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Abstract—As the mobile application landscape expands, wire-
less networks are tasked with supporting multiple connection
profiles, including real-time communications and delay-sensitive
traffic. Among many ensuing engineering challenges is the
need to better understand the fundamental limits of forward
error correction in non-asymptotic regimes. This article seeks
to characterize the performance of block codes over finite-
state channels with memory. In particular, classical results from
information theory are revisited in the context of channelswith
rate transitions, and bounds on the probabilities of decoding
failure are derived for random codes. This study offers new
insights about the potential impact of channel correlationover
time on overall performance.

I. I NTRODUCTION

As preferred mobile devices shift to advanced smartphones
and tablet personal computers, the demand for low-latency,
high-throughput wireless service increases rapidly. The shared
desire for a heightened user experience, which includes real-
time applications and mobile interactive sessions, acts asa
motivation for the study of highly efficient communication
schemes subject to stringent delay constraints. An important
aspect of delay-sensitive traffic stems from the fact that its
intrinsic delivery requirements preclude the use of asymptoti-
cally long codewords. As such, the insights offered by classical
information theory are of limited value in this context.

This article focuses on deriving meaningful performance
limits for delay-aware systems operating over channels with
memory. The emphasis is put on identifying upper bounds on
the probabilities of decoding failure for systems employing
short block-lengths. This is an essential intermediate step in
characterizing the queueing behavior of contemporary commu-
nication systems, and it forms the primary goal of our inquiry.

A distinguishing feature of our approach is the accent on
channels with memory and state-dependent operation. More
specifically, we are interested in regimes where the block
length is of the same order or smaller than the channel
memory. Mathematically, we wish to study the scenario where
the mixing time of the underlying finite-state channel is
similar to the time necessary to transmit a codeword. This
leads to two important phenomena. First, the state of the
channel at the onset of a transmission has a significant
impact on the empirical distribution of the states within a
codeword transmission cycle. Second, channel dependencies
extend beyond the boundaries of individual codewords. This
is in stark contrast with block-fading models; for instance,
in our proposed framework, decoding failure events can be
strongly correlated over time.

Computing probabilities of decoding failures for specific
communication channels and fixed coding schemes is of fun-
damental interest. This topic has received significant attention
in the past, with complete solutions in some cases. This line
of work dates back to the early days of information theory [1].
An approach that has enjoyed significant success, and chiefly
popularized by Gallager, consists in deriving exponentialerror
bounds on the behavior of asymptotically long codewords [2].
Such bounds have been examined for memoryless channels
as well as finite-state channels with memory. In general, they
can become reasonably tight for long yet finite block-lengths.
It is worth mentioning that the subject of error bounds has
also appeared in more recent studies, with the advent of new
approaches such as dispersion and the uncertainty-focusing
bound [3], [4], [5], [6].

In standard asymptotic frameworks, channel parameters are
kept constant while the length of the codeword increases
to infinity. While these approaches lead to mathematically
appealing characterizations, they also have the side effect that
the resulting bounds on error probability do not depend on
the initial or final states of the channel. This situation canbe
attributed to the fact that, no matter how slow the mixing time
of the underlying channel is, the length of the codeword even-
tually far exceeds this quantity. Therefore, the initial and final
states of the channel become inconsequential. Unfortunately,
this situation diminishes the value of the corresponding results
for queueing models. Often, in practical scenarios, the service
requirements imposed on a communication link forces the use
of short codewords, with no obvious time-scale separation
between the duration of a codeword and the mixing time of
the underlying channel.

This reality, together with the increasing popularity of real-
time applications on wireless networks, demands a novel
approach where the impact of initial conditions are preserved
throughout the analysis. A suitable methodology should be
able to capture both the effects of channel memory as well
as the impact of the channel state at the onset of a codeword.
An additional benefit of the slow mixing regime is the ability
to track dependencies from codeword to codeword, which
intrinsically lead to correlation in decoding failure events
and can therefore greatly affect the perceived service quality
from a queueing perspective. In this article, we establish
the underpinnings of error probability analysis in the rare-
transition regime.

The goal of deriving upper bounds on the probability of
decoding failure for rare transitions is to characterize overall
performance for systems that transmit data using block lengths
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Figure 1. The Gilbert-Elliott model is the simplest, non-trivial instantiation of
a finite-state channel with memory. State evolution over time forms a Markov
chain, and the input-output relationship of this binary channel is governed by
a state-dependent crossover probability, as illustrated above.

on the order of the coherence time of their respective channels.
This article addresses the problem of deriving Gallager-type
exponential bounds on the probability of decoding failure
in the rare-transition regime. By construction, these bounds
necessarily depend on the initial and final states of the channel.
The analysis is conducted for the scenario where channel state
information is available at the receiver. Our results are then
compared to the probability of decoding failure obtained for
a Gilbert-Elliott channel under a minimum distance decoder
and the maximum-likelihood decision rule [1], [7], [8].

After computing the exponential upper bound on error
probability, we consider the rare-transition regime, in which
the number of transitions during a block lengthN , decays
with N . We apply this condition on the error exponent and
analyze the results for differentNs.

II. M ODELING AND EXPONENTIAL BOUND

The models considered in this article belong to the general
class of finite-state channels where the state transitions are
independent of the input. Such channels have been used
extensively in the information theory literature, and theyneed
very little in way of introduction. On the other hand, it is
important to establish a proper notation. In this article, the state
of the channel at timen is denoted bySn and takes value in a
finite set. The corresponding input and output are represented
byXn andYn, respectively. Capital letters are used for random
variables whereas lower case letters designate elements. In
general, the input-output relationship is governed by Gallager’s
model, with the conditional probability distribution of the form

P (yn, sn|xn, sn−1)

= Pr (Yn = yn, Sn = sn|Xn = xn, Sn−1 = sn−1) .

In our work, we assume that state transitions are independent
of the input so that the distribution can be factored into two
parts,

P (yn, sn|xn, sn−1) = P (sn|sn−1)P (yn|xn, sn) (1)

=Pr (Sn=sn|Sn−1 =sn−1)Pr (Yn=yn|Xn = xn, Sn = sn).

The proverbial example for a channel with memory that
features this structure is the famed Gilbert-Elliott model, which
is governed by a two-state ergodic discrete time Markov chain
(DTMC), and is illustrated in Fig. 1. In this case, the channel
evolution forms a Markov chain with transition probability
matrix

[

P (1|1) P (1|2)
P (2|1) P (2|2)

]

=

[

1− α α

β 1− β

]

.

The input-output relation induced by states can be written as

Pr (xn = yn|Sn = s) = 1− εs

whereεs designates the state-dependent crossover probability.
By convention, we label states so thatε1 ≤ ε2. Here we call
the first state as the good state, denoted by subscriptg and
the second one as the bad state denoted by subscriptb.

A mathematical approach that has proven exceptionally
useful in information theory is the use of random codes.
Following this tradition, we adopt a random coding scheme
that employs a code ensembleC with M = eNR elements,
whereR denotes the rate of the code andN represents the
common block length. The elements inC are indexed byi ∈
{1, . . . ,M}. LetQ(x) be an arbitrary distribution on the set of
possible input symbol. Throughout, we assume that codewords
are selected independently using the corresponding product
distribution, Pr (X(i) = x) = QN (x) =

∏N

n=1Q(xn). A
message is transmitted to the destination by selecting one of
the codewords. We wish to upper bound the probability that
this codeword is decoded erroneously at the receiver, while
also preserving partial state information.

Assumption 1. Communication takes place over a finite-state
channel that admits the conditional decomposition of(1).
Information is transmitted using the coding scheme described
above. Furthermore, the state of the channel is perfectly known
at the receiver.

For completeness, we reproduce below a celebrated result
that we use extensively thereafter; a detailed proof can be
found in the associated reference.

Theorem 1 (Section 5.6, [2]). Let PN (y|x) be the transition
probability assignment for sequences of lengthN ≥ 1 on a
discrete channel. Suppose that maximum-likelihood decoding
is employed. Then, the average probability of decoding error
over this ensemble of codes is bounded, for any choice ofρ,
0 ≤ ρ ≤ 1, by

Pe ≤ (M − 1)ρ
∑

y





∑

x

QN (x)PN

(

y|x
)

1
1+ρ





1+ρ

. (2)

This theorem is quite general; it applies to channels with
memory and, in particular, slow-mixing channels.PN (·|·) is a
generic conditional probability distribution that can represent
the probability distribution induced by a specific channel
realization, for instance. We are now ready to present our first
pertinent result.

Consider a channel realization that leads to the sequence
sN = (s1, . . . , sN ). Moreover, letT = T (sn) denote the
empirical distribution of this sequence.

Proposition 1. Suppose Assumption 1 holds. For anyρ ∈
[0, 1], the probability of decoding failure at the destination,
conditioned onSN = sN , is bounded by

Pe|sN
≤ exp (−N (E0,N (ρ,QN , sN )− ρR))



where

E0,N (ρ,QN , sN )

= −
1

N
ln

N
∏

n=1

∑

yn

[

∑

xn

Q(xn)P (yn|xn, sn)
1

1+ρ

]1+ρ

.

Proof: Applying Theorem 1 to this specific scenario and
following the same argument as in [2, Section 5.5], we get

∑

y





∑

x

QN (x)PN |sN

(

y|x
)

1
1+ρ





1+ρ

=
∑

y





∑

x

N
∏

n=1

Q(xn)P (yn|xn, sn)
1

1+ρ





1+ρ

=

N
∏

n=1

∑

yn

[

∑

xn

Q(xn)P (yn|xn, sn)
1

1+ρ

]1+ρ

,

wherePN |sN

(

y|x
)

= P (y|x, sN ) is the conditional distri-
bution of receivingy given x and sN , and the first equality
follows from (1). A key insight is to realize that this func-
tion only depends onsN through its empirical distribution
T = T (sN ). The proposition is then obtained by substituting
this expression into equation (5.6.1) in [2] and noticing that
e−ρNR =Mρ.

Corollary 1. Again, suppose Assumption 1 holds and letu ⊆
{s′N |T (s′N ) = T } such thatPr(u) > 0. For any ρ ∈ [0, 1],
the probability of decoding failure, conditioned onsN ∈ u is
also bounded by

Pe|u ≤ exp (−N (E0,N (ρ,QN , sN )− ρR)) .

Proof: Using the equivalence of the bound for all channel
realizations with a same empirical distribution, we get

Pe|u =
∑

sN∈u

Pe|sN
Pr (SN = sN |sN ∈ u)

≤
∑

sN∈u

e−N(E0,N (ρ,QN ,sN )−ρR) Pr (SN = sN |sN ∈ u)

= e−N(E0,N (ρ,QN ,sN )−ρR).

An interesting subsetu is one where the sequences start from
a prescribed states0 and end in statesN , while possessing the
right empirical distribution.

Theorem 2. Under Assumption 1, the probability of decoding
failure and ending in statesN conditioned on starting ins0,
can be bounded as

∑

T∈T

e−N(E0,N (ρ,QN ,T )−ρR)PT,sN |s0 ,

wherePT,sN |s1 denotes the probability of the empirical distri-
bution of state sequence type ending insN conditioned on the
initial states1, andE0,N (ρ,QN , T ) is given by Proposition 1.

Proof: Following the same approach as in [2, Section 5.9],
we define

a(sn−1,sn),
∑

yn

{
∑

xn

Q(xn)(P (sn|sn−1)P (yn|xn, sn−1))
1

1+ρ}1+ρ

=P (sn|sn−1)
J−1
∑

j=0

{
K−1
∑

k=0

Q(k)P (j|k, sn−1)
1

1+ρ}1+ρ.

By Proposition 1, we have

N
∏

n=1

a(sn−1, sn)=Pr (SN = sN |s0)exp[−N(E0,N (ρ,QN , sN ))].

Then we can write the upper bound on error probability as

= eNR
∑

sN

N
∏

n=1

a(sn−1, sn)

= eNR
∑

sN

Pr (SN = sN |s0)e−N(E0,N (ρ,QN ,sN ))

= eNR
∑

T∈T

∑

sN∈T

Pr (SN = sN |s0)e−N(E0,N (ρ,QN ,sN ))

= eNR
∑

T∈T

e−N(E0,N (ρ,QN ,sN ))
∑

sN∈T

Pr (SN = sN |s0)

=
∑

T∈T

e−N(E0,N (ρ,QN ,sN )−ρR)PT,sN |s0 . (3)

This upper bound consists of the exponential upper bounds
conditioned on the channel type, averaged over all state
sequence types. It means that for each type we have an
exponential decay with block length in the error probability.
Note thatPT ,sN |s0 does not decay exponentially withN .

As an example, we now compute this upper bound for the
Gilbert-Elliott channel. Letng andnb = N−ng be the number
of times that the channel is in the good and bad states during
the transmission of a codeword of lengthN , respectively.
These numbers are also referred as the occupation times of
the channel or the channel state type (see chapter 12 in [9]).
Thenηg ,

ng

N
, ηb , nb

N
are the fraction of times in each state.

The fractional type of the channel state sequence is another
name to describe the fraction of times spent in each state. For
example, type(0.5, 0.5) for a Gilbert-Elliott channel means
that the channel spent half of the times in each state . By
Proposition 1 we get

E0,N (ρ,QN , s) = −

(

lnGb(ρ)+ηgln
Gg(ρ)

Gb(ρ)

)

, (4)

where for the i.i.d input distribution,

Gg(ρ) =
1

2ρ

(

ǫg
1

1+ρ + (1− ǫg)
1

1+ρ

)1+ρ

Gb(ρ) =
1

2ρ

(

ǫb
1

1+ρ + (1− ǫb)
1

1+ρ

)1+ρ

Also by small modification to Gallager’s derivation for
E0,N (ρ,QN , s0), ((5.9.39) in [2]), we have

Pe,sN |s0 < min
0≤ρ≤1

{(

e(s1)

[

a(g,g) a(g,b)
a(b,g) a(b,b)

]N

e(sN )

)

eρNR

}

,



wheree(si) is the unit vector with a one in thei-th position,
and a(g,g) = (1 − α)Gg(ρ), a(g,b) = αGg(ρ), a(b,g) =
βGb(ρ), anda(b,b) = (1− β)Gb(ρ). Notice that this bound
is the same as the bound computed by the sum given in (3)
using (4), and the joint distribution ofηg andsN , conditioned
on s0.

On the other hand in the rare-transition regime in which
Nα andNβ are constant, by taking the limit asN → ∞, we
can compute the bound on failure probability (3), with a small
error (see [10]), as follows

min
0≤ρ≤1

ˆ 1

0

e
N
(

lnGb(ρ)+xlnGg(ρ)

Gb(ρ)
+ρR

)

f(x, sN = d|s0 = c)dx

= min
0≤ρ≤1

[

eN(lnGb(ρ)+ρR)Gcd

(

N ln
Gg(ρ)

Gb(ρ)

)]

, (5)

where,Gcd(.), c, d ∈ {g,b} is the moment generating func-
tion of the limiting occupancy time distribution and is given
by (13). By modifying Gallager’s approach and considering
the rare-transition regime, we get an upper bound on error
probability of maximum-likelihood decoding that retains its
dependency on the initial and final states.

III. D ERIVATION OF EXACT DECODING ERROR

PROBABILITY

In this section, we first present the exact expression for
failure probability over BSC and then derive failure probability
over Gilbert-Elliott channel to compare with the upper bound.

A. Random Coding Error Probability for the BSC

In [1], the error probability for random coding over BSC(p)
using maximum-likelihood (ML) decoder, for a system which
treats ties as error is derived as

Pe =

N
∑

τ=0

(

N

τ

)

pτ(1−p)N−τ



1−



1−2−N

τ
∑

j=0

(

N

j

)





M−1





=1− 2N−NM

N
∑

τ=0

(

N

τ

)

pτ(1−p)N−τ





N
∑

j=τ+1

(

N

j

)





M−1

In [5], some small modifications has been made to the Fano’s
expression to take ties into account as

Pe = 1− 2N−NM

N
∑

τ=0

(

N

τ

)

pτ (1− p)N−τ

×







M−1
∑

l=0

(

N

τ

)l
1

l + 1

(

M − 1

l

)





N
∑

j=τ+1

(

N

j

)





M−1−l





.

One can see that this gives a small difference in the error
probability conditioned on the number of errors.

B. The Gilbert-Elliott Channel: State Known at the Receiver

Now, we consider data transmission over the Gilbert-Elliott
channel using random coding when the state is known at the
receiver. Two different decoders are considered: a minimum
distance decoder and a maximum-likelihood decoder. There
are some differences between these two decoding rules which
we will go through in detail in the following subsections.

We then derive the decoding failure probability for the two
decoders, conditioned on the knowledge of the occupancy
times. It turns out that when the state is known at the receiver,
the empirical distribution of the channel state provides enough
information to determine the error probability. Using the
distribution of ng and theng-conditional error probabilities
for different decoding rules, one can average over all typesto
get the probability of decoding failure,

Pe =
∑

T∈T

Pe|T Pr(sN ∈ T ), (6)

wherePe|T is the probability of decoding error given that the
channel state sequence type isT , andPr(sN ∈ T ) denotes
the probability distribution of channel typeT which will be
derived in the following section.

1) Minimum Distance Decoding:Given the channel type,
the minimum distance decoder on the Gilbert-Elliott channel
acts similar to a maximum likelihood decoder on BSC.

Suppose we denote the number of errors in each state by
eg andeb, whereeg = dH

(

Xg, Y g

)

andeb = dH (Xb, Y b).
The conditional error probability can be written as

Pe|T =
∑ng

eg=0

∑nb

eb=0 Pe|T,eg ,ebPeg,eb|T , (7)

wherePe|T,eg,eb is the error probability conditioned on type
T and the number of errors in each state, andPeg,eb|T is
the probability oh havingeg andeb errors conditioned onT .
Conditioned on the channel type, the number of errors in the
good and bad states are independent. So,

Peg,eb|T = Peg|T Peb|T , (8)

and we have

Peg|T =
(

ng

eg

)

ǫ
eg
g (1 − ǫg)

ng−eg ,

Peb|T =
(

nb

eb

)

ǫebb (1 − ǫb)
nb−eb ,

(9)

Pe|T ,eg,eb = Pe|eg,eb . (10)

Because conditioned oneg andeb, the probability of error is
independent of the channel state sequence type.

If there exists at least one codeword other than the trans-
mitted one inside the decoding sphere of radiuseg + eb
centered at the received word, the bounded distance decoder
either decodes to an incorrect codeword or fails to decode.
This means ties and errors are grouped. Since there are
M − 1 codewords other than the transmitted one, the prob-
ability that none of them falls inside the decoding sphere is
(

1− 2−N
∑eg+eb

j=0

(

N
j

)

)M−1

and the probability that at least
one of them falls inside the ball is simply

Pe|T ,eg,eb = 1−



1− 2−N

eg+eb
∑

j=0

(

N

j

)





M−1

. (11)

Now, we can simply substitute all the terms in equation 7
to have the error probability expression.

To take into account the ties, and not to treat all the tie
events as error, we can slightly modify the equation 11 in the
same way as??.



2) Maximum-Likelihood Decoding:

Lemma 1. When the state is known at the receiver, the
maximum-likelihood decoder decodes to the following code-
word

argmax
X∈C

ln(P (Y |X)) = argmin
X∈C

[⌈γeg⌉+ eb],

whereγ = ln ǫg−ln(1−ǫg)
ln ǫb−ln(1−ǫb)

> 1. Moreover, the error probability
conditioned on the number of errors in each state and the
channel state type is

1−



1− 2−N
∑

⌈γẽg⌉+ẽb≤C

(

ng

ẽg

)(

N − ng

ẽb

)





M−1

, (12)

whereC , ⌈γeg⌉+ eb

Proof: The proof is given in VII-A.

IV. D ISTRIBUTION OF CHANNEL STATE TYPE FOR

GILBERT-ELLIOTT CHANNEL

The purpose of the current analysis is to study delay-
sensitive communication systems and evaluate the queueing
behavior. Since in these kind of systems the block-length can-
not go extremely large, it turns out that the effect of the initial
and the final states does not go away withN for moderate
block lengths. So the error probability depends on the initial
and the final states (s0 andsN , respectively). Conditioned on
the channel type, the error probability is independent of the
initial and the final states. The only part that depends on these
states is the distribution of the state occupancies. In [11], [12],
the probability distribution of the occupation times for two-
state Markov chains is derived. However, the given distribution
is averaged over all final states. Doing some manipulation we
will derive the joint probability distribution of state occupation
ng and final state conditioned on the initial state.

Theorem 3. The joint distribution of channel type and the final
state conditioned on the initial final state can be computed as

Pr(ng = m, sN = g|s0 = g) = (1 − α)m(1 − β)N−m×

{F (−N+m,−m; 1;λ)−F (−N+m+1,−m; 1;λ)} ,

Pr(ng = m, sN = b|s0 = g) =
(1 − α)m−1(1 − β)N−m+1α

(1− β)

× F (−N +m,−m+ 1; 1;λ),

Pr(ng = m, sN = g|s0 = b) =
(1 − α)m+1(1 − β)N−m−1β

(1 − α)

× F (−N +m+ 1,−m; 1;λ),

Pr(ng = m, sN = b|s0 = b) = (1 − α)m(1 − β)N−m×

{F (−N+m,−m; 1;λ)−F (−N+m,−m+1; 1;λ)} ,

for 0 < m < N . F (., .; .) is the hypergeometric function,
λ = αβ

(1−α)(1−β) , and d = 1 − α − β. Moreover, Pr(ng =

0, sN |s0 = g) = 0, Pr(ng = T, sN |s0 = b) = 0, Pr(ng =
0, sN = b|s0 = b) = (1 − β)N , and Pr(ng = N, sN =
g|s0 = g) = (1− α)N .

Proof: Proof of the theorem is given in VII-B.
Notice that we can also compute these probabilities using

the generating matrix method. Let

Gg(x) =

[

(1− α)x αx

β 1− β

]

.

By taking theN -th power of this matrix, coefficient of them-
th power ofx in the corresponding entry represents the above
conditional probability. However, this method does not give us
the closed form distribution of the occupation times, directly.

To get the distribution of the fractional occupation time
ηg, we consider the rare-transition regime in which the tran-
sition probabilities are scaled withN as αN = α

N
and

βN = β
N

. In this regime, the expected number of transitions
in each length-N block is constant. Taking the limit of the
above conditional probabilities for the DTMC asN → ∞
gives us the distribution of the fractional occupancy time
x = limN→∞

m
N

. Notice that the transition-rate matrix of the

CTMC is Q =

[

−α α

β −β

]

. For the DTMC in the rare

transitions regime, the probability transition matrix is

PN =

[

1− α
N

α
N

β
N

1− β
N

]

= I+
1

N
Q,

whereI is the 2 by 2 identity matrix. So,

lim
N→∞

(PN )
Nt

=

(

I+
1

N
Q

)Nt

= eQt.

This means that the rare-transition limit of the DTMC results
yields the corresponding results for the CTMC. Similarly,

(

Ggg(y) Ggb(y)
Gbg(y) Gbb(y)

)

, lim
N→∞

Gg,N

(

1 +
y

N

)

, (13)

where Gg,N is obtained by replacingα and β in Gg(.)
with αN andβN , gives the corresponding matrix generating
function.
Lemma 2. The joint distribution of fractional occupancy times
and the final state conditioned on the initial state can be
computed as

f(x, sN = g|s0 = g) = e−αx−β(1−x){δ(1− x)

+

(

αβx

1− x

)
1
2

I1[2(αβx(1 − x))
1
2 ]},

f(x, sN = b|s0 = g) = αe−αx−β(1−x)I0[2(αβx(1 − x))
1
2 ],

f(x, sN = g|s0 = b) = βe−αx−β(1−x)I0[2(αβx(1 − x))
1
2 ],

f(x, sN = b|s0 = b) = e−αx−β(1−x){δ(x)

+

(

αβ(1 − x)

x

)
1
2

I1[2(αβx(1 − x))
1
2 ]}.

Proof: The proof can be found in VII-C.

V. NUMERICAL RESULTS

In this section we present the numerical results for a system
which transmits data over the Gilbert-Elliott channel with
ǫg = 0.01, ǫb = 0.1. Fig. 2 represents our derived bound
in (5) with Gallager-type bound (3) in rare-transition regime
whereNα = 0.04, and Nβ = 0.06. The plots show the
averaged failure probability over all state transitions. As we
can see, although the block-lengths are short, the bounds given
by (5) are very close to (3) while keeping a simpler format. In
Fig. 3 we compare the exact results for maximum-likelihood
and minimum distance decoders with our derived upper bound
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Figure 2. Comparison of our derived bound in (5) with Gallager-type bound
(3) in rare-transition regime forNα = 0.04 andNβ = 0.12
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Figure 3. Comparison of our derived bound in (5) with the exact values for
maximum-likelihood and minimum distance decoders forα = 0.0533 and
β = 0.08

given by (5) for fixed transitions probabilities. As we expect,
maximum-likelihood decoder outperforms minimum distance
decoder. Moreover, by increasing the block-length the bound
gets closer to the exact value.

VI. CONCLUSION

We proposed a general approach to bound the failure
probability for random coding over finite-state channels which
retains the dependency on the initial and final states for
relatively short block-lengths. We also derived expressions to
compute the exact error probability for maximum-likelihood
and minimum distance decoders for Gilbert-Elliott channeland
we compared them with the proposed upper bound.
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VII. A PPENDIX

A. Proof of Lemma 1

First we revisit the ML decoding rule for the Gilbert-
Elliott channel, when the state is known at the receiver and
conditioned on the channel state type (ng). So, we have

P (Y |X) = ǫegg (1− ǫg)
ng−egǫebb (1 − ǫb)

N−ng−eb

Upon receiving the wordY , the ML decoder decodes to
the codewordX that maximizesP (Y |X). Equivalently, the
decoded message will be arg min

X∈C
[γeg + eb]. It means that

for the ML decoder, the errors in the bad state do not cost
the system as much as the errors in the good state. That is
because the receiver expects errors more in the bad state.

To get the error probability for ML decoder, similar to the
minimum distance decoder, we first condition oneg and eb.
Then for each set ofeg and eb we defineC , ⌈γeg⌉ + eb.
Then, the probability of error conditioned onng, eg, andeb is
obtained as (12).

B. Proof of Theorem 3

From [12] we have

Pr(ng=m|s0=g) = (1−α)m(1−β)N−m

c1
∑

c=0

(

m

a

)(

N−m−1

b−1

)

×

(

α

1− β

)b(
β

1− α

)a

,

wherea andb are the number of transitions into the initial
state and out of the initial state, respectively.c is the total
number of transitions which occur up to timeN , and

c1 =

{

N + 1
2 −

∣

∣2m− 1
2 +N

∣

∣ , m < N

0, m = N
.

By splitting the summation into terms for whichc is odd and
c is even, it follows that ifc = 2k, a = b = k and the
corresponding sum represents Pr(ng =m, sN = g|s0 = g). If
c = 2k + 1, a = k, b = k + 1, and the corresponding sum
represents Pr(ng=m, sN = b|s0= g). So we have

Pr(ng=m|s0=g) =

(1−α)m(1−β)N−m
∑

k

(

m

k

)(

N−m−1

k−1

)(

α

1−β

)k(
β

1−α

)k

+(1−α)m(1−β)N−m
∑

k

(

m

k

)(

N−m−1

k

)(

α

1−β

)k+1(
β

1−α

)k

We can set the upper and lower limit onk to 0 and∞, since
all other terms are automatically zero. From the definition of
F (−N+m+1,−m; 1;λ) we see that

(

α

1−β

) ∞
∑

k=0

(

m

k

)(

N−m−1

k

)(

α

1−β

β

1−α

)k

=

(

α

1−β

)

F (−N+m+1,−m; 1;λ)



So we have

Pr(ng=m, sN = b|s0= g) = (1−α)m(1−β)N−m×
(

α

1−β

)

F (−N+m+1,−m; 1;λ),

for 0 < m < N . Clearly, for m = 0 and m = N , this
conditional probability equals to0.

By [12] and noticing that

Pr(ng=m|s0= g) = Pr(ng=m, sN = g|s0= g)

+ Pr(ng=m, sN = b|s0= g),

we have

Pr(ng=m, sN = g|s0= g) = (1−α)m(1−β)N−m×
{

F (−N+m,−m; 1;λ)−d(1−β)−1

×F (−N+m+1,−m; 1;λ)}

− (1−α)m(1−β)N−m×
(

α

1−β

)

F (−N+m+1,−m; 1;λ)

= (1−α)m(1−β)N−m×

{F (−N+m,−m; 1;λ)

−F (−N+m+1,−m; 1;λ)} ,

for 0 < m < N . Moreover, Pr(ng = 0, sN = g|s0 = g) = 0
and Pr(ng=N, sN = g|s0= g) = (1 − α)N .

The other conditional probabilities can be derived in the
same manner.

C. Proof of Lemma 2

In [12], Pedler considers a Markov chain with two states
and continuous time parameter set[0, t]. Then he defines the
occupation timeX(t) as the time spent in the first state (the
good state) during the interval[0, t], and derives the PDF
(probability density function) ofX(t), called f(x, t). It has
been shown that

f(x, t) = e−αx−β(t−x){πgδ(t− x) + πbδ(x)

+ [πg(
αβx

t− x
)

1
2 + πb(

αβ(t − x)

x
)

1
2 ]I1[2(αβx(t− x))

1
2 ]

+ (πgα+ πbβ)I0[2(αβx(t − x))
1
2 ],

whereπg andπb are the steady state probability of being in the
good state and the bad state, respectively.I0(.) andI1(.) are
the modified Bessel functions of order 0 and 1, respectively.

First, we putt = 1 in this formula to normalize the time
interval and have the distribution of fractional occupancytimes
with respect toN , f(x). Then we rewrite this PDF as

f(x) = πgf(x|s0 = g) + πbf(x|s0 = b)

= πg[f(x, sN = g|s0 = g)

+ f(x, sN = b|s0 = g)]

+ πb[f(x, sN = g|s0 = b)

+ f(x, sN = b|s0 = b)].

Now, we want to compute

lim
N→∞

Pr(ng=m, sN = b|s0= g) =

lim
N→∞

[

(1−
α

N
)m(1−

β

N
)N−m

(

α
N

1− β
N

)

F (−N+m+1,−m; 1;λ′)

]

.

whereλN =
α
N

β
N

(1− α
N )(1− β

N )
. First consider

lim
N→∞

F



−N+m+1,−m; 1;
α
N

β
N

(

1− α
N

)

(

1− β
N

)



 .

By the definition ofF (−N+m+1,−m; 1;λ) this limit equals
to
∞
∑

k=0

1

(k!)2
lim

N→∞

[

(N−m−k)· · ·(N−m−1)×(m−(k−1)) · · ·m(λ′)
k
]

=
∞
∑

k=0

1

(k!)2
lim

N→∞

[(

1−
m

N
−
k

N

)

· · ·

(

1−
m

N
−

1

N

)

×

(

m

N
−
k−1

N

)

· · ·
m

N
× (αβ)

k

]

=

∞
∑

k=0

1

(k!)
2 (1− x)

k
xk(αβ)

k
,

becauselimN→∞ 1 − α
N

= 1, limN→∞ 1 − β
N

= 1, and
limN→∞

i
N

= 0 for i = 1, 2, . . . , k. On the other hand, we
know that

I0(z) =

∞
∑

k=0

(

1
2z
)2k

(k!)
2

is the zero-th order modified Bessel function. So,

lim
N→∞

F



−N+m+1,−m; 1;
α
N

β
N

(

1− α
N

)

(

1− β
N

)





= I0

(

2
√

(1− x)xαβ
)

Moreover,

lim
N→∞

[

(1−
α

N
)m(1−

β

N
)N−m

]

= e−αx−β(1−x).

So,

lim
N→∞

(NPr(ng=m, sN = b|s0= g))

= f(x, sN = b|s0 = g)

= αe−αx−β(1−x)I0

(

2
√

(1− x)xαβ
)

.

However, from the first principals of probability and by [12]
when normalizing the time interval and puttingt = 1 in the
corresponding distributions for the CTMC, we know that

f(x, sN = b|s0 = g) + f(x, sN = g|s0 = g)

= f(x|s0 = g)

= e−αx−β(1−x){δ(1− x) +

(

αβx

1− x

)
1
2

I1[2(αβx(1 − x))
1
2 ]

+ αI0[2(αβx(1 − x))
1
2 ]}.



So, we can easily see that

f(x, sN = g|s0 = g)

= e−αx−β(1−x){δ(1− x) +

(

αβx

1− x

)
1
2

I1[2(αβx(1 − x))
1
2 ]}.

D. A second approach to derive the conditional distributions

In [12], the derivation of of the PMF and PDF of the
occupancy times for DTMC and CTMC has been done through
the computation of corresponding bivariate generating function
and two-dimensional Laplace transform, respectively.

First consider the DTMC. The bivariate generating function
of the time spent in the good state, averaged over all initial
and final states is shown to be

ψ(u, x) =
[

πg πb
]

[I − uGg(x)]
−1

[

1
1

]

In fact, the matrix[I − uGg(x)]
−1 is the bivariate generating

matrix of the time spent in the good state. For example the
first entry in the matrix is

ψgg(u, x) =
[

1 0
]

[I − uGg(x)]
−1

[

1
0

]

=
1− (1 − β)u

1− (1− α)ux − (1− β)u + du2x
.

Puttingw = ux,

Ψ(u,w) =
1− (1− β)u

1− (1− α)w − (1− β)u + duw
,

and Pr(ng = m, sN = g|s0 = g) is obtained by expanding
Ψ(u,w) as a power series in positive powers ofu and w.
Lemma 1 in [12] helps to get the desired format in terms of
hypergeometric functions.

For the CTMC, the matrix of two-dimensional laplace
transforms of the PDF of time spent in the good state during
the time interval[0, 1] is

[

−

(

Q−

[

θ 0
0 0

]

− φI

)]−1

For example the first entry in the matrix equals to

1

u
+

αβ

u(uv − αβ)
,

whereu = φ+θ+α, andv = φ+β and the inverse of this two-
dimensional Laplace transform givesf(x, sN = g|s0 = g).
Lemma 2 in [12] helps to get the desired format in terms of
modified Bessel functions.
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