring peers of the torrent. In order to download an entire
file and get any utility from it, an agent needs n peers who
volunteer to upload their chunks. Thus, he must reward n
agents with n dollars.

In this paper, we develop and study a new analytical model
for scrip systems enabling a much wider range of applications.
First, we precisely characterize the distribution of scrip in the
one-to-n scrip system at equilibrium as a function of n and
of the fraction of agents of each type. Second, we prove that,
under certain assumptions, there exists a nontrivial Nash equi-
librium where all agents play threshold strategies. We study
the effect of n on the agents’ strategies and the consequent
equilibrium and prove that agents’ thresholds increase with n.
Third, we evaluate the efficiency (social welfare) of the one-
to-n scrip system and notice that it tends to decrease when
n increases. We show that a system designer can increase the
scrip supply in order to offset the loss of efficiency caused
by a larger n. This works well up to a point beyond which
the system experiences a monetary crash. We show that this
critical upper bound increases with n. Finally, we present how
our one-to-n scrip system can help to improve fairness and
efficiency in two privacy-enhancing applications. In particular,
we evaluate the amount of scrip that should be allocated into
the Tor network to optimize its performance.

The paper is organized as follows. In Section II, we present
the formal model and the notations used throughout the paper.
In Section III, we examine the behavior and convergence of the
scrip system when agents adopt threshold strategies. In Section
IV, we evaluate the effect of n and of the amount of scrip
on the efficiency of the system. We provide two application
examples in Section V before concluding in Section VI.

II. SYSTEM MODEL

In this work, we consider a scrip system with N agents who
interact with each other. We consider a population of agents
with different preferences and characteristics. Each agent has
a type t ∈ T , where T is a finite set of types. The distribution
of types is described by ~f , where the element ft represents
the fraction of agents with type t. The type t of an agent
is described by the tuple t = (bt, ct, δt, αt, βt, γt), whose
variables are defined in the rest of this section and in the
following table of symbol.

At each time slot, one agent is selected proportionally to his
request rate αt to ask for a service. If this agent has at least $n,
he can afford a service and request other agents to fulfill this
service. In order to have his request fully satisfied, n agents
must be able and willing to collaborate. If there are less than
n agents able and willing to volunteer, the request cannot be
fulfilled, even partially, and the requester gains no utility. The
service has to be satisfied in an “atomic” way. An agent is able
to satisfy a service with probability βt, and willing to volunteer

TABLE I
LIST OF SYMBOLS.

Symbol Definition
N Number of agents within the system
T Set of agents’ types
~f Distribution of types
ft Fraction of agents of type t
W Total amount of scrip in the system
m Average amount of scrip per agent
n Number of volunteers per request
bt Utility an agent gains for having a request satisfied
ct Cost of an agent when satisfying one request
δt Rate at which an agent discounts his utility
αt Request rate
βt Probability that an agent is able to satisfy a request
γt Likelihood to be chosen when an agent volunteers
kt Agent’s threshold
~k Vector of size |T | encompassing all kt’s
Skt Threshold strategy with threshold equal to kt
S~k Strategy profile with agents’ thresholds defined by ~k
V State space describing the wealth of every agent
X Markov chain defined on V
A Set of agents who can afford a service
V Set of agents who volunteer
Mt

i Fraction of agents of type t with i dollars
pu Probability of earning one dollar
pd Probability of having a request satisfied
µ Fraction of agents at their threshold

depending on his strategy. Moreover, an agent volunteering to
provide service is chosen to fulfill another agent’s request with
likelihood γt.

When a service is performed, meaning that n agents fulfill
the request of another agent, the requester (of type t1) obtains
some benefit bt1(n) that is, in most cases, non-decreasing
with n (see Section V for further details on the privacy gain).
Each volunteer of type t2 bears a utility cost ct2 representing,
for instance, the usage of bandwidth and processing power
in anonymity networks. Thus, when n agents of same type
t2 collaborate with another agent (of type t1) and satisfy his
request, the whole cost is equal to nct2 , and the system’s utility
gain is bt1 − nct2 . We assume that bt1 − nct2 > 0, such that
social welfare increases when a service is satisfied. The system
would otherwise not be viable.

Regarding the monetary reward, an agent providing a ser-
vice is paid some fixed amount of scrip that we assume
is equivalent to $1. Consequently, a service requester must
spend $n to obtain a service. If the chosen agent does not
have enough scrip, no transaction can take place in that time
slot and social welfare stagnates. We model the system as
an infinite extensive-form game where the total utility of an
agent over time is the discounted sum of utilities at each time
slot. The total discounted utility of agent i (of type t) is then
Ui =

∑∞
τ=0 δ

τ
t ui(τ), where δt represents the rate at which an

agent of type t discounts utility.
As in the one-to-one scrip system, we assume that prices

do not change over time, which allows the agents to know the
future monetary cost of their service requests. As the first step
towards an extended scrip system, we will consider a payoff-
heterogenous population, i.e. bt, ct or δt might vary but αt =
α, βt = β and γt = γ, for all t. Differences in these parameters



should not fundamentally change the game-theoretic results.
The one-to-n scrip system can be fully described by (T , ~f ,
N , m, n), where m is the average amount of scrip.

III. ANALYTICAL RESULTS

In this section, we prove the existence of Nash equilibrium
when agents make use of threshold strategies. We also show
the effect of n on the system, its equilibrium and the agents’
strategies. We begin this section by describing the distribution
of scrip, which will help us analyze the strategic behaviors of
agents, as well as the resulting social welfare in Section IV.

A. Distribution of Scrip

Before analyzing the best strategies and the resulting equi-
librium, it is crucial to examine what happens in the system if
every agent adopts a predefined category of strategies, called
threshold strategies. Such a class of strategies is easy to
explain. If an agent has too little scrip, he will be willing
to work in order to afford service requests later in time, until
he reaches a point at which he will feel “wealthy” enough.
This threshold represents how much scrip an agent wants to
save up for future requests. Let Sk be the strategy where
an agent volunteers when he has strictly less than k dollars
and defects otherwise. With this definition, S0 represents the
strategy where an agent never volunteers, and S∞ the strategy
where he always volunteers. As threshold strategies depend
on the agents’ types, we write kt to represent the threshold
adopted by agents of type t. Vector ~k encompasses all the kt’s,
for all types t, and S~k is the corresponding strategy profile.

In our analysis, we assume that W = mN <
∑
t ftktN ,

meaning that the total amount of scrip is not too high in
order that the system analysis remains interesting. If W ≥∑
t ftktN , the system would converge to a state where each

agent has reached his threshold, and thus does not want to
volunteer anymore. We also assume that m ≥ n. Otherwise,
the system would converge to a state where no agent can afford
a service, i.e. where all agents own less than n dollars. These
two requirements seem reasonable because a system designer
should ensure that (i) there are enough scrip in the system
such that exchanges can happen, and (ii) there is not too
much scrip in order to prevent procrastination and to encourage
cooperation among agents.

Let X be a Markov chain over the state space V that
describes the amount of scrip each agent owns. Each state
of the Markov chain can be described by a vector ~x, where xi
represents the amount of scrip agent i owns in state V~x. These
states must satisfy some constraints: (i)

∑N
i=1 x(i) = W , and

(ii) 0 ≤ x(j) ≤ kt, for all agents j with type t.2 Thus, even
if the Markov chain has a significant number of states (when
N is large), their number is finite. If the Markov chain is in
a state V~x, and agent j has a request satisfied by n agents i1,

2For simplicity, we assume that no one’s amount of scrip exceeds their
threshold.

i2, ..., in, the Markov chain moves to another state, V~y , where y(j) = x(j)− n
y(i`) = x(i`) + 1, for ` = 1, ..., n,
y(.) = x(.), for all other agents.

(1)

We can already notice that, contrarily to the original scrip
system, the aforementioned Markov chain is neither reversible
nor symmetric, notably because no single transaction can
restore the chain back to its previous state. Nevertheless, if
there are at least n + 2 agents within the scrip system, there
exists a limit distribution, as stated in the following lemma.

Lemma 1: If there are at least n+ 2 agents in the system,
then X is finite, aperiodic and irreducible and has a limit
distribution.

Proof of Lemma 1: X is aperiodic. Assume that there
are (at least) n + 2 agents i1, i2, ..., in+2. Suppose X is in
a state V~x where at least one agent has $n or more and the
others have less than their threshold amount of scrip. There
must exist such a state by our assumption that m is interesting
(i.e. neither too small nor too high). There exists a cycle of
length n+ 1 from state V~x to itself: i2, i3, ..., in+1 volunteer
for i1, then i1, i3, ..., in+1 volunteer for i2, and so on until i1,
i2, ..., in volunteer for in+1. There is also a cycle of length
n + 2: i2, i3, ..., in+1 volunteer for i1, then i1, i3, i4, ...,
in, in+2 volunteer for i2, then i1, i2, i4, ..., in−1, in+1, in+2

volunteer for i3, and so on until i2, i3, ..., in+1 for in+2.
X is irreducible. Indeed, a Markov chain is said to be

irreducible if all states communicate, or, in other words, if
it is possible to reach any state from any other state. For any
pair of states i and j of the Markov chain X , we can show that
the probability of going from i to j in a finite number of steps
is strictly greater than 0, proving that any state is reachable
from any other one.

Finally, as the number of states V is finite, X is also finite,
and thus a limit distribution exists, and it is independent of
the state in which the system starts [26].

We can express the transition probabilities for all pairs of
states i and j, i 6= j that are directly reachable from each
other3 as

Pij =
1

|A|
· 1(|V |−I

n

) , (2)

where A is the set of agents who can afford a service, i.e. who
have at least $n, in state i, and V is the set of volunteers,
i.e. agents who have not reached their threshold amount of
scrip, in state i too, and I is 1 if the agent requesting the
service has an amount of scrip that is under his threshold, and
0 otherwise (because an agent cannot satisfy his own request).
The transition probabilities depend on the values |A| and |V |
that vary among the different states. Thus, the limit distribution
is not uniform, even when n = 1. Instead of computing
this limit distribution, we will focus on the corresponding
distribution of scrip, because we are not interested in who
has how much scrip, rather in the fraction of people that have
a given amount of scrip.

3Pij = 0 if i and j do not directly communicate with each other.



For each state V of the Markov chain X , there is a
distribution of scrip M that describes the fraction of agents for
each possible amount of scrip. More precisely, M t

i represents
the fraction of agents of type t who own $i.4 For instance, if
there is only one type of agent and we are in a state V where
money is uniformly distributed (x(j) = m ∀j), then M t

m = 1,
and all other M t

i are equal to zero. The distribution of scrip
must satisfy two constraints:∑

t

kt∑
i=0

iM t
i = m (3)

kt∑
i=0

M t
i = ft (4)

First, the average amount of money is equal to m, and second,
the fraction of agents playing Skt is equal to ft (fraction of
agents of type t). One can show that, if N is large, there exists
a particular distribution M∗ such that, with high probability,
the Markov chain X will almost always be in a state V~x such
that the related distribution of scrip M~x is close to M∗. This
kind of convergence around the most likely distribution is
known as a concentration phenomenon in statistical mechanics
[19]. According to Lemma 1, we can state that M∗ exists.
Before characterizing M∗, let us define two matrices B and
C of size (n+ 1)× (n+ 1):

B =


1 0 · · · 0 −θn

0

In
...
0

C =


1 + θn 0 · · · 0 −θn

0

In
...
0


where In is the identity matrix of size n, θn = 1

λn , λ chosen
to ensure that (3) is satisfied with the distribution M∗ defined
in the following theorem.

Theorem 1: Given a payoff-heterogenous population, the
distribution of scrip in a one-to-n scrip system will converge
to

(M∗)ti =
ftπ

t
i∑kt

j=0 π
t
j

(5)

where the πti ’s are defined in the following way:
~eti = Bn−1−iCkt−2n+1~vπtkt , if i ∈ [0, n− 2];
~eti = Ckt−n−i~vπtkt , if i ∈ [n− 1, kt − n− 1];
πti = θn(1 + θn)kt−i−1πtkt , if i ∈ [kt − n, kt − 1].

~eti and ~v are vectors of size (n+ 1) defined as:

~eti =

 πti
...

πti+n

 ~v =


θn(1 + θn)n−1

...
θn(1 + θn)

θn
1


The proof can be found in the Appendix.
We have run simulations of the one-to-n scrip system in

order to evaluate how close a real-system limit distribution was

4Mi represents the fraction of agents who own $i, regardless of their type.
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Fig. 1. Distribution of scrip with n = 5 and kt = 30 for 1000 agents.
Dark (black) bars represent the theoretical distribution obtained in Theorem 1,
whereas simulation results (after 10, 000 iterations) are shown in light (blue).

to the theoretical limit distribution found in Theorem 1. Figure
1 illustrates the distribution of scrip in a one-to-n scrip system
with 1000 agents with same type, m = 10, kt = 30, n = 5
and (bt, ct, δt, αt, βt, γt) = (1, 0.05, 0.95, 1, 1, 1). The dark
bars show the theoretical distribution, whereas the light ones
show the averaged distribution of scrip after 10,000 steps in the
simulated model. Both distributions have very similar shapes.
This allows us to believe that a real system would converge
to some point close to the theoretical limit distribution. Back
to the example depicted in Figure 1, we notice that both
distributions increase until their peaks (at n−1 = 4), and then
decrease until a very small peak (at kt−n = 25). We notice a
concentration of agents who have reached their threshold (at
kt = 30). By doing more simulations with various values of
n, we have noticed the maximum of the curves always stands
at (n − 1) if m remains smaller than half of kt. This clearly
shows how n influences the distribution of scrip.

B. Game Results: Strategies and Equilibria

In this section, we first analytically verify whether there
exist an ε-best reply and a consequent nontrivial ε-Nash
equilibrium in the one-to-n scrip system. Then, we evaluate
the effect of n on the agents’ strategies and on the Nash
equilibrium. In particular, we show to what extent n influences
the threshold vector ~k. These results will help us measure the
social welfare in the next section.

Note that δt has to be sufficiently large for all types t in
order to reach a nontrivial Nash equilibrium where all agents
follow a threshold strategy. If the discount factor is so small
that it discounts too much future utility, all that matters is
present utility and there is no incentive to volunteer now for
future benefit. In this case, the only Nash equilibrium (trivial
one) is to always defect for all agents. Thus, let us assume



that δt > δ∗, ∀t. Moreover, all nontrivial Nash equilibria in
threshold strategies will be of the form S~k with kt ≥ n, ∀t.
Indeed, there is no incentive for a rational agent to volunteer
up to kt < n and then defect, because, in this case, the agent
would never be able to afford any service.

In order to analyze the game, we consider a single agent i of
type t, from whom point of view the system can be modeled
as a Markov Decision Process (MDP). If N is large and n
reasonably small with respect to N , what agent i does has
essentially no effect on the behavior of the system and no
great impact on the scrip distribution. We will later see that
finding the best reply of agent i to the other agents’ strategies
is equivalent to finding an optimal policy for his MDP.

Assuming that the distribution of scrip is close to M∗

(defined in Theorem 1) and all other agents have fixed their
thresholds according to ~k, we can compute two crucial prob-
abilities for the optimal decision of agent i:

(i) pu, which is the probability of earning a dollar:

|A| − I
N

n

|V |
=

1−
∑
t

n−1∑
j=0

(M∗)tj

 n

1−
∑
t(M

∗)tkt

(ii) pd, which is the probability of agent i having a request
satisfied, or equivalently, of spending n dollars:

1

N
Pr (|V | ≥ n) ∼=

1

N

pu is the product of two probabilities: (i) the probability
that some agent other than i who has n dollars is chosen to
make a request, and (ii) the probability that i is the agent
chosen to satisfy it. Whereas the first probability decreases a
little with n, the second increases linearly with n, and thus pu
increases almost linearly with n. pd is the probability of agent
i will have a request satisfied, which can be approximated to
the probability that agent i will be chosen to make a request.5

This probability only depends on N . However, n will influence
the repercussion of pd because if the agent is chosen to make
a request, he will then spend $n.

It follows from [24] that there exists an optimal policy for
the MDP of agent i that is a threshold policy. This threshold,
kt, depends on pu, pd, bt, ct, δt, and n. We will prove later
the effect of n on kt. Note here that kt must be a multiple of
n. Indeed, supposing that an agent should decide between a
threshold kt (multiple of n) and a threshold kt + 1, he would
choose kt + 1 only if the extra dollar would give him the
opportunity to make one more request than with kt, and gain
more benefit in the future. As the agent needs n dollars to
pay for a service, the extra dollar will be worth nothing, and
eventually wasted. The cost ct led by this extra dollar will not
be compensated by a shorter expected time to make a request,
assuming that δt is large enough and ct is non-negligible.

Furthermore, if every other agent is playing a threshold
strategy, for all m and ε > 0, there exists an optimal threshold

5It is almost sure that n agents will be willing and able to volunteer under
our initial assumption that n is reasonably small with respect to N . See
Formula (8) for more details.

policy that is an ε-best reply to the strategy profile S~k. This is
valid only for δt > δ∗, large N , and n reasonably small with
respect to N . Moreover, considering ε-best reply formalizes
the fact that the optimal policy of the MDP and the best
reply are not exactly the same. Indeed, both pu and pd are
related to agent i’s MDP and they slightly differ from the
corresponding probabilities of the game. They are only close
with high probability, and after some amount of time. For
instance, remember that we consider distribution M∗ in the
MDP, whereas the actual distribution in the game will be close
but still different.

Before proving that a nontrivial ε-Nash equilibrium exists,
we must show that the best reply function is non-decreasing
in ~k. Let BRtm(S~k) be the best reply of an agent of type
t given an average amount of money equal to m and the
strategy profile S~k. BRtm(S~k) is non-decreasing in ~k. First,
it can be shown that if ~k′ ≥ ~k (i.e., k′t ≥ kt, ∀t), then∑n−1
j=0 (M∗)t

′

j ≥
∑n−1
j=0 (M∗)tj and (M∗)t

′

k′t
≤ (M∗)tkt for all

types t. This means that, by increasing the threshold vector,
more agents will not be able to afford a service, and fewer
agents will reach their threshold. Therefore, with ~k′, there will
be fewer opportunities to earn money and more agents willing
to volunteer for those opportunities, meaning that agents will
earn money less often. Thus, agents will run out of money
sooner. Hence, the utility of earning more scrip will increase,
and as a result so well the best reply. We can now prove the
existence of a nontrivial Nash equilibrium.

Theorem 2: For δt > δ∗, large N and n reasonably small
with respect to N , there exists a nontrivial ε-Nash equilibrium
where all agents of type t play Skt for some kt = ltn, lt ∈ N.

Proof: As the best reply function BR is non-decreasing,
Tarski’s fixed point theorem ensures that there exist a least and
a greatest fixed point [29] that are equilibria. The least fixed
point is the trivial equilibrium, and the greatest one can be
reached by starting with S∞ for all agents and using best-reply
dynamics [20]. Moreover, if δt > δ∗, there exists a strategy
profile ~k such that BR(~k) ≥ ~k. Monotonicity ensures that the
greatest fixed point ~k∗ is greater or equal to ~k, and thus gives
a nontrivial equilibrium. Note that n affects the nontrivial ε-
Nash equilibrium. The higher n is, the further the MDP will
be from the actual game. However, we can finely tune ε to
cope with higher values of n. Moreover, as stated before, the
best reply, for all types of agent, is a multiple of n.

The natural question that arises from the above theorem is:
To what extent does n influence kt, for all types t? We already
know that, ∀t, kt must be a multiple of n. In fact, ~k increases
with bt(n), thus with n as proved in the following theorem.

Theorem 3: For given values of m, ct, αt, βt, γt, and δt >
δ∗ for all t, the threshold vector ~k is increasing in n. More
precisely, if bt = bt(n),

~k ∼ Ω(bt(n)) (6)

Proof: Let us focus on the threshold kt = k of a particular
agent and generalize it to the threshold vector ~k. k is defined



as the maximum value such that

ct ≤ E[δ
j(k,pu,pd)
t ]bt (7)

holds, where j(k, pu, pd) is a random variable whose value
is the first round in which an agent starting with k dollars,
using strategy Sk, has less than n dollars. The expectation is
simply the discounted factor that will affect the agent’s benefit
at round j. First, we know that pu increases almost linearly
with n. Moreover, pd is independent of n but the effect of
being chosen to make a request is linear to n, as the agent will
spend n dollars in that case. Thus, the effects of pu and pd on
j(k, pu, pd) approximately compensate each other. Assuming
that bt generally increases with n, the right part of (7) will
increase with n if k remains unchanged. As ct is fixed, the
increase in bt allows for the decrease of E[δ

j(k,pu,pd)
t ] in front

of bt and still satisfy the inequality. As j(k, pu, pd) increases in
k (the higher the threshold is, the more money we have and the
later we go under $n) and E[δjt ] decreases in j, E[δ

j(k,pu,pd)
t ]

decreases in k. Moreover, as δt is close to one, E[δ
j(k,pu,pd)
t ]

decreases in o(j(k, pu, pd)), and so in o(k). Thus, k can be
increased with bt(n), more precisely in Ω(bt(n)).

Our results in this subsection show the existence of a
nontrivial equilibrium under certain conditions, as well as
some properties of this equilibrium. In the next section, we
focus on the social welfare and the optimal amount of scrip
in the system.

IV. SOCIAL WELFARE

In this section, we investigate how much scrip should be
allocated in the one-to-n scrip system in order to optimize its
performance, and thus social welfare.

A natural question arises when the system is at equilibrium:
How good is it? Consider a single transaction involving only
agents of type t. If a request is satisfied, social welfare
increases by bt − nct > 0. If no request is satisfied then no
utility is gained. For a utility gain to happen, two events are
required: (i) the agent chosen to make a request must have $n,
which occurs with probability 1 −

∑n−1
i=0 Mi, and (ii) there

must be n volunteers able and willing to satisfy the request.
If µ is the fraction of agents at their threshold (i.e., the agents
who do not want to volunteer), the probability of having at
least n volunteers able to satisfy a request is

Pr(|V | ≥ n) = 1− Pr(|V | < n) = 1−
n−1∑
i=0

βit(1− βt)(1−µ)N−i

= 1− (1− βt)(1−µ)N ·
1−

(
βt

1−βt

)n
1− βt

1−βt

. (8)

Expression
1−( βt

1−βt )
n

1− βt
1−βt

goes to 1 if βt is close to 0 or n = 1.

This expression grows until infinity if βt approaches 1. How-
ever, this factor is negligible with respect to (1 − βt)(1−τ)N
if n is small with respect to N , which is always the case by
assumption. As (1− βt)(1−τ)N converges to 0 for large N or
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Fig. 2. Social welfare for various average amounts of scrip m and various
n. When m is too large with respect to n, social welfare falls to 0 (monetary
crash).

βt close to 1, the probability of finding n volunteers can be
approximated by 1.

The total expected social welfare over all time is then

(1−
n−1∑
i=0

Mi)
bt − nct
1− δt

. (9)

First of all, social welfare is maximized by minimizing the
fraction of agents with less than n dollars. We can make∑n−1
i=0 Mi decrease by adding more scrip in the system.

Indeed, if N is fixed, by increasing W , and thus m, the number
of “poor” agents decreases. Thus, social welfare increases in
m. However, social welfare does not increase to infinity with
m and, beyond a certain average amount of money m∗, the
only Nash equilibrium reached by the one-to-n scrip system
is the trivial one, where no agent volunteers. We now evaluate
the influence of n on the social welfare.

Theorem 4: For given values of bt, ct, δt, and m < m∗,
social welfare of a one-to-n scrip system is decreasing in n.

Proof: In (1 −
∑n−1
i=0 (M∗)i)(bt − nct)/(1 − δt), two

factors depend on n. First, (1 −
∑n−1
i=0 (M∗)i) decreases in

n. Indeed, from Theorem 1, we can compute that, if n′ > n,∑n′−1
i=0 (M∗)′i >

∑n−1
i=0 (M∗)i. Actually this sum increases

approximately linearly with n. Second, (bt − nct) clearly
decreases in n if bt remains constant. Consequently, the whole
expression decreases in n, and thus social welfare.

Figure 2 shows social welfare with respect to n and m, with
the same population used in Figure 1. The only change is that
now the benefit varies with n: bt(1) = 0.7, bt(2) = 0.9 and
bt(n) = 1, ∀n > 2. We notice that social welfare tends to
decrease with n. The only scenario where it increases slightly
is when m = 4 and n moves from 1 to 2. In this case, the
increase in benefit is greater than the loss in cost and the loss
due to agents that cannot afford a service. Note that social
welfare falls to 0 when the average amount of money is too
high with respect to n (e.g., when m = 10 and n = 1 or 2).



The fact that social welfare generally decreases with n
seems surprising at first sight. Indeed, the more volunteers
helping you, the higher the social welfare should be. Thus, the
result is counterintuitive. There are two possible explanations
for that. First, we must keep in mind that the n volunteers are
not optional at all; without them no benefit can be obtained.
Moreover, the cost of volunteering ct does not decrease if more
agents volunteer. The cost for each agent remains the same,
regardless of n, thus the total cost for the system increases
linearly with n. On the contrary, the benefit bt does not usually
increase so much with higher n. We can solve the first issue, or
at least decrease its negative impact, by increasing the amount
of scrip in the system. Indeed, in Theorem 4, we assume a
fixed average amount of scrip, whereas a system requiring a
higher number of volunteers per request will certainly need
more scrip in circulation. This intuition is formalized by the
following corollary.

Corollary 1: Assuming all other parameters are fixed, for
a certain n, social welfare increases in m. It increases up
to a certain average amount of scrip, m∗n, beyond which
there only exists the trivial Nash equilibrium (monetary crash).
Furthermore, m∗n increases in n.

Proof: The threshold vector ~k decreases when m in-
creases, due to best-reply dynamics. Moreover, from the defi-
nition of M∗ in Theorem 1, we can prove that

∑n−1
i=0 (M∗)i

decreases if ~k decreases. Thus, 1 −
∑n−1
i=0 (M∗)i and social

welfare increase if m is increasing. Furthermore, from The-
orem 3, we know that the threshold vector at equilibrium
~k increases with n. Thus, the threshold vector ~k will still
decrease when m is increased but will reach zero (trivial
equilibrium) beyond higher m with larger n. In other words,
the system will bear a higher average amount of money before
crashing when n increases. Hence, m∗n increases in n.

Figure 2 depicts the positive effect of higher m on the
social welfare. It also shows that scrip systems with higher
n support higher average amount of scrip. For instance, when
m = 10, the system crashes with n = 1 or n = 2 but not with
n ≥ 3. The ratio m∗n/n must not go over a certain value that
will be formally defined in future work. The fact that m∗n is
increasing in n can be well explained. When n increases, the
agents feel less wealthy if they keep the same threshold values.
Indeed, knowing that they then need more dollars to afford
a single request, they will certainly be willing to save more
dollars for future requests. Thus, if n increases, the agents will
stop volunteering later, and thus the system will experience a
monetary crash beyond a higher m∗n. Indeed, a monetary crash
appears when agents feel so rich that they are not willing to
volunteer anymore. Increasing n prevents such behavior.

V. APPLICATIONS IN PRIVACY

In this section, we present two privacy-enhancing applica-
tions where a one-to-n scrip system can help improve fairness
and efficiency: (i) anonymity networks [10], [9], [13], [25],
and (ii) privacy-preserving data aggregation in participatory
sensing [27]. This is not an exhaustive list of concrete ap-
plications of one-to-n scrip system but we focus on these

two examples because (i) anonymity networks are currently
used by hundred of thousands of people to communicate and
browse the Web anonymously, and (ii) participatory sensing
could provide great benefits to society if there are enough
mobile users participating in it, which would be possible only
if the privacy of participants is ensured. In both examples,
the more users involved in the privacy-preserving system, the
higher privacy level the system reaches. Thus, it is absolutely
crucial to have as many users as possible. Moreover, it is of
the utmost importance that users help each other, i.e. volunteer
for each other, in order to preserve the participants’ privacy.

A. Anonymity Networks

Anonymity networks intend to prevent the Internet traffic of
individuals from being tracked by governments or websites. As
Tor [10] is the most popular anonymity network, we will focus
on it for the rest of this section, even though the one-to-n scrip
system can be applied to any other anonymity system.

The Tor network is based on onion routing, a design that
creates a private network pathway by incrementally building a
circuit of encrypted connections through relays (onion routers)
on the network. Data packets are repeatedly encrypted (using
the relays’ public keys) and sent through multiple relays. Then,
each relay removes a layer of encryption using its private key
(it peels one layer of the onion) to uncover the address of
the next relay on the path, and sends the packet to this relay
where the same operation is repeated. In this way, no relay ever
knows the complete path that a packet has taken. In order to
prevent traffic linkability, users must renew their circuits over
time. The Tor project website states that, currently, one circuit
can be used for ten minutes [2]. The circuit’s path length,
i.e. the number of relays in the circuit, is a key parameter
in Tor’s deployment. As suggested in [10], using one or two
hops only would allow for colluding relays to know too easily
both the source and destination packets. Thus, the authors
recommend to always choose at least three relays per circuit.
In the current implementation, Tor selects exactly three relays
for each circuit [2].

The lack of relays remains one of the main challenges in
anonymity networks [11]. There are currently (June 2011)
around 2,500 Tor relays for 300,000 to 400,000 users [1]. The
corresponding client-to-relay ratio is not likely to decrease if
the Tor network does not provide incentives for users to relay
others’ traffic. Acquisti et al. were the first to formalize the
economics of anonymity and propose incentives to encourage
users to serve for others [5]. The original Tor proposal already
mentioned the need of incentives for a long-term scalable
development of such an anonymity system [10]. In the last
few years, various incentive mechanisms have been proposed.
The first category of incentives is based on differentiated
service for Tor users running a relay [23], [18]. The second
category proposes to foster participation in traffic relaying by
rewarding volunteers with anonymous micropayments [8], [6],
[18]. Our idea is that users should reward their Tor relays
with the micropayments earned when relaying others’ traffic,
everybody being involved in the relaying work such as in a
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P2P anonymity network [25], [13]. In this way, the anonymity
workload will be shared among all the users benefiting from
the system, thus ensuring fairness and preventing free-riding.
Figueiredo et al. provided an anonymous payment-based in-
centive for such networks [12]. Note that all of the aforemen-
tioned micropayment-based incentive mechanisms proposed
techniques to distribute coins (scrip) in an anonymous way, in
order that privacy gains provided by anonymity networks are
not jeopardized. Figure 3 depicts an example of this approach.
It would ideally reduce the client-to-relay ratio to 1:1, i.e. all
Tor clients would eventually run a relay.6 In order to analyze
and evaluate optimal incentives to provide to the anonymity
network, we can rely on the one-to-n scrip system.

In current implementation of Tor, n is equal to 3 . This
means that, in our scrip model, a Tor user will have to pay $3
whenever he wants to create a new circuit in the Tor network.
It is difficult to evaluate whether the anonymity benefit would
increase with a larger n. We know that, with n = 1 or 2, the
system would be too vulnerable to insider attacks. However,
would the level of privacy really increase with n greater than
3? We will consider bt constant for n ≥ 3. Different types
of benefits can encompass the fact that some users value
anonymity more than others. The cost ct of traffic relaying rep-
resents the bandwidth and power consumption used to forward
Tor traffic. Different costs can represent various bandwidth
or power capabilities of the relays. Assuming that all relays
are of type t, the total cost of one request is equal to nct.
We notice that the cost induced by one anonymity service
request is increasing linearly with n, whereas the anonymity
benefit remains more or less constant as soon as it reaches an
acceptable value for n. Hence, the system designer should keep

6In order to not discriminate Tor clients that cannot run a relay due to
censorship, such as in China [4], we will make some exceptions and let such
users benefit from Tor service for free. Indeed, denying anonymity to clients
in censored regions would go against Tor’s praiseworthy aim.

n small to keep the relays’ costs acceptable, and thus optimize
social welfare. It is certainly a reason why Tor designers have
chosen to set n = 3.

Concerning the other scrip system parameters, αt, βt, γt,
they can model different behaviors and characteristics of the
Tor users. First, αt represents the request rate. Users surfing
the Web more often in an anonymous way will request more
service from Tor relays, thus αt will increase. Second, a Tor
agent might not be able to satisfy a traffic relaying request,
which is encompassed in the value βt. Finally, some Tor relays
can have higher bandwidth than others, thus a higher quality
of service when relaying traffic, or be well-known and more
used than others. This could be represented by γt, which is
the likelihood that an agent is chosen when he volunteers.

We have run simulations of an anonymity network with
N = 300, 000, n = 3 and the same homogenous population
used in Figure 1, i.e. bt = 1, ct = 0.05, δt = 0.95, and
αt = βt = γt = 1. Apart from N and n, the simulation
parameters are not easy to determine and we plan to further
investigate these in future work. Under these settings, the
social welfare is maximized at m = 10 < m∗3. With this
average amount of money, there is only 2.5% of agents who
cannot afford a service (i.e., with less than $3). We conclude
that a system designer should allocate m · N = 3 million
dollars within an anonymity networks of 300,000 users in
order to optimize its efficiency.7

B. Privacy in Participatory Sensing

Participatory sensing is an example of novel mobile systems
that leverage new capabilities in computation, communication,
storage and sensing of mobile devices [7]. In participatory
sensing, mobile users share sensing information, possibly
including personal and/or location data, with service providers.
However, the emergence of such people-centric systems leads
to many issues, among which privacy is one of the most
critical. Mobile users would certainly be willing to share
sensing data, e.g. to help monitoring urban air pollution [15],
but not at any cost to their privacy.

Shi et al. have recently proposed a concrete privacy-
preserving data aggregation scheme for participatory sensing
[27]. In this privacy-preserving mechanism, mobile nodes rely
on their nearby peers to “hide” their data from the aggregation
server (or service provider) that could be malicious (or at
least curious), thus requiring cooperation from mobile nodes
in their vicinity. Figure 4 depicts an example of this privacy-
preserving scheme. First, each sensing node8 slices its data
into n+ 1 pieces, sends n encrypted pieces to neighbor nodes
and retains the last piece. Second, the mobile nodes receiving
pieces of data from other nodes aggregate all received pieces of
data before transmitting them towards the aggregation server.
Assuming that a fraction R of mobile nodes are malicious and

7Figure 2 provides more results on the social welfare for different values
of n and m.

8A sensing node refers to any agent who uses his mobile device to sense
his environment and submits sensing data.
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can collude with the aggregation server, the normalized level
of privacy is proportional to

P = max{1−Rn −R|S|−1, 0} (10)

where |S| is the number of sensing nodes, which is equal to
N if we assume that all users participating in the privacy-
preserving scheme are also sensing nodes. Thus, the level
of privacy increases with N , but also with n. However, this
privacy-enhancing technique induces significant communica-
tion and computation overhead that also increases with n. As
battery consumption is, with privacy, one of the main concerns
of mobile users in participatory sensing, these communication
and computation costs might prevent participants from volun-
teering to cover other nodes’ data, thus threatening the whole
privacy-preserving system. In order to foster cooperation and
prevent free-riding, we propose to reward with scrip the mobile
nodes that volunteer, and to rely on the one-to-n scrip system
to optimize the efficiency of the monetary incentive.

First, contrarily to Tor networks, the value n is not at
all defined in the initial proposal [27]. The system designer
can tune this value to increase the privacy level provided
by the mechanism, at the cost of communication overhead.
Therefore, we do not attach any fixed value to n. Note that
n should remain reasonably small with respect to the number
of mobile nodes in the system in order for our theoretical
results to apply. This will certainly be the case as the sensing
nodes requesting help from others also suffer from too high
communication overhead when they send their slices to too
many neighbors. Thus, they will cap the number of “cover
nodes” by themselves.

The benefit bt that a sensing node (of type t) gains when a
request is satisfied is related to the privacy utility it gains. As
Equation (10) shows, bt is dependent on n. Furthermore, as
R is smaller or equal than one, bt(n) ∝ P increases with n.
Moreover, different types of benefits can encompass the fact
that some agents are more privacy cautious and sensitive than
others. The cost of volunteering is equal to ct for all nodes

of type t. This cost represents the communication and com-
putation overheads that lead to higher battery consumption.
The type of ct can represent the fact that some users are less
willing to consume their battery or merely that their battery has
a shorter lifetime. In conclusion, we clearly notice that the cost
of one privacy-preserving request is increasing linearly with
n, whereas the privacy benefit is increasing with n, but less
than linearly. Hence, even if the requester gets higher payoff
if he can send more data slices to more neighbors, the overall
utility of the system, social welfare, is decreased.

The sensing nodes can have different amount of sensing data
to submit to the aggregation server. This can be well described
by the request rate αt. Indeed, if nodes are collecting and
submitting more data, they will request help of nearby peers
more often. Furthermore, an agent might be unable to satisfy
a request. For instance, its device can run out of battery or he
can have a call at the same time. This can be encompassed
in βt. Finally, a node can be asked for covering others’ data
slices more often than others. For example, an agent can spend
more time than another in a neighborhood with higher density
of mobile sensing nodes. This difference can be represented by
the likelihood that an agent is chosen when he volunteers, γt.
As a concluding remark, we must mention that the number of
data slices n a sensing node can send is also dependent on the
density of the nodes in its vicinity. Thus, the optimal choice
of n does not only depend on the nodes’ privacy sensitivity,
but also on the network density constraints.

We have also run experiments for participatory sensing
systems, with various values of N and n. For N = 1000
and n = 6 and the same type of agents than for the previous
application, social welfare is maximized with m = 16. This
value is very close to m∗6 over which the system crashes. This
average amount of scrip counterbalances the large value of n
very well. It leads to almost the same percentage of agents
who cannot afford a service (agents with less than $6) than
in Tor example with n = 3 (around 2.5%). Hence, in this
scenario, a system designer should allocate m · N = 16, 000
dollars within the system to optimize its efficiency.

VI. CONCLUSION AND FUTURE WORK

In this work, we have proposed the first scrip system model
that is able to tackle economic systems where one agent
needs multiple volunteers simultaneously in order to have his
request satisfied. For the novel one-to-n scrip system, we
have proved that decisions agents make, based on threshold
strategies, lead to ε-Nash equilibrium. Assuming that all agents
of the system use threshold strategies, we have shown that
the limit distribution towards which our scrip system will
converge highly depends on n. Simulations of the one-to-n
scrip system confirm this convergence. We have studied the
effect of n on all results, notably on the agents’ strategies, on
the social welfare and on the maximum amount of scrip that
the system can handle before crashing. We have proved that, at
equilibrium, the agents increase their thresholds if n increases.
However, in this case, social welfare decreases, which can be
partially resolved by adding more scrip in the system. This



is possible because the maximum average amount of scrip
that the system can bear before it crashes increases with n.
Finally, we have shown that our upgraded scrip system can
be very helpful for improving fairness and efficiency in two
privacy-enhancing applications where cooperative volunteers
are required. We have notably evaluated the average amount
of scrip per agent that should be allocated into the Tor network
to optimize its performance and fairness.

For future work, we will first formally evaluate the rate of
convergence of our system. Then, we will consider different
values of n for differentiated levels of privacy that would
depend on the agents’ preferences and privacy sensitivities. We
will also consider other privacy-preserving and IT applications
where the one-to-n scrip system can be implemented. We
will investigate agents’ possible strategies other than thresh-
olds. Furthermore, non-standard behaviors such as altruism
or hoarding will be studied. These behaviors should not
necessarily be considered as irrational: (i) altruists can benefit
from providing help to others, and (ii) hoarders may get some
utility from owning more scrip. Finally, newcomers and their
effect on the amount of scrip in circulation will be evaluated.
As a consequence, variable prices could also be considered in
our model.
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APPENDIX

Proof of Theorem 1: Let us focus on one type t and then
generalize for all types. Knowing that agents of type t have
kt + 1 possible states of wealth (i.e., their amount of scrip
can go from 0 to kt), we can define a Markov chain Y over
kt + 1 states that describes the amount of scrip an agent of
type t can own. When the Markov chain is in some state, it
can either move one state up, or move n states down, or stay
in the same state. The probability of moving one state up is

Pr(Yi+1|Yi) =
n

|V |
(11)

and the probability of moving n states down is

Pr(Yi−n|Yi) =
1

|A|
(12)

where A is the set of agents who can afford a service and V
is the set of volunteers.

There is one state from which the Markov chain cannot go
up (the state where the agent has kt + 1 dollars), and some
states from which Y cannot go down (the states where the



agent has less than n dollars). From (11) and (12), we can
express the balance equations for all states:

1
|A|πi = n

|V |πi−1, if i = kt;(
1
|A| + n

|V |

)
πi = n

|V |πi−1, if i ∈ [kt − n+ 1, kt − 1];(
1
|A| + n

|V |

)
πi = n

|V |πi−1 + 1
|A|πi+n, if i ∈ [n, kt − n];

n
|V |πi = n

|V |πi−1 + 1
|A|πi+n, if i ∈ [1, n− 1];

n
|V |πi = 1

|A|πi+n, if i = 0.

By multiplying everything by |V |n and setting λ = |A|
|V | (the

ratio between |A| and |V | is constrained by Equ. (3)), we get

1
λnπi = πi−1, if i = kt;(

1
λn + 1

)
πi = πi−1, if i ∈ [kt − n+ 1, kt − 1];(

1
λn + 1

)
πi = πi−1 + 1

λnπi+n, if i ∈ [n, kt − n];
πi = πi−1 + 1

λnπi+n, if i ∈ [1, n− 1];
πi = 1

λnπi+n, if i = 0.

We then set θn = 1
λn and get the following recursions that

fully describe the Markov chain distribution:
πi = θnπi+1, if i = kt − 1;
πi = (1 + θn)πi+1, if i ∈ [kt − n, kt − 2];
πi = (1 + θn)πi+1 − θnπi+n+1, if i ∈ [n− 1, kt − n− 1];
πi = πi+1 − θnπi+n, if i ∈ [0, n− 2].

We can then express the last (n+1) πi’s (but πkt ) with respect
to πkt :

πi = θn(1 + θn)kt−i−1πkt ∀i ∈ [kt − n, kt − 1]. (13)

From these n+ 1 values, we can build the vector ~v that will
be used for the calculation of all other probabilities:

~v =


θn(1 + θn)n−1

...
θn(1 + θn)

θn
1

 (14)

Then, we can write 
πkt−n

...
πkt−1
πkt

 = ~vπkt (15)

As ∀i ∈ [n− 1, kt − n− 1], πi = (1 + θn)πi+1 − θnπi+n+1,
we can build a matrix C of size (n + 1) × (n + 1) that will
be used for computing these probabilities:

C =


1 + θn 0 · · · 0 −θn

0

In
...
0

 (16)

where In is the identity matrix of size n. We can then express,
for instance, the (non-normalized) probabilities from state kt−

n− 1 to state kt − 1 in the following vectorial form:πkt−n−1...
πkt−1

 = C

πkt−n...
πkt

 = C~vπkt (17)

By induction, we get the general form:πkt−n−j...
πkt−j

 = Cj

πkt−n...
πkt

 = Cj~vπkt . (18)

Thus, we can compute πi, ∀i ∈ [n− 1, kt − n− 1]: πi
...

πi+n

 = Ckt−n−i~vπkt (19)

Finally, as ∀i ∈ [0, n− 2], πi = πi+1 − θnπi+n+1, we build a
matrix B of size (n+ 1)× (n+ 1) that will help computing
the remaining probabilities:

B =


1 0 · · · 0 −θn

0

In
...
0

 (20)

We can then express the non-normalized probabilities from
state n− 2 to 2n− 2: πn−2...

π2n−2

 = B

 πn−1...
π2n−1

 = BCkt−2n+1~vπkt (21)

By induction again, we get the general form: πn−1−j...
π2n−1−j

 = Bj

 πn−1...
π2n−1

 = BjCkt−2n+1~vπkt . (22)

Hence, we can compute πi, ∀i ∈ [0, n− 2], πi
...

πi+n

 = Bn−1−jCkt−2n+1~vπkt (23)

By defining ~ei =
[
πi · · · πi+n

]T
, we get ~ei = Bn−1−iCkt−2n+1~vπkt , if i ∈ [0, n− 2];

~ei = Ckt−n−i~vπkt , if i ∈ [n− 1, kt − n− 1];
πi = θn(1 + θn)kt−i−1πkt , if i ∈ [kt − n, kt − 1].

(24)
There just remains to normalize the πi’s to get the distribution
of scrip:

(M∗)i =
πi∑kt
j=0 πj

. (25)

By multiplying by the fraction of agents of each type, we get
the complete characterization of the distribution of scrip:

(M∗)ti =
ftπ

t
i∑kt

j=0 π
t
j

.


