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Abstract—The first-come-first-serve fair queuing algorithm for
a router is known to minimize the per packet delay in a single
server queue. The policy however, provides no user anonymity to
transmitted packets; mere observation of transmission times can
reveal the source of every transmitted packet. The information-
theoretic analysis of the anonymity of queuing policies under a
relaxation of the First-come-first-serve fair queuing is considered
in this work. An entropy-based metric of anonymity is proposed
to quantify the anonymity of queuing policy under a fairness
relaxation where each packet from a user can be transmitted
ahead of at most one packet from another user sharing the mix.
Inner and outer bounds on the maximum achievable anonymity
are characterized as functions of the available memory at the
mix.

I. INTRODUCTION

Privacy in networked communication extends beyond the

protection of communicated data; it is equally critical to

protect the identities of communicating parties. Anonymous

communication systems protect the privacy of the users by

hiding who is talking to whom and how packets are traversing

the network. These systems, several of them deployed on the

Internet, support applications with strong privacy requirements

such as e-voting protocols, intelligence gathering for law

enforcement, military communications, and such like. The im-

portance of such systems is increasing and the largest deployed

anonymity network, Tor [1] has attracted an estimated half a

million users.

Most anonymity systems such as Tor are based on the

concept of Chaum mixes; a mix is special proxy server

that uses re-encryption, random bit padding and batching to

provide user anonymity to transmitted packets. Commonly

deployed mix-networks, while they provide good protection

against packet content/length based information retrieval, are

vulnerable to timing analysis of packets. The primary reason

for the vulnerability is the lack of optimized mix-network

protocols under resource limitations of the network nodes in

terms of memory and bandwidth, and QoS requirements such

as delay and fairness. Guarding against unauthorized timing

analysis incurs a penalty in network resources and QoS, and

it is imperative to optimize the design of anonymity systems

under constraints on resources and QoS requirements.

A key barrier to optimizing the design of anonymous

networks thus far is the lack of a quantitative metric to

measure anonymity in a network that can take into account the

different factors that influence anonymity- namely the resource

limitations such as bandwidth, memory, the QoS requirements

such as delay, throughput and fairness. In recent work [2], [3],

we formulate such metrics to quantify anonymity in an system

bounded by buffer limitations and strict delay constraints,

and demonstrate the tractability of the metric in optimizing

the batching strategies of mix nodes to maximize anonymity

within the limitations on delay and memory. In this work, our

goal is to understand the relationship between fairness on the

achievable anonymity of a Chaum mix.

Fairness has been an important criteria in resource allo-

cation problems, particularly in scheduling processor times

at intermediate routers serving multiple input flows, and in

the fair allocation of bandwidth. The requirement of fairness

in scheduling can, however, be detrimental to anonymity; in

other words a tradeoff exists between anonymity and fairness.

For instance, consider a single mix serving packets from

two users. The fair First-come-First-serve scheduling policy

would mandate that packets be released strictly in the order

of arrival thus rendering the mix incapable of providing any

anonymity. If, however, there were no requirement of fairness,

then any number of arrived packets can be shuffled prior

to transmission, and by increasing the number of packets

shuffled, the uncertainty from the eavesdropper’s perspective

can be increased significantly. In this work, we propose a

relaxation of the FCFS fairness, so that at most η packets from

one user can be scheduled ahead of a packet from the other

user that arrived first, then the options available to the mix to

reorder packets would increase the achievable anonymity. In

this work, we study the maximum achievable anonymity of an

almost fair mix, where η = 1.

A. Related Work

Timing analysis to detect traffic information has roots that

go back to the early days of World War II. Its extensive

usage in compromising privacy in computer networks is well

documented [4], [5]. For example, the weaknesses of Internet

protocols such as HTTP [4] and SSH [6] have been exposed

through timing analysis. On the Internet, sender anonymity is

achieved using networks of Chaum mixes [7]. The basic idea is

that each sender picks a sequence of Mixes (deterministically

[8] or randomly [9]) to route its data to the destination.

Subsequent to the original mixing idea by Chaum, many

batching strategies have been proposed to deal with resource

constraints such as memory and QoS limitations such as delay,

the strategies were based on ad hoc ideas rather than a rigorous

quantitative analysis. Although metrics have been proposed
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for anonymity, using either the size or Shannon entropy of

the anonymity set (set of plausible sources of a packet) [10],

[11], these definitions do not reflect the complete information

available to an adversary. Furthermore, the limited scope of

the definition prevents the analysis of the metric with regard

to practical networking constraints.

In previous work [2], [3], we quantified anonymity of a

Chaum mix under limitations on buffer and delay. In this work,

we adapt the framework to quantify the anonymity of a mix

under a fairness restriction.

Fairness is a subjective notion, and FCFS fairness is one

popular notion. Another well known definition in the context

of scheduling algorithms is max-min fairness, where the

minimum data rate provided to a flow is maximized. The

fair queuing [12] algorithm is the most popular scheduling

algorithm that provides max-min fairness. If in a networking

model, all packets are of equal length, fair queuing algorithm

turns out to be the round-robin strategy for scheduling. The

Proportional method [12] of allocating resources is based

on yet another notion of fairness, where the resources are

shared in proportion to demand with additional constraints

of memorylessness and demand monotonicity. But it is not

usually preferred in the context of packet scheduling, because

it can cause a large amount of delay to a user with small

demand.

In this work, we consider an almost fair mix by relaxing

the FCFS criterion, and characterize the maximum achievable

anonymity under no other resource limitations. We show that

the optimal strategy for the mix requires waiting indefinitely

for all packets to arrive prior to scheduling them. We then

consider a practical alternative, where the mix has a limitation

on packet storage prior to scheduling. We provide lower and

upper bounds on the maximum achievable anonymity as a

function of the memory available to the mix for storage.

II. MATHEMATICAL MODEL

Consider a mix receiving packets from 2 users. Let XR(t)
and XB(t) denote the arrival processes of the two users

respectively (referred to as red(R) and blue(B) packets for

convenience), which for the purposes of analysis are modeled

as two independent Poisson process with equal rates λ. The

Poisson assumption is not critical; as long as every new packet

that arrives is equally likely to be from either source, the

results and techniques in this paper would be valid. Let Y (t)
denote the departure process of the packets, as observed by the

eavesdropper (Eve). Since Eve cannot identify the sources of

packets on the outgoing process, Y (t) is also a point process.

Almost Fair Mix: The mix uses layered encryption and

packet padding to obfuscate the contents and lengths of

incoming and outgoing packets. In addition, the mix is allowed

to reorder the packets subject to a fairness constraint described

below.

Fairness constraint η: Under a fairness constraint η, no

packet from one user that arrived more than η packets ahead of

a packet from another user is transmitted before that packet.

The mix has access to private randomness (unknown to the

eavesdropper, Eve) and is allowed to randomize the schedule

of packets under the fairness constraint η. Let Ψη denote the

class of all mixing strategies that satisfy the fairness constraint

η.

Eve The eavesdropper, Eve, observes three point processes

XB(t), XR(t) and Y (t). As mentioned above, due to encryp-

tion and padding, the sources of packets on the observed

outgoing stream Y (t) are unavailable to Eve. Using her

observation, and knowledge of the mixing strategy, her goal

is to determine the source identities of each outgoing packet

on Y (t). Here it is important to note that even though Eve

has knowledge of mix’s strategy, she does not know the

realization of mix’s private randomness. Let Φ denote the

complete observation of Eve.

A. Anonymity Definition

Given the observation Φ of Eve, and knowledge of the

mixing strategy, the uncertainty in the mix’s action would

induce an a posterior distribution of the sources of packets

on the outgoing stream Y (t) from Eve’ perspective. In an

outgoing sequence of n packets on Y (t) starting from t = 0,

let Y1, · · · , Yn denote the random variables that are jointly dis-

tributed according to this a posterior distribution (Yi ∈ {R,B}
refers to the source of the ith outgoing packet from Eve’s

perspective). Then the anonymity of a mixing strategy ψ is

defined as:

Aψ = lim
n→∞

1

n
E[H(Y1 · · ·Yn)|Φ],

Entropy is computed for every realization of the processes

(XR(t), XB(t), Y (t)) based on the randomness in the the

mix’s strategy. The expectation is over the randomness in the

arrival process.

For a 2 source mix, it is easy to see that:

0 ≤ Aψ ≤ 1.

In the absence of a fairness constraint, the maximum value

of 1 is achievable in the limit; consider a mix that waits until

it receives n packets from both the users, then reorders them

into one of
(

2n
n

)

permutations chosen uniformly. Although the

arrival process is random, due to lack of any restrictions on the

reordering, it is always possible for mix to wait until atleast n
packets arrive from each user. Consequently, every transmitted

batch will have the entropy log
(

2n
n

)

and anonymity of the

strategy is

Aψ =
log
(

2n
n

)

2n
(1)

which goes to 1 as n→ ∞. We are interested in studying the

maximum achievable anonymity under a fairness restriction η:

A(η) = sup
ψ∈Ψη

Aψ.

The results in this paper are focused on the maximum

achievable anonymity when η = 1: in other words, no packet

from one user can be transmitted ahead of 2 or more packets

from the other user. This is the minimum possible relaxation

of the fairness constraint and as will be demonstrated, even
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with this minimum relaxation of fairness a significant amount

of anonymity is achievable.

III. ANONYMITY UNDER LIMITED STORAGE

Consider a mix with no storage limitations, in other words,

the mix can store packets indefinitely before deciding to

transmit a packet. Intuition may suggest that even though the

mix has unlimited storage, the tight fairness restriction would

force the mix to transmit a packet, and hence the number of

packets required to be stored would be finite. This, however,

is not true and the argument below demonstrates why.

Let there is a optimal mixing strategy ψ that requires a

finite buffer size k. Since the strategy ψ is optimal, the

anonymity achieved by strategy ψ is greater than or equal

to that achievable by any other strategy even if the strategy

uses a buffer size greater than k. We will now demonstrate

that this is not possible by providing a strategy that achieves

higher anonymity than ψ thus leading to a contradiction.

Consider the arrival of 3k packets to the mix; strategy ψ
would have to have transmitted 2k packets by the time of

arrival of the 3kth packet. Furthermore the first k packets of

these would have been transitted by the time of arrival of the

2kth packet. Consider a strategy ψ1 which works with a buffer

os size 3k. When 3k packets arrive to the mix, it chooses 2k
packets as would have been chosen by strategy ψ. Further,

it randomly shuffles the 2k packets while satisfying the the

fairness restriction. Strategy ψ1 repeats this process with every

subsequent set of 2k packets. Since shuffling packets will

strictly increase the entropy unless all packets are from the

same source,

E[H(Y1, · · · , Y2nk)|ψ < H(Y1, · · · , Y2nk)|ψ1
∀n ≥ 1(2)

Aψ < Aψ1 (3)

which is a contradiction.

Thus, when the mix has unlimited storage, the decision

to schedule an arrived packet will be delayed indefinitely.

While this represents an impractical scenario, the achievable

anonymity obtained under this assumption would serve as a

benchmark for memory limited mixing. In the remainder of

this paper we will study the anonymity as a function of the

buffer size k. Let Ak denotes the anonymity when buffer size

is limited to hold k packets. An upper and lower bound on

Ak is calculated in the next sections.

A. Upper Bound

It is important to note that when the memory of a mix is

limited, it is sufficient for Eve to know the sequence of arriving

packets in place of the complete timing information of the

arrival point process; a packet can wait in the buffer until the

next packet arrives regardless of what time it arrives, so all

that matters is the source of next arriving packet. Furthermore,

the decision to transmit can be made at the time of arrival of a

new packet to a full buffer such that there is no uncertainty in

the departure process as observed by Eve; a packet leaves the

mix if and only if a packet arrives into a full buffer. Without

loss of generality, we will assume that Eve’s observation is

restricted to the incoming sequence of packets.

We define the following notation:

1. As mentioned above, Y n1 denotes collection of outgoing

packets (Y1, . . . , Yn).
2. Xn denotes the random variable corresponding to the

source of the nth arrival. Xn is Bernoulli distributed

with parameter 0.5 andXn
1 denotes collection of random

variables (X1, . . . , Xn).
3. m(n) denotes the expected number of permissible ways

in which we can permute the first n arrivals under

fairness restriction.

The main idea behind calculating the upper bound is as

follows:

1. We know that if X is random variable that takes M
values then

H(X ) ≤ log2(M) (4)

=⇒ E[H(X )] ≤ E[log2(M)] (5)

But, since M is also a random variable, Jensen inequal-

ity implies that

E[log2(M)] ≤ log2(E[M]) (6)

(5) and (6) implies that

E[H(X )] ≤ log2(E[M]) (7)

If p(n) denotes the expected possible number of values

that the sequence Y n1 can take, then (7) implies that

E[H(Y1 · · ·Yn)] ≤ log2(p(n)) (8)

2. If buffer size is limited to k, then Y n1 can be chosen

only from Xn+k+1
1 which implies that the possible ways

in which we can permute Xn+k+1
1 under buffer and

fairness constraint will give us an upper bound on the

possible number of values Y n1 can takes. If m(n+k+1)
denotes the expected possible ways in which we can

permute Xn+k+1
1 , then

p(n) ≤ m(n+ k + 1) (9)

(8) and (9) implies that

E[H(Y1 · · ·Yn)] ≤ log2(m(n+ k + 1)) (10)

(10) and continuity of log(x) implies that

A ≤ log2( lim
n→∞

(m(n))
1

n ) (11)

Consider the simplest case, when k = 1 and η = 1, the

mix can be viewed to be in either one of two states; the

new arriving packet is either identical or different in color

from the packet in the buffer. When the packets have identical

colors, the mix has no choice but to transmit the packet in the

buffer. When the packets are from different sources, the mix

has a choice to transmit either one of the packets, and can

choose to transmit one of them with a specific probability.

This represents a classical Markov Decision Process, although
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the reward as measured through anonymity is not additive and

is a non-linear function of the state transition probabilities.

Theorem 1: Buffer is constrained to hold maximum k ar-

rived packets,

For k = 1

A1 ≤ log2

(

1 +
√
3

2

)

.

For k > 1

Ak ≤ log2(C0)

where C0 is maximum magnitude root of the equation

(2r)k+2 = 3(2r)k+1 − 2

Proof: Refer to appendix.

Using the analysis, we can calculate the upper bound for

the unlimited buffer case:

Corollary 1: When the mix has unlimited buffer

A∞ ≤ log2

(

3

2

)

Proof: Refer to appendix.

B. Unequal rate

The upper bound can be extended to the case when the

sources transmit with unequal rates. The analysis technique

is very similar to that used in the preceding theorems. Let

XR(t) and XB(t) be Poisson processes with arrival rates λ1
and λ2 respectively. If a packet arrives, it can be red with

probability q = λ1

λ1+λ2

and blue with probability 1− q. Using

similar techniques discussed previously, the following theorem

characterizes the achievable anonymity for the unequal rates

case:

Theorem 2: When the buffer size is k,

For k = 1

A1(q) = log2

(

1 +
√

1 + 8q(1− q)

2

)

For 1 < k <∞

Ak(q) = log2(C0(q))

where C0(q) is the largest magnitude root of

rk+1 = rk + q(1− q)rk−1

(

1−
(

q

r

)k

1− q

r

+
1−

(

1−q
r

)k

1− 1−q
r

)

For k = ∞

A∞(q) = log2

(

1 +
√

q(1 − q)
)

Proof: Refer to appendix.

The upper bounds derived above were computed by relaxing

the constraints on the mix, in particular, allowing the mix to

perform non-causal permutation of packets. Further, the ana-

lytical characterization requires the use of Jensen’s inequality.

As a result, the analytical characterization above are strict

upper bounds on the maximum achievable anonymity.

Fig. 1: Strategy ψ (discontinuous lines represent blue packet)

IV. LOWER BOUND

The upper bound derived in the previous section provides

a benchmark on the achievable anonymity for the almost fair

mix. The anonymity of any strategy is less than or equal to

the above derived bounds. In this section we provide a lower

bound by specifying a strategy for the mix. Under the buffer

constraint k, consider the following fixed strategy ψ. We define

the state Zi of mix’s buffer at the time of the ith arrival to

be the number of packets whose outgoing order is not yet

determined according to strategy ψ.

Strategy ψ: As it will be clear from the strategy ψ, the packets

that determined the mix’s buffer state (whose outgoing order

is not determined) belong to the same source.

1. Mix transmits a packet only if its buffer is full. Conse-

quently, Eve can not get any information by observing

the outgoing packets.

2. Mix determines the outgoing order of packets present in

its buffer.

3. Without loss of generality, assume that the mix is in state

r and all the packets whose order is not yet determined

are of red color.

4. If a packet arrives to a empty mix (r = 0), then it waits

in the mix’s buffer for the next packet.

5. If a blue packet (different source) arrives, then mix

tosses a coin r times whose probability of showing a

head is p. If there are all heads in the coin toss, then

the r red packets are ordered as outgoing packets in

the buffer. The only packet whose outgoing order is

not yet determined is the newly arrived blue packet.

Consequently, mix’s buffer state turns to 1. Otherwise,

the outgoing order of all the r + 1 packets (including

the newly arrived blue packet) is determined. The blue

packet occupies the position of the first tail in the coin

toss. Consequently, the mix’s buffer new state is 0.

6. If a red packet arrives and r < k, then mix goes to state

r+ 1 in which all the r+ 1 red packets outgoing order

is not determined.

7. If r = k and a red packet arrives, then mix transmits a

red packet and remain in the state k.

The strategy ψ is described in Fig. 1. The states of mix’s buffer

under the strategy ψ can be represented as a Markov process

as shown in figure 2. Let (µ0, · · · , µk) represent the stationary
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Fig. 2: Mix buffer’s states represented as a Markov process

under strategy ψ

distribution of this Markov process.

Theorem 3: When the mix is constrained to hold maximum

k packets,

Ak ≥ c1

where c1 is the first coefficient of the equation

l(n) = c1 + c2q
n
2 + . . .+ ck+1q

n
k+1

and qi’s are the roots of the equation (except 1 and 1/2).

rk+2 − rk+1

(

1

2
+

1

2k
+ p

(

1− 1

2k

))

+ · · ·

+rk
(

−1

2
+

1

2k+1
+ p

(

1− 1

2k+1

))

+
1− p

2k+1
= 0

ci’s are calculated using the initial conditions

l(1) =

(

1− 1

2k

)

h(p)

l(n) =

(

p+
1− p

2k

)

l(n− 1) + ...

+(1− p)

n−1
∑

i=2

l(n− i)

2i−1
∀ 2 ≤ n ≤ k + 1

Proof: Refer to Appendix.

For k = 1 and k = ∞, the single-signature form for the

lower bound is as follows

A1 ≥ max
0≤p≤1

h(p)

3− p
= 0.4057

A∞ ≥ max
0≤p≤1

h(p)

3− 2p
= 0.5515

V. ANONYMITY - DELAY TRADEOFF

As is well known, at a single queue, the FCFS is a delay

optimal fairness criterion. Relaxation of the fairness constraint

would cause a tangible increase in delay. In this section, we

characterize the additional delay (in addition to processing

times) incurred by the mix under strategy ψ.

Theorem 4: Under the strategy ψ and buffer constraint k,

the average delay Dk of packets is

Dk =

k
∑

r=0

µrd(r)
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Fig. 3: Anonymity (A) and Delay (D) vs Buffer constraint (k)

where µr are as follows:

µ1 =
2− p

2
(

1 + (1− p)
(

2−
(

p
2

)k
))

µ0 = 1− 2µ1

µr =
1

2r−1
µ1 2 ≤ r ≤ k − 1

µk =
1

2k−2
µ1

and d(r) are given in the following equation:

d(r) =
k

2λ
+

1− r + p(r + 1)− pr − pr+1(r + 1)

4λ(1− p)
+ . . .

+
1+ pr − 2pr+1

4λ

(

1− 1

2k

)

Proof d(r) in the above theorem refers to the delay faced by

a packet when it arrives to a mix when it is in state r. The

details of the proof can be found in the appendix.

VI. NUMERICAL RESULTS

Figure 3 plots the lower and upper bounds on the maximum

achievable anonymity and average delay faced by the users as

a function of the memory k. In general, the state of the mix

is the identity of packets in the order of arrival. At every new

arrival, the mix has a choice to transmit one of the packets, and

can choose to transmit one of them with a specific probability.

This represents a classical Markov Decision Process, although

the reward as measured through anonymity is not additive and

a non-linear function of the state transition probabilities. The

lower bound is computed by restricting the mix to a class of

stationary strategies, and the upper bound is computed using a

restriction on Eve’s observation and using Jensen’s inequality.

Since the conditions for Jensen’s inequality to be an equality

cannot be satisfied in this case, the upper bound is strict.

A trivial strategy to optimize the anonymity asymptotically

can be designed as follows: The mix waits for the buffer to

get full, and then transmits all packets with the permutation

chosen equally likely among all possible fairness satisfying

permutations. As the buffer size goes to infinity, it is easy

to see that this strategy provides the maximum achievable

anonymity; a closed form expression for this strategy does

not, however, exist.
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Both the plots in Figure 3 suggest that although the buffer

size can increase indefinitely, the gain in anonymity saturates

quickly under limited buffer conditions thus suggesting that

for a fairness constraint k, there exists a suitable buffer size

which provides sufficient anonymity at limited resource cost.

VII. CONCLUSION AND FUTURE WORK

In this work, we studied the anonymity of a Chaum mix,

under mild relaxation of First-come-First-serve fairness restric-

tion. Although the setup considered was that of a shared router,

the problem model is an instance of maximizing privacy in

a stochastic control framework. In this setup, however, the

action of the mix affects the probability transition matrix.

If, alternatively, the problem were modeled as a POMDP,

where the state includes the buffer state from the adversarys

perspective, the reward would be a non-linear function of

the probability of a state. Another instance of such a private

stochastic control problem is that of privacy in a demand

response smart metering system connected to the electricity

grid where electricity costs can be thought of as a reward and

scheduling decisions are made to minimize reward.

VIII. APPENDIX

Proof of theorem 1

Case 1: k = 1
It is based on the following observations:

1. For an n length sequence (x̂n1 ) of arrivals in which

alternating packets are from different users for any

fairness constraint greater than one, we can get total

possible permutation of sequence of arrivals (P(x̂n1 ))
equal to

P(x̂n1 ) = F (n+ 1) (12)

where F (n) is the nth Fibonacci number which is

equal to 1√
5

((

1+
√
5

2

)n

−
(

1−
√
5

2

)n)

. Since fairness

constraint (η = 1) restricts that first position of any

permissible permutation of x̂n1 can be occupied by X1

or X2 and symmetrical structure of x̂n1 implies that

P(x̂n1 ) = P(x̂n−1
1 ) + P(x̂n−2

1 ).
2. Fairness constraint 1 and buffer constraint 1 ensures that

if any n length sequence (xn1 ) has k and k + 1 packets

are from same user, then total possible permutation of

this sequence (P(xn1 )) will be equal to

P(xn1 ) = P(xk1)P(xnk+1) (13)

Let Te is the random variable such that Te = i if ith and

i+1th packets are from the same source and ∀ k < i kth and

k + 1th packets are from different source. We know

m(n) = E[P(Xn
1 )] (14)

m(n) = E[E[P(Xn
1 )|Te]] (15)

m(n) =

n
∑

i=1

P (Te = i)E[P(xn1 )|Y = i] (16)

We can see from (12) and (13) that

E[P(xn1 )|Y = k]] = F (k + 1)m(n− k) ∀1 ≤ k ≤ n− 1

and (12) implies that

E[P(xn1 )|Y = n] = F (n+ 1)

Using the above equations, we get

m(n) =

n−1
∑

k=1

1

2k
F (k + 1)m(n− k) +

1

2n−1
F (n+ 1) (17)

Using (17), we can get

m(n+ 2) = m(n+ 1) +
1

2
m(n)∀ n ≥ 1 (18)

(18) is recursive definition for m(n), whose characteristics

equation is

r2 = r +
1

2
(19)

which has solutions 1±
√
3

2 . Using initial conditions, m(1) = 0
and m(2) = 1

2 , we get

m(n) =
1√
3





(

1 +
√
3

2

)n+1

−
(

1−
√
3

2

)n+1




and

log2( lim
n→∞

(m(n))
1

n ) = log2

(

1 +
√
3

2

)

= 0.45 2

Case 2: k > 1
Let Pi is a random variable such that Pi = n if Xn occupies

ith position in a permutation. Swapping the packets of the

same user do not increases the anonymity so without loss of

generality, we can assume following restriction on permutation

of arrived packets:

1. If Xi = Xj , Pm = i and Pn = j =⇒ m < n.

2. ∀j > i, Pi = j only if

j ≤ i+k+1, Xj 6= Xi and Xm = Xi∀m, i+1 ≤ m ≤ j−1

Above restriction tells us that if Xi is fixed at position 1, then

packets 1, 2, · · · , i − 1 are necessarily from the same source

and have to be transmitted in succession following the first

packet. In this case the expected total number of permutation

would be m(n − i). Since this occurs with probability 1
2i−1 ,

we have the following recursive equation on m(n),

m(n) =
k+1
∑

i=1

1

2i−1
m(n− i)∀n > k + 1 (20)

Characteristics equation for the recursive equation (20) is

1

2
= (2r)−1 + (2r)−2 + (2r)−3 + . . .+ (2r)−k−1

(2r)k+2 = 3(2r)k+1 − 2 (21)

Using the theory of finite difference equation, we know that

log2( lim
N→∞

m(n)
1

n ) = log2(C0)
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where C0 is the root of (21) with maximum magnitude. This

can be numerically calculated and the results are plotted in

section VI. 2

Proof of corollary 1

For the case, when k → ∞, we can see that characteristics

equation (21) becomes

1

2
=

1

2r − 1
=⇒ r =

3

2

which implies that

A∞ ≤ log2

(

3

2

)

=⇒ A∞ ≤ 0.5850

2

Proof of theorem 2

k = 1
Using the similar analysis as in the case of equal rate, we get

the recursive equation m(n) = m(n−1)+2p(1−p)m(n−2)
which leads us to the result.

k = ∞
In this case the recursive equation is

m(n) = m(n− 1) + (1− q)

n−2
∑

i=1

qim(n− i− 1) + · · ·

+q

n−2
∑

i=1

(1− q)im(n− i− 1) (22)

And the characteristics equation of (22) is r2−2r+1− q(1−
q) = 0 and 1 +

√

q(1− q) is its largest root.

Proof of theorem 3

Lets assume that F is a random variable such that

F = i =⇒ X1 = X2 = · · · = Xi and X1 6= Xi+1

∀i = 1, · · · , n+ k − 1

F = n+ k =⇒ X1 = · · · = Xn+k

Consider

l(n) = E[H(Yn|Y n−1
1 ,Φ)]

= E[E[H(Yn|Y n−1
1 ,Φ)|F ]]

=

n+k+1
∑

i=1

P (F = i)E[H(Yn|Y n−1
1 ,Φ)|F = i](23)

We can see that ψ ensures that if F = i, then Mix will go to

state 0 or state 1 on the arrival of i + 1th packet. If it goes

to state 0, then average anonymity of the packets that leaves

Mix after the ith arrival will be independent of the departure

before the arrival of the ith packet. Similarly, in case when

Mix’s goes to state 1, then average anonymity of packets that

leaves Mix after the arrival of ith packet can be calculated

by assuming that Mix has just one packet when the i + 1th

packet arrives.This observation can be written in the form of

following equations:

l(n) =















pil(n− i) + (1− pi)l(n− i− 1) 1 ≤ i ≤ k
pkl(n− i) + (1− pk)l(n− i− 1) k + 1 ≤ i ≤ n− 1

pn+k−i−1h(p) n ≤ i ≤ n+ k − 1
0 i = n+ k

(24)

(23) and (24) implies that

l(n) =

(

1 + p

2

)

l(n−1)+

(

1− p

2

)

l(n−2)+

k
∑

i=2

pi

2i
(l(n−i)−l(n−i−1))

(

(25)

For n ≤ k + 1

l(n) =
n−1
∑

i=1

1

2i
(

pil(n− i) + (1 − pi)l(n− i− 1)
)

· · ·+

+h(p)

k
∑

i=n

pn−1

2i
+ h(p)

n+k−1
∑

i=k+1

pn+k−1−i

2i

l(1) =

(

1− 1

2k

)

h(p)

The characteristics equations of (25) is

rk+2 − rk+1

(

1

2
+ p

)

+ · · ·

+rk
(

−1

2
+ p

)

− pk(1− p)

2k+1
r +

pk(1− p)

2k+1
= 0(26)

Clearly 1 and p/2 are the roots of (26). If q2, . . . , qk+1 are the

other roots of (26), then l(n) = c1+ c2q
n
2 + . . .+ ck+1q

n
k+1. If

magnitude of any of the roots is greater than one or if 1 occurs

multiple time as a root, then theory of recursive equations

confirms that
∑N

n=1
l(n)

N
would be a diverging sequence. But

upper bound on anonymity ensures that
∑

N
n=1

l(n)

N
should

converge. This implies all the qi’s are strictly less than one.

So

lim
N→∞

∑N

n=1 l(n)

N
= c1 (27)

Definition of anonymity implies that

Ak ≥ lim
N→∞

∑N

n=1 l(n)

N
(28)

Using (28) and (27), we can say that

Ak ≥ c12

Proof of theorem 4

The stationary distribution of the Markov process as shown in

figure 2 satisfies the following equation:

µ0 =

k
∑

r=1

1− pr

2
µr (29)

µ1 = µ0 +

k
∑

r=1

pr

2
µr (30)

µr =
1

2r−1
µ1 2 ≤ r ≤ k − 1 (31)

µk =
1

2k−2
µ1 (32)

And

k
∑

r=0

µr = 1 =⇒ µ1 =
2− p

2
(

1 + (1− p)
(

2−
(

p

2

)k
)) (33)
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And

µ0 = 1− 2µ1 =⇒ µ0 =
(1− p)

(

1−
(

p
2

)k
)

1 + (1− p)
(

2−
(

p

2

)k
)

Lets calculate the average delay faced by the arrived packet

(Xn) when mix’s buffer is in state 0. Lets assume that Xn is

a red packet. It is based on the following observation:

1. If all the next k packets are red, then Xn would leave the

mix only on the arrival of (k+1)th packet. In this case,

it would have to face k
2λ unit delay and the probability

of this event is 1
2k .

2. Otherwise, in all other cases, ψ says that the next

arrived blue packet would go before Xn if and only

if the outcome of first coin toss is tail. It implies with

probability p, X1 has to face k
2λ unit delay and with

probability 1− p, it would face k+1
2λ unit delay.

The above observation implies the average delay (d(0)) of

Xn when it arrives to a mix in state 0 is

d(0) =
k

2λ
+

1− p

2λ

(

1− 1

2k

)

Lets calculate the delay faced by packet Xn under the strategy

ψ when it arrives to a mix which is in state r > 0. Without

loss of generality, lets assume that mix is in state r due to r
red packets whose outgoing order is not yet determined.

Case1: The arrived packet (Xn) is red

1. If the next k arrivals are red packets, then Xn would

face k
2λ delay.

2. Otherwise, when a blue packet comes, mix would toss

the coin. If the result of initial r + 1 tosses are head,

then Xn would go before the blue packet and its delay

would be k
2λ .

3. If any of the first r + 1 toss is tail, then blue packet

would go before Xn and consequently, Xn would face
k+1
2λ delay.

Using above observation we can see that, delay faced by Xn

when it is red (d(Xn = R))is

d(Xn = R) =
k

2λ
+

1− pr+1

2λ

(

1− 1

2k

)

Case 2: The arrived packet (Xn) is blue.

1. If first i coin tosses give head and (i + 1)th coin toss

give tail (probability of this event is pi(1−p)), then Xn

would be placed at (k − r + i + 1)th position in the

buffer for transmission. Eventually, it would face the

delay k−r+i+1
2λ .

2. If all the r coin tosses result in head, then it would face

the delay same as delay faced by the packet when it

arrives to a mix which is in state 0.

Using above observation we can see that, delay faced by Xn

when it is blue (dn(Xn = B))is

d(Xn = B) =
k − r

2λ
(1− pr)

+
1 + p− pr − rpr − pr+1

2λ(1− p)
+ prd(0)

Using above results, we can calculate the delay (d(r)) suffered

by Xn when mix is in state r is

d(r) =
1

2
d(Xn = B) +

1

2
d(Xn = R)

The average delay of the Xn is

dn =

k
∑

r=0

P (Zn = r)d(r)

lim
n→∞

dn =

k
∑

r=0

µrd(r)

But we know that if an → a and bn =
∑

n
i=1

ai
n

then bn → a
which implies that

Dk =

k
∑

r=0

µrd(r)
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