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Abstract—We present a game-theoretical model predictive
control (MPC) framework for competitive electricity markets.
We demonstrate that an MPC construct can be used to system-
atically analyze the effects of ramp constraints, initial conditions,
dynamic disturbances, forecast horizon length, market manipula-
tion, and bidding frequency on market performance. We illustrate
the capabilities of the framework using a numerical case study.

NOMENCLATURE

Sets
S Set of suppliers

C Set of consumers

T Set of time steps

Variables
qit Production quantities (MW)

∆qit Incremental production quantities (MW)

pt Price ($/MW)

λi
t Adjoints for dynamic system ($/MW)

πi
t, π

i
t Multipliers production ($/MW)

νit, ν
i
t Multipliers ramps ($/MW)

Constants
S Number of suppliers

C Number of consumers

T Number of time steps in horizon

d
j
t Demand (MW)

hi, gi Coefficients cost function

($/MW,$/MW2)

ri, ri Bounds ramps ($/MW)

qi, qi Bounds production quantities ($/MW)

q̄i0 Initial conditions suppliers (MW)

I. INTRODUCTION

Diverse market models have been proposed in the literature

to analyze the impact of different dynamic disturbances (e.g.,

weather, load, fuel prices, and wind supply), physical con-

straints (e.g., transmission congestion), and gaming behaviors

(e.g., bidding strategies) on market performance and prices

[23]. These models range from data-based time-series models

[20], [10] to mechanistic models based on agent-based systems

[8], [22] and game-theoretical formulations [6], [16].

Game-theoretical models can be used to establish market

properties in a systematic manner and thus provide more com-

prehensive predictive capabilities. Several models based on a

range of market structure assumptions have been proposed, all

of which are static in the sense that they assume some sort

of steady-state behavior of the fundamental market drivers.

These models can provide a reasonable representation of the

market under stationarity or strong periodicity of dynamic

disturbances. Consequently, they can be used to analyze long-

term behavior and physical constraints such as transmission

congestion in planning and market design exercises. However,

static models are not capable of explaining the effect of other

dynamic constraints and non-stationary behavior, which is the

most common case in real-time operations. Consequently, their

use in market monitoring and price forecasting is limited.

A widely used dynamic market model originally proposed

in [1], [2] assumes that the players bid recursively in the

direction that minimizes their marginal cost. Every bid can

be interpreted as a steepest-descent step that converges to

a steady-state equilibrium. While this model is useful for

analyzing static (instantaneous) market stability properties, it

is based on mathematical rather than mechanistic assumptions

and thus has limited applicability. Recently, a dynamic market

model based on model predictive control (MPC) concepts was

proposed in [15], [14]. Here, supply functions and forecast

horizon concepts are incorporated into the model. These con-

cepts provide a more natural representation of actual bidding

procedures. This model has been used to analyze the effect of

wind supply variability on prices under high penetration levels.

A limitation of this framework, however, is that the dynamic

model of the players is still based on the marginal-cost descent

assumption.

The main observation motivating this work is the fact

that the effects of physical dynamic constraints and market

design specifications such as bidding frequency and forecast

horizon can be analyzed systematically using MPC concepts.

In particular, ramping constraints restrict bidding procedures

at subsequent time intervals (day-ahead and real-time markets)

and thus affect short-term and long-term dynamic market

stability and performance. In some sense, ramping constraints

affect market performance much as transmission congestion

does [12]. The key difference, however, is that the effect

of ramping constraints propagates forward in time while the

effects of transmission congestion are static (instantaneous).

The effects of manipulation of ramp constraints on mar-

ket behavior was studied in [19]. Ramp rates represent the

maximum change that a generator can achieve in their power

output level within a given time interval [25]. They implicitly

represent the time that it will take the generator control system

to move the power output level from the current level to the

desired target. These ramp rates depend on multiple physi-

cal factors such as controller performance [3], [5], thermal

stresses, and wall capacitances [21]. Large generators such as

those running on coal and nuclear fuel are operated at base

load and are not ramped. Smaller generators and combined-

cycle plants running on natural gas provide ramping capacity
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and are used to regulate real-time deviations of the loads from

forecasts. The generation costs of these ramping units are

much higher than those of base units due to higher prices of

natural gas and capital costs. The effect of ramping units on

electricity prices will become stronger in the presence of more

volatile and dynamic environments, such as those expected

under high wind-supply penetration and smart-grid programs.

We propose a game-theoretical MPC framework that uses a

closer physical representation of generator dynamic constraints

and bidding procedures. We demonstrate that the framework

can be used to analyze systematically the effects of ramping

limits, initial conditions, intermittent supply, forecast horizons,

market manipulation, and bidding frequency on market perfor-

mance. We provide numerical results under several operational

scenarios in order to illustrate the consistency and analytical

capabilities of the model.

The paper is structured as follows: In the following section

we present the basic model, discuss underlying assumptions,

and offer a solution strategy. In Section III we discuss model

predictive control implementation details necessary to simulate

day-ahead markets and evaluate market performance. In Sec-

tion IV we present numerical results. The last section provides

concluding remarks and directions for future work.

II. GAME-THEORETICAL DYNAMIC MODEL

In this section, we present a basic dynamic game-theoretical

model. The model is targeted to capture dynamic effects on

market performance. Consequently, simplifications have been

made to avoid unnecessary complexity. Potential extensions

are discussed later on as part of future work.

We consider a unilateral Nash-Cournot market model where

the suppliers bid production quantities (power levels) to max-

imize their profit and a central entity such as the Independent

System Operator (ISO) that clears the market by balancing

supply and demand. The consumer demands are assumed to

be fixed. Each supplier i ∈ S = {1..S} is solve sproblem (1).

max
qi
t

∑

t∈T

(

ptq
i
t − cit(q

i
t)
)

(1a)

s.t. qit+1 − qit ≤ ri, t ∈ T − (1b)

qit − qit+1 ≤ ri, t ∈ T − (1c)

qi ≤ qit ≤ qi, t ∈ T (1d)

qi0 = q̄i0. (1e)

Here T is the forecast horizon and T := {0..T} is the set of

time steps. We also define the set T − := T \ {T}. Symbols

ri and ri denote the down and up ramp rates. The bidding

production quantities qit are bounded by the down and up limits

qi
t

and qit, respectively. The initial conditions for the production

quantities are given by q̄i0 and are fixed. These represent the

current power output levels of the generators.

The cost function, defined by cit(·), is assumed to be any

convex function (e.g., linear, quadratic, or piece-wise linear).

Here, we consider quadratic costs of the form

cit(q
i
t) = hi · qit +

1

2
gi · (qit)

2. (2)

The price is defined by pt and is given by by the market

clearing condition

∑

i∈S

q
j
t =

∑

j∈C

d
j
t , (3)

where d
j
t are the consumer demands j ∈ C = {1..C}. The

market clearing condition can be interpreted as the minimiza-

tion of the imbalance of supply and demand. Consequently,

the prices pt can be seen as the Lagrange multiplier of the

clearing conditions.

We note that the game can be posed as a discrete-time

dynamic game in state-space form as:

∑

i∈S

qit =
∑

j∈C

d
j
t , t ∈ T (4a)

i ∈ S

{

max
∆qi

t

∑

t∈T

(

ptq
i
t − cit(q

i
t)
)

(4b)

s.t. qit+1 = qit +∆qit, t ∈ T − (4c)

ri ≤ ∆qit ≤ ri, t ∈ T − (4d)

qi ≤ qit ≤ qi, t ∈ T (4e)

qi0 = q̄i0. (4f)

This representation is typical in the dynamic games literature

[7]. The state-space representation enables us to analyze

the market as a game-theoretical MPC problem. Here, the

production quantities qit can be interpreted as differential states

coupled in time, and the increments ∆qit can be interpreted as

the controls. The price acts as an algebraic state since it is not

directly coupled in time. The initial conditions play a critical

role on the overall market performance since they propagate

the effects of ramping constraints in time. In addition we note

that, in the presence of ramping constraints, the feasible set

of the game depends on the initial conditions. For instance,

the demand at future times might not be reachable for a given

set of initial conditions and ramping limits. The solution of

the game (4) gives equilibrium trajectories, or a dynamic

equilibrium, for the supply quantities and prices that satisfy the

demands at each point in time and maximize social welfare.

Note that the trajectories depends on the initial conditions,

forecast horizon, and on the ramp rates of the generators.

We note that the Nash-Cournot formulation proposed here

gives the same solution as if the suppliers do not take into

account ramping constraints and these are handled centrally by

the ISO. Our objective is to understand how different dynamic

factors affect the performance of the market. Because of this,

we do not consider more sophisticated market formulations

including, among others, transmission constraints and supply

functions. While these formulations will give more realistic

predictive capabilities to the model, they do not provide extra

information into the basic concepts analyzed here.

1281



We can solve the market problem by solving the associated

complementarity system [16]. We define the Lagrange function

for supplier i as follows:

Li =
∑

t∈T

−
(

ptq
i
t − cit(q

i
t)
)

+
∑

t∈T −

λi
t+1

(

qit+1 − qit −∆qit
)

+ λi
0(q

i
0 − q̄i0)

−
∑

t∈T −

νit
(

∆qit − ri
)

−
∑

t∈T −

νit
(

ri −∆qit
)

−
∑

t∈T

πi
t

(

qit − qi
)

−
∑

t∈T

πi
t

(

qi − qit
)

, i ∈ S. (5)

Here, λi
t are the Lagrange multipliers for the dynamic system

(adjoints) and νit, ν
i
t, π

i
t and πi

t are the bound multipliers. This

gives the following mixed linear complementarity system:
∑

i∈S

qit −
∑

j∈C

d
j
t = 0, t ∈ T (6a)

∇qi
t
L = 0, t ∈ T

∇∆qi
t
L = 0, t ∈ T −

λi
t+1 ⊥ qit+1 −

(

qit +∆qit
)

= 0, t ∈ T −

0 ≤ νit ⊥
(

∆qit − ri
)

≥ 0, t ∈ T −

0 ≤ νit ⊥
(

ri −∆qit
)

≥ 0, t ∈ T −

0 ≤ πi
t ⊥

(

qit − qi
)

≥ 0, t ∈ T
0 ≤ πi

t ⊥
(

qi − qit
)

≥ 0, t ∈ T
λi
0 ⊥

(

qi0 − q̄i0
)

= 0















































i ∈ S, (6b)

where

∇qi
t
Li = −pt +

∂cit
∂qit

+ λi
t − λi

t+1 − πi
t + πi

t = 0,

t ∈ T − (7a)

∇qi
T

Li = −pT +
∂ciT
∂qiT

+ λi
T − πi

T + πi
T = 0 (7b)

∇∆qi
t
Li = −λi

t+1 − νit + νit, t ∈ T −, (7c)

for i ∈ S . Note that the optimality conditions for the ISO’s

problem are the market clearing conditions (4a).

The multipliers or adjoints λi
t of the dynamic constraint

(4c) can be interpreted as ramping prices, analogous to the

congestion prices arising from transmission constraints. These

multipliers reflect the sensitivity of the production costs to

the ramp rates. If the generator is not ramp-constrained, the

multiplier will be zero. If the generator is constrained, the

magnitude of the multiplier will be given by the generation

cost. From (7) we can note that the ramping prices are coupled

in time and propagate backwards.

The resulting complementarity systems can be extremely

large, depending on the length of the prediction horizon and

the number of players. To solve these systems, one can use

complementarity solvers such as PATH [11] or general non-

linear optimization solvers such as KNITRO [9] and IPOPT

[24]. For the problems considered in this work we have found

that a nonlinear optimization approach coupled to a ℓ1 penalty

formulation is numerically more robust. In this approach, the

objective is to minimize the complementarity products [18],

[13], [4]. For (6), the problem takes the form:

min
∑

i∈S

∑

t∈T −

(

νit
(

∆qit − ri
)

+ νit
(

ri −∆qit
))

+
∑

i∈S

∑

t∈T

(

πi
t

(

qit − qi
)

+ πi
t

(

qi − qit
))

(8a)

s.t.
∑

i∈S

qit −
∑

j∈C

d
j
t = 0, t ∈ T (8b)

∇qi
t
L = 0, t ∈ T

∇∆qi
t
L = 0, t ∈ T −

qit+1 −
(

qit +∆qit
)

= 0, t ∈ T −

0 ≤ νit,
(

∆qit − ri
)

≥ 0, t ∈ T −

0 ≤ νit,
(

ri −∆qit
)

≥ 0, t ∈ T −

0 ≤ πi
t,

(

qit − qi
)

≥ 0, t ∈ T
0 ≤ πi

t,
(

qi − qit
)

≥ 0, t ∈ T
(

qi0 − q̄i0
)

= 0















































i ∈ S. (8c)

III. MODEL PREDICTIVE CONTROL

To analyze real-time market operations, one can solve the

dynamic game problem in a receding-horizon manner with

a predefined forecast horizon T . The bidding frequency is

implicitly given by the sampling time. This can be used to

account for changing conditions of dynamic disturbances such

as weather, demands, forecast errors, and fuel prices.

The infinite horizon bidding game (T = ∞) gives the

optimal equilibrium trajectory for a given disturbance forecast

trajectory. For implementation, however, a receding-horizon

bidding strategy is required to avoid computational limitations.

The idea is to define a finite horizon T to compute an

equilibrium trajectory and to carry out the state to the next

window. Typically, the day-ahead market is cleared with a

forecast horizon of 24 to 36 hours. Our strategy starts at a

given bidding time tℓ with initial conditions qitℓ and to use

these as initial conditions q̄i0 = qiℓ to compute the dynamic

equilibrium trajectory over horizon T = {tℓ, ..., tℓ + T}. The

initial conditions are then updated to the generator states at the

end of the horizon q̄i0 = qitℓ+T . In other words, the horizon is

shifted forward by T steps so that the new bidding horizon is

T = {tℓ + T, ..., tℓ + 2T}. We assume a deterministic setting

using perfect forecast in the day-ahead market. With this, it is

not necessary to model the real-time market, which takes care

of high-frequency load imbalances resulting from day-ahead

forecast errors.

The moving horizon policy provides an approximation to the

infinite horizon policy which provides the ideal performance.

One of the interesting questions that arise in this context

is how long the horizon should be?. This is often problem

dependent since it depends on the structure of the infinite

horizon equilibrium policy. We also note that, in the absence

of ramp constraints, the moving and infinite horizon policies

coincide since the states qit are no longer coupled in time. This

holds even in the presence of other steady-state constraints

such as transmission constraints, cost functions, and bidding

strategies such as supply functions. On the other hand, we

note that, in the presence of ramping constraints, any errors
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introduced by finite horizon approximations and forecast errors

propagate forward in time through the generator states. This

is one of the main reasons why the prediction horizon should

be as long as possible in order to foresee the future effects of

ramping constraints.

IV. NUMERICAL RESULTS

In this section, we report on numerical simulations that we

conducted under several operational scenarios. Our objective

is to illustrate the effect of dynamic constraints on the price

dynamics and to demonstrate the consistency of the MPC

framework. In addition, we discuss the limitations of receding-

horizon market designs in the presence of strong variations of

load and wind supply.
We consider a system with three suppliers and one demand.

One of the suppliers has fast dynamics (high ramping capacity)

but high cost such as natural gas generators, the second one

has slow dynamics but also low cost, and the third one is

used as a slack generator with infinite ramp limits (equal to

generation capacity) and a large cost. This last supplier acts

as a slack to avoid infeasibility. The nominal parameters used

are q = [0, 0, 0], q = [50, 70, 120], r = −[5, 10, 120], r =
[5, 10, 120], h = [4, 2, 5], and g = [2, 1, 5]. The ramps were

varied in some experiments from their nominal values. We

used q̄0 = [0, 40, 40] as initial conditions.
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Fig. 1. Total (top) and ramp (bottom) demand for market system over 14
days of operation with 0% and 30% wind penetration.

We consider the demand profiles for two cases, one with

periodic demand (labeled as ”No Wind”) and one where the

periodic demand is shifted by a wind power profile represent-

ing 30% of wind penetration (labeled as ”30% Wind”). In the

top graph of Figure 1 we present total demands for the two

cases. The periodic demand fluctuates between 80 MW and

110 MW. In the wind case, the net demand is shifted down

(demand minus wind supply) but becomes more volatile. In

particular, periodicity is partially destroyed.
In the bottom graph we present the ramp demands for the

two demand cases. These have been obtained by computing

the absolute differences |dt+1 − dt|, t ≥ 0. Note that even if

the net demand is lower in the wind case, the ramp demands

can increase significantly at particular points in time. This

situation can be observed clearly at the beginning of the third

day. This illustrates how ramping constraints can become more

significant under more volatile environments.

A. Effect of Ramp Rates

We first analyze the effect of ramping constraints. For this

analysis, we consider the case with periodic demand. In Figure

2 we present the dynamic equilibria for three ramp scenarios.

The first scenario, ”High Ramp”, corresponds to the nominal

ramp values, scenario ”Low Ramp” corresponds to a 50%

decrease in the nominal values of the suppliers, and ”Infinite

Ramp” corresponds to an unconstrained ramp case (ramps set

to large value). Note that in the constrained cases the price

signals reach a periodic steady-state after a couple of days. In

the absence of ramp constraints, the periodic steady-state is

reached immediately. Note also that the shape of the steady-

state equilibrium is affected by the ramp rates. In particular,

the prices are more volatile during high and low peaks when

the ramps are lower. In the ramp-constrained case the prices

fluctuate between 100 $/MW and 40 $/MW in a single day. In

the unconstrained case, the prices fluctuate between 80$/MW

and 65$/MW. In Figure 3 we can observe that the bidding
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P
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Low Ramp
High Ramp
Inifinite Ramp

Fig. 2. Effect of ramp limits on price dynamics.

quantities saturate while reaching the periodic steady-state

(dashed lines).

In Figure 4 we plot the adjoint variables λi
t for the three

suppliers. These multipliers reflect the sensitivity of the profit

for each supplier to changes in the ramp rates. Note that

the multipliers reach a steady-state after seven days and that

the greater sensitivity is observed during peaking times, as

expected. Supplier 2 is clearly the most sensitive since it

has more limited ramping capacity. The adjoint of the slack

supplier is zero since the ramps are never active. We have

observed that the adjoints tend to diverge for extremely long

horizons, introducing numerical problems in the solution.

Divergence is attributed mainly to the lack of a terminal

constraint in the suppliers problems. We have found that

penalizing the profit in the last time step T by a large value

stabilizes the adjoints.

B. Effect of Dynamic Disturbances

In Figure 5 we present the effect of ramps for the case of

30% wind power penetration. It is clear that the volatility of the

1283



0 1 2 3 4 5 6 7
0

20

40

60

Time [days]

q
 [

M
W

]
Supplier 2

Supplier 1

Fig. 3. Effect of ramp limits on bidding dynamics. Solid lines are profiles
without ramp limits, and dashed lines are profiles with ramp limits.
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Fig. 4. Adjoint dynamics for suppliers in the presence of ramp limits.

prices increases significantly as the ramp constraints become

tighter. In the presence of ramping constraints we observe

that wind supply introduces strong price variations. The price

ranges from 150$/MW to 40$/MW in a single day. In the

unconstrained case (infinite ramps), the prices are significantly

more stable and ranges from 60 $/MW to 40 $/MW in a single

day. In addition, we note that the price periodicity is stronger

in the absence of ramp constraints. This reflects a decreased

sensitivity to wind supply variations. This illustrates that, while

the wind supply cost might be very low, the increasing ramp

demands can increase price volatility significantly because of

the need of additional ramping capacity (natural gas).
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Fig. 5. Effect of ramp limits on bidding dynamics under 30% wind
penetration case.

C. Effect of Forecast Horizon

In Figure 6 we illustrate the effect of the forecast horizon

on the price signals. We compare the infinite horizon case

and the one day-ahead forecast. Note that suboptimality is

introduced during periods of strong dynamic variations. In the

third day, the prices of the day-ahead case reach 120$/MW

while the optimal ones are around 100$/MW. We have found

that increasing the horizon to two days approximates well

the infinite horizon policy. We have also found that, in the

case of a perfectly periodic demand, the one day and infinite

horizon policies are the same. A critical conclusion from this

dynamic analysis is that short horizons only work well under

strong stationarity (periodicity) of the load. In the presence of

strong dynamic disturbances (wind supply and weather fronts),

the horizon should be increased in order to keep prices more

stable. This can be explained from the fact that short horizons

tend to position generators at suboptimal production levels at

the end of the horizon from where subsequent demand profiles

not considered in the horizon might not be reachable or can

only be reached at a high cost.
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Fig. 6. Effect of horizon length on market performance under 30% wind
penetration case.

D. Effect of Market Manipulation

One of the main applications of game theoretical models is

the analysis of non-gaming behavior (e.g., market manipula-

tion). In Figure 7, we present the price signals for a perfect

game and for the case in which supplier 1 bids randomly (not

trying to maximize its profit). From the profiles, it is clear that

prices tend to become higher and more volatile in the presence

of non-gaming behavior. We note that suboptimal player bids

introduce noise to the optimal gaming policy obtained from the

market model and raises prices from $85/MW to 100 $/MW.

Having the MPC framework, the noise can be identified by

solving a state estimation problem. This capability can be used

to monitor the market in real-time and to forecast price signals.

Another potential use of an MPC framework is the design of

market clearing procedures that are less sensitive to noise and

manipulation.

V. CONCLUSIONS AND FUTURE WORK

We have presented a game-theoretical model predictive con-

trol (MPC) framework for electricity markets. We demonstrate

that the MPC construct enables a systematic analysis of the

effects of ramp constraints, initial conditions, and forecast
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Fig. 7. Price signals under game-theoretic and random bids for supplier 1.

horizons on market performance and price volatility. The

framework also enables the analysis of market manipulation

(non-optimal bidding) in the form of noise in the prices sig-

nals. We have presented numerical experiments to illustrate the

consistency and analytical capabilities of the MPC framework.

The proposed framework can be extended in a number of

ways to consider more detailed physical effects and market

design structures such as transmission constraints and coupled

day-ahead and real-time markets (two-settlement markets)

[26], [17]. In addition, the MPC construct opens the door to

systematic stability analyzes that can be used to better design

market structures.
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