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Abstract—As the mobile application landscape expands, wire- Computing probabilities of decoding failures for specific
less networks are tasked with supporting multiple connectn  communication channels and fixed coding schemes is of fun-
profiles, including real-time communications and delay-sesitive damental interest. This topic has received significantitie
traffic. Among many ensuing engineering challenges is the . . . - -
need to better understand the fundamental limits of forward M the past, with complete solutions 'n_some c_ases. This line
error correction in non-asymptotic regimes. This article seks Of work dates back to the early days of information theory [1]
to characterize the performance of block codes over finite- An approach that has enjoyed significant success, and chiefly
state channels with memory. In particular, classical resus from  popularized by Gallager, consists in deriving exponermiedr
information theory are revisited in the context of channelswith bounds on the behavior of asymptotically long codewdrds [2]

rate transitions, and bounds on the probabilities of decodig Such b ds h b ined f | h |
failure are derived for random codes. This study offers new uch bounds have been examined Tor memoryless channels

insights about the potential impact of channel correlationover s Well as finite-state channels with memory. In generay the

time on overall performance. can become reasonably tight for long yet finite block-lesgth
It is worth mentioning that the subject of error bounds has
I. INTRODUCTION also appeared in more recent studies, with the advent of new

approaches such as dispersion and the uncertainty-facusin

As preferred mobile devices shift to advanced smartphongsund [3], [4], [5], [6].
and tablet personal computers, the demand for low-latencyin standard asymptotic frameworks, channel parameters are
high-throughput wireless service increases rapidly. ieged kept constant while the length of the codeword increases
desire for a heightened user experience, which includds re@ infinity. While these approaches lead to mathematically
time applications and mobile interactive sessions, acts asppealing characterizations, they also have the sideteffat
motivation for the study of highly efficient communicationthe resulting bounds on error probability do not depend on
schemes subject to stringent delay constraints. An impbrtahe initial or final states of the channel. This situation ten
aspect of delay-sensitive traffic stems from the fact that ittributed to the fact that, no matter how slow the mixingetim
intrinsic delivery requirements preclude the use of asyipt of the underlying channel is, the length of the codeword even
cally long codewords. As such, the insights offered by dtas tually far exceeds this quantity. Therefore, the initiatl dimal
information theory are of limited value in this context. states of the channel become inconsequential. Unfortlynate

This article focuses on deriving meaningful performanagis situation diminishes the value of the correspondirsglte
limits for delay-aware systems operating over channelf wifor queueing models. Often, in practical scenarios, theiser
memory. The emphasis is put on identifying upper bounds eequirements imposed on a communication link forces the use
the probabilities of decoding failure for systems emplgyinof short codewords, with no obvious time-scale separation
short block-lengths. This is an essential intermediatp 8te between the duration of a codeword and the mixing time of
characterizing the queueing behavior of contemporary comnthe underlying channel.
nication systems, and it forms the primary goal of our inguir  This reality, together with the increasing popularity oflre

A distinguishing feature of our approach is the accent dime applications on wireless networks, demands a novel
channels with memory and state-dependent operation. Maggproach where the impact of initial conditions are preserv
specifically, we are interested in regimes where the blothkroughout the analysis. A suitable methodology should be
length is of the same order or smaller than the chanredble to capture both the effects of channel memory as well
memory. Mathematically, we wish to study the scenario wheas the impact of the channel state at the onset of a codeword.
the mixing time of the underlying finite-state channel ig\n additional benefit of the slow mixing regime is the ability
similar to the time necessary to transmit a codeword. This track dependencies from codeword to codeword, which
leads to two important phenomena. First, the state of therinsically lead to correlation in decoding failure ev®n
channel at the onset of a transmission has a significamtd can therefore greatly affect the perceived serviceitgual
impact on the empirical distribution of the states within #om a queueing perspective. In this article, we establish
codeword transmission cycle. Second, channel dependendie underpinnings of error probability analysis in the rare
extend beyond the boundaries of individual codewords. Thignsition regime.
is in stark contrast with block-fading models; for instance The goal of deriving upper bounds on the probability of
in our proposed framework, decoding failure events can becoding failure for rare transitions is to characterizerait
strongly correlated over time. performance for systems that transmit data using blockiheng
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the first state as the good state, denoted by subsgrigmd

Figure 1. The Gilbert-Elliott model is the simplest, noiviil instantiation of the second one as the bad state denoted by SUbSC”pt

a finite-state channel with memory. State evolution overtiorms a Markov A mathematical approach that has proven exceptionally

chain, and the input-output relationship of this binaryreie is governed by useful in information theory is the use of random codes

a state-dependent crossover probability, as illustrabenvea . . L . )
Following this tradition, we adopt a random coding scheme

that employs a code ensemiglewith M = N elements,

on the order of the coherence time of their respective cHannd/here i denotes the rate of the code and represents the
This article addresses the problem of deriving Gallagpety €ommon block length. The elementsdnare indexed by &
exponential bounds on the probability of decoding failurél: - - - M}- LetQ(x) be an arbitrary distribution on the set of
in the rare-transition regime. By construction, these latsunPOSSible input symbol. Throughout, we assume that codesvord
necessarily depend on the initial and final states of theralan @€ Selected independently using the corrj%spondmg produc
The analysis is conducted for the scenario where chanrtel s@stribution, Pr (X (i) = z) = Qy (z) = J[,_, Q(za). A
information is available at the receiver. Our results arenth Message is transmitted to the destination by selecting one o
compared to the probability of decoding failure obtained fghe codewords. We wish to upper bound the probability that
a Gilbert-Elliott channel under a minimum distance decodiS codeword is decoded erroneously at the receiver, while
and the maximum-likelinood decision rule [1[] [7[] [8]. also preserving partial state information.

After computing the exponential upper bound on errgfssymption 1. Communication takes place over a finite-state
probability, we consider the rare-transition regime, inisth channel that admits the conditional decomposition (@J.
the number of transitions during a block lengt, decays |nformation is transmitted using the coding scheme desdrib

with N. We apply this condition on the error exponent angpove. Furthermore, the state of the channel is perfectykn
analyze the results for differen¥s. at the receiver.

Il. MODELING AND EXPONENTIAL BOUND For completeness, we reproduce below a celebrated result

The models considered in this article belong to the genethht we use extensively thereafter; a detailed proof can be
class of finite-state channels where the state transitioes #ound in the associated reference.
independent of the input. Such channels have been usl%d

extensively in the information theory literature, and tmeyed eborg_rlnt 1 (Section 5't6f’ [2]) Let Py (glz)f Fe thﬁ>trelln3|t|on
very little in way of introduction. On the other hand, it jghrobabiiity assignment for sequences o ength> 1 on a

important to establish a proper notation. In this artidie, state discrete channel. Suppose that maximum-likelihood degodi

of the channel at time. is denoted bys,, and takes value in a is employed. Then, the average probability of decodingrerro

finite set. The corresponding input and output are repredenrgjver this ensemble of codes is bounded, for any choige of

by X,, andY,,, respectively. Capital letters are used for rando <ps<1lby

variables whereas lower case letters designate elements. | 1+p
general, the input-output relationship is governed by &gal’s Po<(M—1) P T+ 2
model, with the conditional probability distribution ofdéHiorm e < ( ) Z ; @nla)Py (QE) - @

Y

P _ . . . . . .
(Y, sl sn-1) This theorem is quite general; it applies to channels with

= Pr (Yo =yn, Sn = sa|Xn = 0, Sp1 = sn-1).- memory and, in particular, slow-mixing channefdy(-|-) is a
In our work, we assume that state transitions are indepénd@@neric conditional probability distribution that can regent

of the input so that the distribution can be factored into twée probability distribution induced by a specific channel
parts, realization, for instance. We are now ready to present ostr fir

_ pertinent result.
P (Yn» 8n|Tn, sn—1) = P (sn|sn—1) P (Yn|Zn, 5n) (1) Consider a channel realization that leads to the sequence
=Pr (S =sn|Sn—1 =sn1)Pr (Yo =yn[Xn = 20, Sn = sn). sy = (s1,...,sn). Moreover, letT = T(s,) denote the
The proverbial example for a channel with memory th&mPpirical distribution of this sequence.
features this structure is the famed Gilbert-Elliott mogélich  proposition 1. Suppose Assumptidd 1 holds. For apye

is governed by a two-state ergodic discrete time Markovrehgy 1], the probability of decoding failure at the destination,
(DTMC), and is illustrated in Fid.11. In this case, the chdnn@gnditioned onSy = sy, is bounded by

evolution forms a Markov chain with transition probability
matrix Pc|§N < exp (_N (EO,N(pv QN7§N) - pR))



where Proof: Following the same approach aslin [2, Section 5.9],

Fon(p.0 ) we define
o,N\P; &N SN 1
1 N 1+p Sn 175n Z{ZQ In Sn|5n 1) (yn|xna Snfl)) 1+p}1+P
1
= — I+p Yn Tn
Nlnnl;[lyz l;@(xn)P(ynlxnaSn) p‘| . J-1K—1 )
=P(sp|Sn-1 Z{ZQ P(j|k,sn_1)m}1+p.
Proof: Applying Theorenil to this specific scenario and §=0 k=0

following the same argument as in [2, Section 5.5], we get By Propositior[L, we have

1+p N
Z ZQN 2)Pys,, (y]z) ™7 [Tabn—1,5.)=Pr (Sx = sxs0) exbi—N(Eo,n (p, Qu s 55)-
N n=1
14p Then we can write the upper bound on error probability as
= Q In yn|xna SH)T N
Z [;nl_[l =eVF Z H a(sn—la Sn)
14p sy n=1
ST [Sewrtmian ] S Pr (5 = ) &0 Q)
n=1 yn Tn SN
_ R (Eo ~(p,Q SN )
where Py, (y|:c) = P(ylz,sy) is the conditional distri- =e 7; ZE:TPY Sy = snlso) € v
SN

bution of recelvmgy givenz and s, and the first equality
follows from (T). A key insight is to realize that this func- =e"" )" e N(Bon(eQusv)) Z Pr(Sy = sylso)
tion only depends ors, through its empirical distribution TeT snET

T =T (sy)- The proposition is then obtained by substituting _ Z efN(Eo,N(p,QN-éN)pr)PT . 3)
this expression into equation (5.6.1) [n [2] and noticingtth . s fso
eprR = MP. |
|
Corollary 1. Again, suppose Assumptibh 1 holds andulet This upper bound consists of the exponential upper bounds

{s\|T (sy) = T} such thatPr(u) > 0. For anyp € [0,1], conditioned on the channel type, averaged over all state
the probability of decoding failure, conditioned @R, € u is sequence types. It means that for each type we have an

also bounded by exponential decay with block length in the error probailit
Note thatPr , |, does not decay exponentially with.
Pejy <exp (=N (Eo,n(p, Qn,8y) — pR)). As an example, we now compute this upper bound for the

Gilbert-Elliott channel. Lety andny, = N —n4 be the number
Proof: Using the equivalence of the bound for all channelf times that the channel is in the good and bad states during

realizations with a same empirical distribution, we get the transmission of a codeword of lengfWi, respectively.
These numbers are also referred as the occupation times of
Py, = Z Ps, Pr(Sy = sylsy € u) the channel or the channel state type (se_;e chgpter 12 in [9]).
sneu Thenn, £ =, = = are the fraction of times in each state.

The fractional type of the channel state sequence is another
name to describe the fraction of times spent in each state. Fo
example, type(0.5,0.5) for a Gilbert-Elliott channel means

that the channel spent half of the times in each state . By

Propositior 1L we get
An interesting subset is one where the sequences start from

< Z e~ N(Eon(r.Qn.sx)—PR) Pr(Sy =sylsy € u)
SNEu

_ e*N(Eo,N(P-,QN-éN)*PR)'

a prescribed stat®) and end in statey, while possessing the Eon(p,Qy.8) = (InGb( )47l Gg(P)) ’ (4)
right empirical distribution. ] Gs(p)
Theorem 2. Under Assumptiofl 1, the probability of decodmé’vhere for the i.id |qput distribution, L\ 14
failure and ending in statey conditioned on starting irso, Gy(p) = % (egm +(1- eg)m)
can be bounded as 1 ) L Ul
Golp) = 55 (@77 + (1= )7

Z e_N(EO'N(p’QN’T)_pR)PTs s>
o oNIEe Also by small modification to Gallager’s derivation for

Eo.n(p,Qns50), ((5.9.39) in [2]), we have
where Pr |5, denotes the probability of the empirical distri-

N
!ogt_ion of state sequence type eno_ling;_jn conditioned on the Paynjso < min e(s1) [ a(g,9) a(g,b) ] e(sy) |’V RS,
initial state s, and o x (p, Qy, T)) is given by Propositiofl1. 0<p<1 a(b,g) a(b,b)



wheree(s;) is the unit vector with a one in thieth position, We then derive the decoding failure probability for the two
anda(g,g) = (1 — a)G4(p), a(g,b) = aG4(p), a(b,g) = decoders, conditioned on the knowledge of the occupancy
BGy(p), anda(b,b) = (1 — B)Gy(p). Notice that this bound times. It turns out that when the state is known at the receive
is the same as the bound computed by the sum givehlin (B¢ empirical distribution of the channel state providesusyh
using [4), and the joint distribution af; andsy, conditioned information to determine the error probability. Using the
on sg. distribution of ny and theng-conditional error probabilities

On the other hand in the rare-transition regime in whictor different decoding rules, one can average over all types
Na and N are constant, by taking the limit 8 — oo, we get the probability of decoding failure,
can compute the bound on failure probabillty (3), with a $mal .
error (seel[10]), as follows Pe = TGZTP6|T Pr(sy €T), ()

1

min /eN(InGb(””””In e +pR)f((E’ sy =d|so =c)dz  WhereP, is the probability of decoding error given that the

0<p=1Jo channel state sequence typeTis and Pr(sy € T') denotes

— min [eN(lnGb(P)+pR)G 4 (Nln Gg(P))] (5) the probability distribution of channel typg€ which will be

¢ Gn(p) /)]’ derived in the following section.

where,G.q(.), ¢,d € {g,b} is the moment generating func- 1) Minimum Distance DecodingGiven the channel type,
tion of the limiting occupancy time distribution and is give the minimum distance decoder on the Gilbert-Elliott channe
by (I3). By modifying Gallager's approach and considerin@Ccts similar to a maximum likelihood decoder on BSC.
the rare-transition regime, we get an upper bound on errorSuppose we denote the number of errors in each state by
probability of maximum-likelihood decoding that retairts i €5 @ndes, Whereeg = dyy (X, Y,) ande, = dy (X, Y,,).

dependency on the initial and final states. The conditional error probability can be written as
I1l. DERIVATION OF EXACT DECODING ERROR Pyr = ZZ;:() ZZ::O Poire, 00 Peyenim (7)
PROBABILITY

In this section, we first present the exact expression f}jgflher?jper\]ﬂemeb iz the ferror prqbabilit?]/ conditioned on fcype
failure probability over BSC and then derive failure proitiab and the number of errors in each state, g, r is

over Gilbert-Elliott channel to compare with the upper b(bunthe pf‘?bab"'ty oh having, ande;, errors conditioned OT.’
Conditioned on the channel type, the number of errors in the

A. Random Coding Error Probability for the BSC good and bad states are independent. So,

In ], the error probability for random coding over BS(( P, e7 = P, 7 Pe.iT (8)
using maximum-likelihood (ML) decoder, for a system which
treats ties as error is derived as and we have

N T P = ("")eeg(l — €)%
N - _r _ N T eq|T eq) 9 g ’ 9
P=3 (3 o -fo o () Py = (e (0= e ©
=0 j=0
N N N N M-1 Pe\T,eq,eb = Pe|eg,eb' (10)
_ N—-NM T N —T|
=1-2 Z<T>p -p Z <]> Because conditioned ofy, andey, the probability of error is
=0 =7+l independent of the channel state sequence type.
In [5], some small modifications has been made to the Fano'df there exists at least one codeword other than the trans-
expression to take ties into account as mitted one inside the decoding sphere of radigs+ ey
N N centered at the received word, the bounded distance decoder
P, =1-9N-NM Z ( )pf(1 —p)N- either decodes to an incorrect codeword or fails to decode.
- : X .
—o This means ties and errors are grouped. Since there are
M1 M—1-1 M — 1 codewords other than the transmitted one, the prob-
- l N . L ) :
y Z (N) 1 (M - 1) Z (N) ability that none of them falls inside the decoding sphere is
7 1 . . M—-1
= \T/ LI jert1 N (1 — 27N (%) and the probability that at least

L , _ one of them falls inside the ball is simply
One can see that this gives a small difference in the error

probability conditioned on the number of errors. egten M-1

N
_ —N
B. The Gilbert-Elliott Channel: State Known at the Receiver PeiT eger =1 = | 1 -2 ZO <]> ‘ (11)
J:

Now, we consider data transmission over the Gilbert-Elliot
channel using random coding when the state is known at theNow, we can simply substitute all the terms in equafibn 7
receiver. Two different decoders are considered: a minimuim have the error probability expression.
distance decoder and a maximum-likelihood decoder. Therelo take into account the ties, and not to treat all the tie
are some differences between these two decoding rules whiskents as error, we can slightly modify the equalich 11 in the
we will go through in detail in the following subsectionssame way a®?.



2) Maximum-Likelihood Decoding: Gy(z) = (1 —ﬂa):v 104%
taking theN-th power of this matrix, coefficient of the:-
power ofx in the corresponding entry represents the above
conditional probability. However, this method does noegis
the closed form distribution of the occupation times, disec

To get the distribution of the fractional occupation time

Lemma 1. When the state is known at the receiver, th
maximume-likelihood decoder decodes to the following cod%y
word

argmax In(P(Y|X)) = argmin|[[veq] + ep)],
XeC XecC

wherey = % > 1. Moreover, the error probability ., we consider the rare-transition regime in which the tran-
conditioned on the number of errors in each state and thgtion probab|l|t|es are scaled wittv as ay = £ and
channel state type is By = £. In this regime, the expected number of transitions
n N_—n M=t in each lengthy block is constant. Taking the limit of the
1—[1-2N Z (f)( ~ g) ., (12) above conditional probabilities for the DTMC & — oo
[ég]+én<C g €r gives us the distribution of the fractional occupancy time
. r = limy o ;. Notice that the transition-rate matrix of the
whereC' £ [veq| + €5 . —-a  « ;
o _ CTMC is Q = . For the DTMC in the rare
Proof: The proof is given in_VII[-A. [ | " ) g =B " o
transitions regime, the probability transition matrix is
IV. DISTRIBUTION OF CHANNEL STATE TYPE FOR 1—2a Q
GILBERT-ELLIOTT CHANNEL Py = { s ivﬁ } =I+ NQa
N

The purpose of the current analysis is to study dela%herel is the 2 by 2 identity matrix. So,
sensitive communication systems and evaluate the queueing

Nt
behavior. Since in thesg kind of systems the block- Iengll_h ca lim (Py)M = (1+ iQ _ Qt
not go extremely large, it turns out that the effect of théidnhi N—>oo N

Elnd kthle ﬁrt'sl stSatet?] does not %O ;}/_vaydv\mihfgr mo?ﬁra_tﬁ_t_This means that the rare-transition limit of the DTMC result
ock 1engins. 5o the error proba ”t.y epends on thea "yields the corresponding results for the CTMC. Similarly,
and the final statess¢ and sy, respectively). Conditioned on

the channel type, the error probability is independent ef th ( ggg(y) ggb(y) ) £ lim Ggn (1 + i) , (13)
initial and the final states. The only part that depends osethe po(y)  Gun(y) N=roo N

states is the distribution of the state occupancies. In [I2], where G, y is obtained by replacingy and 5 in Gg(.)

the probability distribution of the occupation times foragw with a and Sy, gives the corresponding matrix generating
state Markov chains is derived. However, the given distiiiou  function.

is averaged over all final states. Doing some manipulation wemma 2. The joint distribution of fractional occupancy times

will derive the joint probability distribution of state ogpation and the final state conditioned on the initial state can be
ng and final state conditioned on the initial state. computed as

Theorem 3. The joint distribution of channel type and the finalf (z, sy = glso = 9) = 67”7[5(171){5(1 —x)
state conditioned on the initial final state can be computed a afz .
( ) ([2(aBa(l —2)) ]}

Pr(ng = m, sy = glso = ) = (1 —a)" (1= §)¥ " x T
{F(=N+m,—m; 1;\)—F(=N+m+1,—m;1;\)}, F(a, sn = blso = g) = ae— = PU=D [ 10(0Bx(1 — ))3],
(1-— Oé)mfl(l - B)meJrla f(z,sny = glso = b) = Be™**~ B(1— m)I 2(afz(1 x))%

Pr(ng =m,sy = b|sg = g) =

x F(—N + S :ri)+ gy, TR ER=e T " z>{5(]x)
m —m— af(l—x)\?2 1
Pr(ng = m, sy = glso = b) = 1) +(11(1_;)B)N L + (B(T)) L(afz(l —o))2]}-
X F(=N+m+1,—-m;1; ), Proof: The proof can be found in_VIIiC. [
Pr(ng = m,sn = blso = b) = (1 —a)™(1 = )N " x V. NUMERICAL RESULTS
{F(=N+m,—m; ;\)=F(=N+m,—m+11;A)}, In this section we present the numerical results for a system

which transmits data over the Gilbert-Elliott channel with
eq = 0.01, ¢, = 0.1. Fig.[2 represents our derived bound
in (8) with Gallager-type bound(3) in rare-transition megi
0.5y = blsg = b) = (I — B)N, and Pi(ng, — N,sy — where Na = 0.04, and _NB = 0.06. The pIots. _show the
N averaged failure probability over all state transitions. e
g|80 =9)=0-a) can see, although the block-lengths are short, the bourda gi
Proof: Proof of the theorem is given [n_VIIiB. B by (3) are very close td 13) while keeping a simpler format. In
Notice that we can also compute these probabilities usifig.[3 we compare the exact results for maximum-likelihood
the generating matrix method. Let and minimum distance decoders with our derived upper bound

for 0 < m < N. F(.,.;.) is the hypergeometric function,
A= m, andd = 1 — a — . Moreover, Pfn, =
0, 3N|30 =g) =0, Pr(ng = T,sn|so = b) =0, Pr(ng =



7 VIl. APPENDIX
2 i
= E A. Proof of Lemmall
S Gallagers Boundv = 50 First we revisit the ML decoding rule for the Gilbert-
o - «- Gallager's BoundV = 75 . . .
o - v- Gallager's BoundV = 100 Elliott channel, when the state is known at the receiver and
2 —e— Rare - transitionV = 50 conditioned on the channel state typg). So, we have
L —— Rare - transitionV = 75
—v— Rare - transitionV = 100 P(Y|X) — Egg(l _ Eg)ng—egegb(l _ Eb)N—ng—eb
0.5 0.6 0.7 0.8
Rate Upon receiving the wordY, the ML decoder decodes to
Figure 2. Comparison of our derived bound[i (5) with Gallayee bound the codewordX that maximizesP(Y|X). Equivalently, the
@) in rare-transition regime foNo = 0.04 and N8 = 0.12 decoded message will be arg hin, + ey]. It means that
Xec
YT ek S for the ML decoder, the errors in the bad state do not cost

2 . the system as much as the errors in the good state. That is
§ ML N =50 because the receiver expects errors more in the bad state.
£ ML N = 75 To get the error probability for ML decoder, similar to the
) MD N = 50 minimum distance decoder, we first condition epand ey,.
= MDc'j\l =75 Then for each set o, ande, we defineC = [ve,] + ep.
[ +©0=Bound N= 50 T " .

| = Bound N— 75 Then, the probability of error conditioned a1, ey, andey, is

obtained as[(12).

\
0.4 0.5 0.6 0.7 0.8
Rate

Figure 3. Comparison of our derived bound[i (5) with the éxatues for B. Proof of Theorerl]3
maximum-likelihood and minimum distance decoders doe= 0.0533 and i
B =0.08 From [12] we have

- N—-m-—1
given by [®) for fixed transitions probabilities. As we expec (ng=mlso=g) = (1-a)"(1-F) Cz_:o(a)( b—1 )

maximume-likelihood decoder outperforms minimum distance b a
decoder. Moreover, by increasing the block-length the bdoun X ( a ) ( B ) ,
gets closer to the exact value. 1-5 l-a
VI. CONCLUSION wherea andb are the number of transitions into the initial

We proposed a general approach to bound the failugtate and out o.f.the initi.al state, respecFivejyis the total
probability for random coding over finite-state channelsovh humber of transitions which occur up to tindé, and

retains the dependency on the initial and final states for N4l Ly N
relatively short block-lengths. We also derived exprassitn e = +3 - [2m =3+ N[, m< _
compute the exact error probability for maximum-likelitdoo 0, m=N

and minimum distance decoders for Gilbert-Elliott chararel

we compared them with the proposed upper bound. By splitting the summation into terms for whiehis odd and

c is even, it follows that ifc = 2k, a = b = k and the
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So we have Now, we want to compute

Pr(ng=m, sy =blso=g) = l—a)™ 1BV x ngrio Pring=m,sy=Dblso=g) =
@ [e3
F(=N+m+1,-m;1;\), Yy Binem ([ W 3 I
(1—B> ngr;o[( 7 =5 (—1_%>F( N+m+1, m,l,/\)].

for 0 < m < N. Clearly, form = 0 andm = N, this .
conditional probability equals t0. whereAy = (kzﬁ)ﬁ First consider
By [12] and noticing that M

a B
Pring=m|so= g) = Pr(ng=m, sy = g|so= 9) lim F| -N+m+1,-m;1;,——NXNX |
. . . N—oco 1_&) 1_£
+ Pr(ng=m, sN=Db|so= g), N N
we have By the definition of F'(— N+m+1, —m; 1; A) this limit equals
to
Pr(ng=m, sy = glso=g) = 1—a)™(1—3)N""x oo

(F(=N+m, —m; 13 X)—d(1— )" Zﬁ Jim [(V=m =R (N=m—Dx(m— = 1) - m(X)]
X F(=N+m+1, —m; 1; \)} h=0

—S—awa—mfv-mx —gﬁ&&{(l—%—%)“'(l‘%‘%)X
(e (352) 3o
(F(=N+m, —mi 1; ) =Y (- ot

|
—F(=N+m+1,—m;1;\)}, k=0 (k)

B 7 o becauselimy oo 1 — & = 1,limyoocl — & = 1, and
for 0 < m < N. Moreover, ang—O,SJ\]fV— glso=9g) = limy oo & = 0 for i = 1,2,.... k. On the other hand, we
and P(ng=N,sy=glsop=9g) = (1 —a)". know that

The other conditional probabilities can be derived in the oo (1 )%

57
same manner. Io(z) = Z 2
iz (K

is the zero-th order modified Bessel function. So,

e

C. Proof of Lemmé&]2

In [12], Pedler considers a Markov chain with two states

|s:

lim F (—N—i—m—l—l, —

N
and continuous time parameter $@tt]. Then he defines the NS00 (1-2)(1 B8
occupation timeX (¢) as the time spent in the first state (the N N
good state) during the interval,¢], and derives the PDF =1, (2 (1 _;C);mﬁ)
(probability density function) ofX (¢), called f(z,¢). It has
been shown that Moreover,
—ar— —T : Qym ﬁ —m —Qar— —x
Flet)=c ;“ bt ;(x) + 7)rb6<x> N, {( A } —e
« ap(t —x). 1 1
+ [y (7=)F + (2=} L[2(aBa(t — 2))}] S0,
+ (mga+ mmfo[ (aBa(t — )2, Jim (NPr(ng=m, sy =blso=g))
wherery andm, are the steady state probability of being in the = f(z,sn =Dblso = g)
good state and the bad state, respectivklf.) and I;(.) are — qe—or—Al-2) (2 1- :c)a:aﬂ) '
the modified Bessel functions of order 0 and 1, respectively.

First, we putt = 1 in this formula to normalize the time However, from the first principals of probability and lhy [12]
interval and have the distribution of fractional occupaticyees when normalizing the time interval and putting= 1 in the

with respect toN, f(x). Then we rewrite this PDF as corresponding distributions for the CTMC, we know that
f(x) = mgf(x|so = g) + m f(x|so = b) f(z, sy =blso =g) + f(z,s8 = g]so = g)
= mg[f (@, 88 = glso = 9) = f(z]so = g)

+f(I’SN:b|80:g)] _ p—az—p(1—2x) — X (Oéﬂdf >% apx —x %
+ m[f(z, sn = glso = b) =€ (00 -2)+ (=) hl2ape(-2))?3]

+ f(x, sy = Dbl|so =Db)]. + alo[2(aBx(1l — z))2]}.




So, we can easily see that

f(x,sny =glso = 9g)
1

ofz ) "L R>aBe(l — )}

= e @ BU=2)5(1 — ) + <1

D. A second approach to derive the conditional distribusion

In [12], the derivation of of the PMF and PDF of the
occupancy times for DTMC and CTMC has been done through
the computation of corresponding bivariate generatingtion
and two-dimensional Laplace transform, respectively.

First consider the DTMC. The bivariate generating function
of the time spent in the good state, averaged over all initial
and final states is shown to be

vwa) = [ 7 m )17 uGo(o] | | |

In fact, the matrix/ — uG,(z)]”" is the bivariate generating
matrix of the time spent in the good state. For example the
first entry in the matrix is

o) = [ 1 0] 17— uGs(e) | ¢ |

_ - (1= B
11— (1—a)uz — (1 - B)u+duz’

Puttingw = ux,

1-(1-p)u
1—(1-a)w—(1-8)u+duw’

and Pfng = m,sy = g|sp = g) is obtained by expanding
U(u,w) as a power series in positive powers @fand w.
Lemma 1 in [12] helps to get the desired format in terms of
hypergeometric functions.

For the CTMC, the matrix of two-dimensional laplace
transforms of the PDF of time spent in the good state during
the time intervall0, 1] is

-1
6 0
(a0 o))
For example the first entry in the matrix equals to

1 af

u u(uv — aB)’

U(u,w) =

whereu = ¢+6-+a, andv = ¢+ and the inverse of this two-
dimensional Laplace transform givggz, sy = glso = g).
Lemma 2 in [12] helps to get the desired format in terms of
modified Bessel functions.
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