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Abstract

In this paper, we consider the use of lattice codes over Eisenstein integers for implementing a compute-
and-forward protocol in wireless networks when channel state information is not available at the transmitter. We
extend the compute-and-forward paradigm of Nazer and Gastpar to decoding Eisenstein integer combinations of
transmitted messages at relays by proving the existence of asequence of pairs of nested lattices over Eisenstein
integers in which the coarse lattice is good for covering andthe fine lattice can achieve the Poltyrev limit. Using this
result, we show that both the outage performance and error-correcting performance of nested lattice codebooks over
Eisenstein integers surpasses lattice codebooks over integers considered by Nazer and Gastpar with no additional
computational complexity.

Index Terms

Compute-and-Forward, Lattice codes, Eisenstein integers

I. INTRODUCTION

Compute-and-forward is a novel relaying paradigm in wireless communications in which relays in a
network directly compute or decode functions of signals transmitted from multiple transmitters and forward
them to a central destination. One of the most effective waysto implement a compute-and-forward scheme
is to employ lattice codes at each transmitter. Since a lattice is closed under integer addition, lattice codes
are naturally suited to decoding integer linear combinations of transmitted signals.

Lattice codes have been shown to be optimal for several problems in communications including coding
for the point-to-point additive white Gaussian noise (AWGN) channel [1] and coding with side information
problems such as the dirty paper coding problem and Wyner-Ziv problem [2]. The construction of optimal
lattice codes for these problems requires a lattice that is good for channel coding. Since a lattice has
unconstrained power, goodness for channel coding is measured using Poltyrev’s idea of the unconstrained
AWGN channel. In [3], Poltyrev derives the maximum noise variance that a lattice can tolerate while
maintaining reliable communication over the unconstrained point-to-point AWGN channel, which is
referred to as the Poltyrev limit in literature. Loeliger showed the existence of lattices that achieve the
Poltyrev limit by means of Construction A in [4]. Then, Erezet al., showed that there exists lattices which
are simultaneously good for quantization and can achieve the Poltyrev limit in [5] which made it possible
to construct nested lattice codes that were able to achieve arate of 1

2
log (1 + SNR) over the point-to-point

AWGN channel. There has also been great interest in constructing lattice codes with reasonable encoding
and decoding complexities such as Signal Codes and Low Density Lattice Codes [6], [7].

In a bidirectional relay network when channel state information is available at the transmitters, the
transmitters can compensate for the channel gains and the relay can decode to the sum of the transmitted
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signals, which is a special case of compute-and-forward. For this system model, it was shown that an
exchange rate of1

2
log
(

1
2
+ SNR

)

can be achieved using nested lattice codes at the transmitters, which is
optimal for asymptotically large signal-to-noise ratios and provides substantial gains over other relaying
paradigms such as amplify-and-forward and decode-and-forward [8], [9]. In [10], a novel compute-and-
forward implementation is proposed for theK × K AWGN interference network where channel state
information is available at the transmitters, which achieves the fullK degrees of freedom.

We consider the case when channel state information is not available at the transmitters. In this case,
an effective way to implement a compute-and-forward schemeis to allow the relay to adaptively choose
the integer coefficients depending on the channel coefficients. Nazer and Gastpar have introduced and
analyzed such a scheme which uses lattices over integers andthey have derived achievable information
rates in [11]. In [12], Feng, Silva and Kschischang have introduced an algebraic framework for designing
lattice codes for compute-and-forward. The framework in [12] is quite general in the sense that every
lattice partition based compute-and-forward scheme can beput into this framework, including the one
by Nazer and Gastpar in [11]. However, [12] does not provide ameans to identify good lattice partition
based schemes.

In this paper, we contribute to the literature by identifying a lattice partition based compute-and-forward
scheme which is particularly good for approximating channel coefficients from the complex field. Our
scheme can be regarded as an extension of the scheme in [11] tolattices over Eisenstein integers. We show
that an improvement in outage performance and error-correcting performance can be obtained compared
to using lattices over integers. We proceed by proving the existence of a sequence of nested lattices
over Eisenstein integers in which the coarse lattice is goodfor covering and the fine lattice achieves the
Poltyrev limit. Using this result, we can show similar results to those in [11] with integers replaced by
Eisenstein integers. The main improvement in outage and error-correcting performance is a consequence
of that the use of lattices over Eisenstein integers permitsthe relay to decode to a linear combination of
the transmitted signals where the coefficients are Eisenstein integers, which quantize channel coefficients
better than Gaussian integers.

Recently, we became aware of an independent work by Sunet. al. [13] where lattice network codes
over Eisenstein integers are also considered. The main focus in [13] is the analysis of the decoding error
probability, which suggests that lattice network codes built over Eisenstein integers can provide significant
coding gains over lattice network codes built over Gaussianintegers. Our work differs from [13] in the
following ways. While their focus is on constructing finite constellations from lattice partitions which
are suitable for compute-and-forward, we consider construction of lattices (infinite constellations) over
Eisenstein integers and show the optimality of such construction. Moreover, their coding scheme can
be regarded as the concatenation of a linear code over an appropriate finite field and a constellation
carved from a lattice partition. On the other hand, our scheme is a more general one which is formed
by the quotient group of a lattice over Eisenstein integers and its sublattice. It can be shown that the
scheme in [13] is a special case of ours with hypercube shaping1. This generalization is imperative in
the sense that it allows us to show the achievable computation rates if one would use such lattices for
compute-and-forward.

The structure of our paper is as follows. In Section I-A, we introduce the notation that will be used
throughout the paper. In Section II, we present the system model that will be considered. In Section
III, we provide some background on lattices and lattice codes. In Section IV, we discuss Nazer and
Gastpar’s framework for compute-and-forward [11]. In Section V, we discuss how lattices over Eisenstein
integers can be used for compute-and-forward in Nazer and Gastpar’s framework and what properties of
these lattices are required in order to achieve computationrates formulated similarly to those in [11].
In Section VI, we provide numerical results and compare the outage performance and error-correcting
performance of lattices over natural integers and latticesover Eisenstein integers in compute-and-forward.

1Here, we use the term “hypercube shaping” to denote a scheme using a properly scaled version of Eisenstein integers as shaping (coarse)
lattice. Thus, whenZ or Z[i] are considered, the shape is a hypercube. However, it is in fact not a hypercube ifZ[ω] is considered.
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In Appendix A, we introduce the notation that is used in Appendix B and Appendix C, we prove that
there exist a nested pair of Eisenstein lattices which the coarse lattice is good for covering and the fine
lattice achieves the Poltyrev limit.

A. Notational Convention

Throughout the paper, we useR to denote the field of real numbers,C to denote the field of complex
numbers, andFq to denote a finite field of sizeq. Z, Z[i], andZ[ω] are used to denote the set of integers,
Gaussian integers, and Eisenstein integers, respectively. We use underlined variables to denote vectors and
boldface uppercase variables to denote matrices, e.g.,x andX, respectively. We denote theith column of
a matrixX asXi. Also, we use superscriptH to denote the Hermitian operation, e.g.,xH andXH . We
definelog+(x) , max(log2(x), 0) and denote the Euclidean metric as‖ · ‖. We denote the all zero vector
in Rn as 0 and then × n identity matrix asI. We denote the volume of a bounded regionE ⊂ Rn as
Vol (E) and denote then-dimensional sphere of radiusr centered at0 asB(r) , {s : ‖s‖ ≤ r}.

II. SYSTEM MODEL

We consider an AWGN network as shown in Fig. 1 whereL source nodesS1, S2, . . . , SL wish to
transmit information toM relay nodesD1, D2, . . . , DM , whereM ≥ L. It is assumed that relay nodes
cannot collaborate with each other and are noiselessly connected to a final destination interested in the
individual messages sent from all the source nodes. The objective of the relay nodes is to facilitate
communication between the source nodes and the final destination.

GM
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+
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+
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y
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Fig. 1. The AWGN Network whereS1, S2, . . . , SL wish to transmit information toD1, D2, . . . , DM . The channel between theSl and
Dm is denoted ashml.

We denote the information vector at the source nodeSl aswl ∈ F
k
q . Without loss of generality, we assume

that the length of the information vector at each transmitter l has the same lengthk. Each transmitter is
equipped with an encoderEl : Fk

q → Cn that mapswl to ann-dimensional complex codewordxl = El (wl).
Each codeword is subject to the power constraint

E||xl||2 ≤ nP. (1)

The message rateR of each transmitter is the length of its message in bits normalized by the number of
channel uses,

R =
k

n
log q. (2)
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Due to the superposition nature of the wireless medium, eachrelaym observes

y
m
=

L
∑

l=1

hmlxl + zm, (3)

wherehml ∈ C is the channel coefficient betweenDm andSl. As it can be observed from (3), it is assumed
that there is no inter-symbol interference and eachhmlxl arrive at the relay simultaneously. Furthermore,zm
is ann-dimensional complex vector which consists of identicallydistributed (i.i.d.) circularly symmetric
Gaussian random variables, i.e.zm ∼ CN (0, I). Let hm = [hm1, · · · , hmL]

T denote the vector of channel
coefficients to relaym from all the source nodes. We assume that the relaym only has the knowledge
of the channel coefficient from each transmitter to itself, i.e.,hm.

Each relay attempts to recover the linear combinationf
m

(overFq)

f
m
=

L
⊕

l=1

(bmlwl) , (4)

wherebml ∈ Fq and letbm = [bm1, . . . , bmL]
T . Typically bmls are chosen based on the network structure

and/or the channel coefficients. It is desirable for the matrix [b1, . . . , bM ] to be full-rank which enables
eachwl to be recovered at the final destination. For eachDm, we define the decoderGm : Cn → Fk

q and
f̂
m
= Gm(ym) is an estimate off

m
. Let P denote a principal ideal domain inC such asZ[i] or Z[ω].

Definition 1 (Average probability of error):Equations with coefficient vectorsa1, a2, . . . aM , where each
am ∈ PL, are decoded withaverage probability of errorǫ if

Pr

(

M
⋃

m=1

{

f̂
m
6= f

m

}

)

< ǫ. (5)

Definition 2 (Computation rate of relaym): For a given channel coefficient vectorhm and equation
coefficient vectoram ∈ PL, the computation rateR (hm, am) is achievable at relaym if for any ǫ > 0
andn large enough, there exist encodersE1, . . . , EL and there exists a decoderGm such that relaym can
recover its desired equation with average probability of error ǫ as long as the underlying message rateR
satisfies

R < R (hm, am) . (6)

Due to the fact that the relays cannot collaborate, each relay picks an integer vectoram such thatR (hm, am)
is maximized.

Definition 3 (Computation rate of AWGN network):Given H = [h1, . . . , hM ] and A = [a1, . . . , aM ],
the achievable computation rate of an AWGN network is definedas

R (H,A) = min
m:aml 6=0

R (hm, am) , (7)

provided that the matrixσ (A) = [b1, . . . , bM ] ∈ FL×M
q , whereσ : PL×M → FL×M

q , is full rank. If
[b1, . . . , bM ] is not full rank,R (H,A) = 0.
Note that in this paper, our coding scheme particular considers the ring of Eisenstein integers, i.e.,P =
Z[ω], for the reason that will become clear later.
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III. B ACKGROUND ON LATTICES

Due to the fact that the coding scheme that will be consideredheavily relies on lattices, we now provide
some background knowledge on lattices. For more details on lattices, please refer to [14], [5], and [1].

Definition 4 (Lattice overZ): An n-dimensionallattice over natural integers, Λ(n), is a discrete set of
points inRn such thatΛ(n) is a discrete additive subgroup ofRn with rank k wherek ≤ n. Such a lattice
can be generated via a full rank generator matrixB ∈ Rn×k

Λ(n) =
{

λ = Be : e ∈ Z
k
}

. (8)

For notational convenience, we shall drop the superscript in Λ(n) in this paper and denoten-dimensional
lattices asΛ. Also, we refer to lattices over integers asZ-lattices throughout the paper.

Given a latticeΛ, we denote thequantizeroperation with respect toΛ asQΛ, the modulusoperation
with respect toΛ as mod Λ, and thefundamental Voronoi regionof Λ asVΛ. We denote thecovering
radiusandeffective radiusof Λ asrcov

Λ andreff
Λ , respectively. We denote thesecond momentandnormalized

second momentof Λ asσ2
Λ andG (Λ), respectively. We refer the readers to [14] for these definitions.

Definition 5 (Goodness for covering):A sequence of latticesΛ is good for coveringif

lim
n→∞

rcov
Λ

reff
Λ

= 1. (9)

These lattices are also commonly referred to asRogers good, since it was first shown by Rogers that such
lattices exist [15].

Definition 6 (Goodness for quantization):A sequence of latticesΛ is good for quantizationif

lim
n→∞

G (Λ) =
1

2πe
. (10)

In other words, the normalized second moment ofΛ converges to a sphere’s normalized second moment
as n → ∞. Zamir et al., have shown that such a sequence of lattices exist [16]. Erezet al. have also
shown the existence of such a sequence of lattices and provedthat goodness for covering implies goodness
for quantization [5].

Definition 7 (Lattices that achieve the Poltyrev limit):Let z be ann-dimensional independent and iden-
tically distributed (i.i.d) Gaussian vector,z ∼ N

(

0, θ2zI
)

. The effective radiusof z, which we denote as
rz, is defined as

rz =
√

nθ2z . (11)

Consider aZ-latticeΛ and a lattice pointλ ∈ Λ, which is transmitted across an AWGN channel:

y = λ+ z. (12)

The maximum likelihood decoder would decode to the lattice point nearest in Euclidean distance toy.
Therefore, an error would occur only ify leaves the Voronoi region ofλ. Due to lattice symmetry, this
is equivalent toz leaving the fundamental Voronoi regionVΛ.

Pe (Λ, rz) = Pr{z 6∈ VΛ} , (13)

wherePe (Λ, rz) denotes the probability of error.
A sequence ofZ-latticesΛ aregood for AWGN channel codingif for any rz < reff

Λ , lim
n→∞

Pe (Λ, rz) = 0

and this decay may be bounded exponentially inn. Erez et. al. have shown the existence of such a
sequence of lattices in [5] and they have referred to them asPoltyrev good.

Nonetheless, in order to achieve the Poltyrev capacity in the unconstrained AWGN channel, it is
sufficient for lim Pe

n→∞
(Λ, rz) = 0 for any rz < reff

Λ , i.e., Pe (Λ, rz) does not need to decay exponentially

asn→ ∞. We refer to such a sequence of lattices aslattices that achieve the Poltyrev limitin this paper.
Loeliger has shown the existence of such lattices in [4].
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Definition 8 (Sublattice):A Z-lattice Λ is a sublattice of (nested in) anotherZ-lattice Λf if Λ ⊆ Λf .
Λ is referred to as thecoarse latticeandΛf is referred to as thefine lattice. The quotient groupΛf/Λ is
referred to as a lattice partition [17].

Definition 9 (Nesting ratio):Given a pair ofn-dimensional nested latticesΛ ⊂ Λf , thenesting ratioϑ
is defined as,

ϑ =

(

Vol(VΛ)

Vol(VΛf
)

)
1

n

. (14)

Definition 10 (Nested Lattice Code):Given a fineZ-latticeΛf and a coarseZ-latticeΛ, whereΛ ⊆ Λf ,
a nested lattice code(Voronoi code), which we refer to asL, is the set of all coset leaders inΛf that lie
in the fundamental Voronoi region of the coarse latticeΛ [18]:

L = VΛ ∩ Λf =
{

λf : QΛ

(

λf
)

= 0, λf ∈ Λf

}

. (15)

In other words,L is a set of coset representatives of the quotient groupΛf/Λ.
The coding rateof a nested lattice code, denoted asR is defined as,

R = log ϑ. (16)

A. Construction A forZ-lattices

One way to constructZ-lattices is to use the following procedure, which is referred to asConstruction
A [19]:

Let q be a natural prime andk, n be integers such thatk ≤ n. Then, letG ∈ Fn×k
q .

1) Define the discrete codebookC = {x = Gy : y ∈ Fk
q} where all operations are overFq. Thus,

x ∈ Fn
q .

2) Generate theZ-latticeΛC asΛC , {λ ∈ Zn : λ mod q ∈ C}, where the mod operation is applied
to each component ofλ.

3) ScaleΛC with q−1 to obtainΛ = q−1ΛC.
We would like to note that only the first two steps that we have stated in Construction A is required to
build a lattice, since the third step simply scales the lattice. However when Erezet. al.prove the existence
of lattices built with Construction A that are good for covering in [5], they keepreff

Λ approximately constant
asn→ ∞ andq → ∞, which is possible only if the third step is used for scaling the lattice.

B. NestedZ-lattices obtained from Construction-A [1]

Let Λ be ann-dimensionalZ-lattice obtained through Construction-A with a corresponding generator
matrixB. For a givenG ∈ Fn×k

q , denoteΛ′ as the correspondingZ-lattice obtained through Construction-
A usingG as the generator matrix of the underlying linear code. Generate theZ-latticeΛf asΛf = BΛ′.
It can be observed thatΛ ⊂ Λf with a coding rate ofk

n
log q.

IV. COMPUTE-AND-FORWARD WITH Z-LATTICES

One way to implement network coding for the system model considered in this paper is for each relay to
decode towl individually, then formf

m
and forward it through the network, which is commonly referred

as decode-and-forward. As the number of source nodesL increase, decode-and-forward is limited by
self-interference since other transmitted messages are treated as noise when decoding towl individually.
Therefore, one way to mitigate the effect of self-interference would be for relaym to directly decode tof

m
from y

m
instead of decoding towl’s individually. Such an approach is commonly referred to ascompute-

and-forward, which was introduced by Nazer and Gastpar in [11] and results in achieving substantially
higher rates than other forwarding paradigms such as amplify-and-forward, decode-and-forward, compress-
and-forward in many situations.
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In [11], Nazer and Gastpar use nested lattice codes to implement the compute-and-forward paradigm.
Since lattices are closed under integer combinations, the relays attempt to decode to a linear combination of
codewords with integer coefficients. This can then be shown to correspond to decoding linear combinations
over the finite field. We briefly discuss how lattice codes are constructed to implement the compute-and-
forward paradigm in [11].

A fine Z-latticeΛf and a coarseZ-latticeΛ nested inΛf , is constructed as mentioned in Section III-B
with a coding rateR = k

n
log q. If Λ is simultaneously good for covering and good for AWGN channel

coding, it follows thatΛf is good for AWGN channel coding [1]. BothΛ andΛf are scaled such that
σ2
Λ = P/2. Following this, the lattice codebookΛf ∩ VΛ is constructed.
Source nodel partitions its information vectorwl ∈ F2k

q into wR
l , w

I
l ∈ Fk

q , and maps them to lattice
codewordstRl , t

I
l ∈ Λf ∩ V, respectively, via a bijective mapping̃ψ,

ψ̃(w) =
[

Bq−1g(Gw)
]

, (17)

wherew ∈ Fk
q , and g is the trivial bijective mapping between{0, 1, · · · , q − 1} and Fq. Hence,tRl =

ψ̃
(

wR
l

)

, tIl = ψ̃
(

wI
l

)

. It then constructs dither vectorsdRl , d
I
l , which are uniformly distributed within

V and subtracts these dither vectors from the lattice codewords tRl , t
I
l , respectively, and transmits the

following:

xl =
([

tRl − dRl
]

mod Λ
)

+ j
([

tIl − dIl
]

mod Λ
)

. (18)

Recall that given a channel coefficient vectorhm ∈ CL, relaym observes

y
m
=

L
∑

l=1

hmlxl + zm. (19)

The relay approximateshm, in some sense, by a Gaussian integer vectoram ∈ Z[i]L and its goal will be
to recover the following:

vRm =

[

L
∑

l=1

[

ℜ (aml) t
R
l − ℑ (aml) t

I
l

]

]

mod Λ, (20)

vIm =

[

L
∑

l=1

[

ℑ (aml) t
R
l + ℜ (aml) t

I
l

]

]

mod Λ. (21)

It proceeds by removing the dithers and scaling the observation with αm and therefore,

ỹR
m
= ℜ

(

αmym

)

+

L
∑

l=1

ℜ (aml) d
R
l −ℑ (aml) d

I
l

= vRm + zReq,m, (22)

and

ỹI
m
= ℑ

(

αmym

)

+
L
∑

l=1

ℑ (aml) d
R
l + ℜ (aml) d

I
l

= vIm + zIeq,m, (23)

where αm is the MMSE scaling coefficient that minimizes the variance of zReq,m + jzIeq,m. The relay
quantizesỹI

m
, ỹR

m
to the closest lattice points in the fine latticeΛf modulo the coarse latticeΛ and

estimates the following:

v̂Rm =
[

Q
(

ỹR
m

)]

mod Λ, (24)

v̂Im =
[

Q
(

ỹI
m

)]

mod Λ, (25)
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whereQ denotes the quantization with respect toΛf . Finally, the relay mapŝvRm and v̂Im to f̂
R

m
and f̂

I

m
,

respectively, viaψ̃−1,

ψ̃−1(v) =
(

G
T
G
)−1

G
Tg−1

(

q
([

B
−1v mod Λ

]))

, (26)

wherev ∈ Fn
q . Hence,

ψ̃−1
(

v̂Rm
)

= f̂
R

m
=

L
⊕

l=1

(

bRmlŵ
R
l ⊕

(

−bIml

)

ŵI
l

)

, (27)

ψ̃−1
(

v̂Im
)

= f̂
I

m
=

L
⊕

l=1

(

bImlŵ
R
l ⊕

(

bRml

)

ŵI
l

)

, (28)

where

bRml = ℜ (aml) mod q, (29)

bIml = ℑ (aml) mod q. (30)

Note that both[bR1 , . . . , b
R
M ] and [bI1, . . . , b

I
M ] are required to be full rank so that decoding eachwR

l , w
I
l at

the final destination is feasible.
In [11], Nazer and Gastpar show the following theorem using the coding scheme we have described in

this section.
Theorem 11 (Nazer and Gastpar):At relay m, givenhm ∈ CL andam ∈ Z[i]L, a computation rate of

R(hm, am) = log+

(

(

‖am‖2 −
P |hHmam|2
1 + P‖hm‖2

)−1
)

, (31)

is achievable.
GivenH and assuming that the relays do not cooperate with each other, each relay would attempt to

pick an integer vectoram that maximizes its individual computation rate, i.e.am = argmax
a∈Z[i]L

R(hm, am)

in order to maximizeR (H,A).

V. COMPUTE-AND-FORWARD WITH LATTICES OVER EISENSTEIN INTEGERS

The main result in this section is that for some channel realizations, higher information rates than those
in Theorem 11 are achievable. The improved information rateis obtained by considering nested lattices
over Eisenstein integers which allow themth relay to decode a linear combination of the form

∑L
l=1 amltl,

whereaml ∈ Z[ω]. This result is made precise in Theorem 15.
One of the key challenges in proving this achievability result is to show the existence of nested lattices

over Eisenstein integers, which we refer to asZ[ω]-lattices, where the coarse lattice is good for covering
and the fine lattice can achieve the Poltyrev limit. We would like to note that, we do not prove the existence
of Z[ω]-lattices that are good for AWGN channel coding, i.e. lattices for which the error probability can
be bounded exponentially inn, in this paper. Furthermore, we do not require the coarse lattice in the
sequence of nested lattices to be simultaneously good for AWGN channel coding and good for covering.
In order to state our main theorem, it suffices to show the existence of nestedZ[ω]-lattices where the
coarse lattice is good for covering and the fine lattice can achieve the Poltyrev limit. A similar result is
obtained in [20], where the coarse lattice is chosen to be good only for quantization and the fine lattice
to be good for AWGN channel coding in order to achieve1

2
log(1 + SNR) using lattice codes for the

point-to-point AWGN channel.
In what follows, we first provide some preliminaries about Eisenstein integers and summarize Con-

struction A for Z[ω]-lattices. Afterwards, we show that nestedZ[ω]-lattices where the coarse lattice is
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good for quantization and the fine lattice achieves the Poltyrev limit can be obtained through Construction
A. The existence result can then be used to prove Theorem 15, which is the main result of this paper.
SinceZ[ω] quantizesC better thanZ[i], on the average (over the channel realizations), higher information
rates are achievable by usingZ[ω]-lattices compared to usingZ-lattices. The superiority of the proposed
scheme will be further confirmed in Section VI where we provide numerical results to compare the outage
performance and error-correcting performance of latticesover natural integers and lattices over Eisenstein
integers in compute-and-forward.

A. Preliminaries: Eisenstein Integers

An Eisenstein integer is a complex number of the forma+ bω wherea, b ∈ Z andω = −1
2
+ j

√
3
2

. The
ring of Eisenstein integersZ[ω] is a principal ideal domain, i.e, a commutative ring withoutzero divisors
where every ideal can be generated by a single element. Otherwell-known principal ideal domains areZ
andZ[i]. A unit in Z[ω] is one of the following:{±1,±ω,±ω2}. An Eisenstein integer̺ is an Eisenstein
prime if either one of the following mutually exclusive conditions hold [21]:

1) ̺ is equal to the product of a unit and any natural prime congruent to 2 mod 3.
2) |̺|2 = 3 or |̺|2 is any natural prime congruent to1 mod 3.

An n-dimensionalZ[ω]-lattice can be written in terms of a complex lattice generator matrixB ∈ Cn×k:

Λ = {λ = Be : e ∈ Z[ω]k} (32)

B. Construction A forZ[ω]-lattices

Let ̺ be an Eisenstein prime with|̺|2 = q. SinceZ[ω] is a principal ideal domain,̺Z[ω] is an ideal
of Z[ω] and together they form the quotient ringZ[ω]/̺Z[ω]. Moreover, since̺ is an Eisenstein prime,
̺Z[ω] is a prime ideal and hence a maximal ideal (a property for principal ideal domains). Thus, the
quotient ring is isomorphic to a field

Z[ω]/̺Z[ω] ∼= Fq. (33)

i.e., there exists a ring isomorphismσ : Z[ω]/̺Z[ω] → Fq [22, page 118]. Note thatZ[ω] is the union of
q cosets of̺ Z[ω]

Z[ω] = ∪
s∈S

(̺Z[ω] + s) (34)

whereS represents the set ofq coset leaders ofZ[ω]/̺Z[ω]. One has the canonical ring homomorphism
[22, page 118] mod ̺Z[ω] : Z[ω] → Z[ω]/̺Z[ω] to homomorphically map an element inZ[ω] to
its coset leader. Now composingmod ̺Z[ω] and σ, one obtains the ring homomorphism̃σ , σ ◦
mod ̺Λ : Z[ω] → Fq. Note thatσ̃ can be extended to vectors in a straightforward manner by mapping the
elements of the vector componentwise to another vector [14,page 197]. We would like to mention that the
aforementioned properties also hold for lattices that are constructed over any other principal ideal domain
such asZ or Z[i]. For example, the mod q operation in Construction A forZ-lattices also provides a
ring homomorphism.We now define Construction A forZ[ω]-lattices as follows.

Let ̺ be an Eisenstein prime andq = |̺|2. Note thatq is either a natural prime or the square of a natural
prime. Also letk, n be integers such thatk ≤ n and letG ∈ Fn×k

q . Similar to aZ-lattice, aZ[ω]-lattice
can be obtained by Construction A [14].

1) Define the discrete codebookC = {x = Gy : y ∈ Fk
q} where all operations are overFq. Thus,

x ∈ F
n
q .

2) Generate then-dimensionalZ[ω]-latticeΛC asΛC , {λ ∈ Z[ω]n : σ̃(λ) ∈ C}.
3) ScaleΛC with ̺−1 to obtainΛ = ̺−1ΛC.

Once again, we would like to note that only the first two steps that we have stated in Construction A is
required to build aZ[ω]-lattice. However,due to the fact that we will prove the existence ofZ[ω]-lattices
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that are good for covering in this paper using similar proof techniques in [5], we also require the third step
which scales the lattice. An example of such a construction with k = 1, n = 1,G = [1], ̺ = 2 −

√
3j,

q = 7 and the corresponding ring homomorphism is shown in Fig. 2. In this figure, the green circles
represent̺ Z[ω] and the red lines represent the boundaries of their Voronoi regions. It can be observed
that there are exactlyq = |̺|2 = 7 lattice points that belong toZ[ω] that lie within each Voronoi region of
the lattice points that belong to̺Z[ω]. It can also be verified that the mapping (labeling) in Fig. 2 from
Z[ω]/̺Z[ω] to Fq , i.e., σ̃ is indeed a ring homomorphism. We would like to note that the lattice in Fig. 2
is trivially Z[ω]. Unfortunately, we were not able to provide a less trivial figure with a larger dimensional
Z[ω]-lattice. This is due to the fact that even a two-dimensionalZ[ω]-lattice requires four real dimensions
to be drawn, which is not feasible.

−4 −3 −2 −1 0 1 2 3 4
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Fig. 2. ΛC with G = [1] and the corresponding ring homomorphism

Givenn, k, q, we define an(n, k, q,Z[ω]) ensemble as the set ofZ[ω]-lattices obtained through Construction-
A where for each of these lattices,Gij are i.i.d with a uniform distribution overFq.

Theorem 12:A lattice Λ drawn from an(n, k, q,Z[ω]) ensemble, wherek < n but grows faster than
log2 n, q is a natural prime congruent to1 mod 3, and wherek, q satisfy

qk =

(√
3
2

)n

VB
(

reff
Λ

) =

(√
3
2

)n

Γ (n + 1)

πn
(

reff
Λ

)2n

≈
√
2nπ

(√
3

2

)n(

2n

2 exp(1)
(

reff
Λ

)2

)n

, (35)

and

rmin < reff
Λ < 2rmin, (36)
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where0 < rmin <
1
4
, is good for covering, i.e,

rΛcov

reff
Λ

→ 1, (37)

in probability asn→ ∞.
Proof: We would like to note that the steps we follow in this proof aresimilar to the proof of

Theorem 2 in [5]. The most important differences are as follows. Instead of considering the lattice points
that lie within the fundamental Voronoi region of the lattice Z

n, which is ann-dimensional unit cube, we
consider the lattice points that lie within the fundamentalVoronoi region of the latticeZ[ω]n, which is
ann-dimensional hexagon. Furthermore, since we are constrained toq congruent to1 mod 3, Bertrand’s
postulate is not sufficient to show the existence of suchq that satisfies (35) and (36) ask grows. Therefore,
we use the result in [23] to show such prime numbers exist. Forthe rest of the proof, see Appendix B.
We would like to note that a variant of Theorem 12 can also be proven for q congruent to2 mod 3,
which in this case we can constructΛ from linear codes overFq2.

Corollary 13: A lattice Λ drawn from an(n, k, q,Z[ω]) ensemble, wherek < n but grows faster than
log2 n and wherek, q satisfy (35) and (36) is good for quantization, i.e.,

G (Λ) → 1

2πe
, (38)

in probability asn→ ∞.
Proof: It was shown in [16] that a lattice ensemble which is good for covering is necessarily good

for quantization. Thus from Theorem 12, the result follows.

C. NestedZ[ω]-lattices obtained from Construction-A

NestedZ[ω]-lattices can be obtained from Construction-A very similarto Z-lattices as mentioned in
Section III-B. The coarse latticeΛ is obtained through Construction-A as mentioned in SectionV-B with
a corresponding generator matrixB. For a givenG ∈ Fn×k

q , denoteΛ′ as the correspondingZ[ω]-lattice
obtained through Construction-A usingG as the generator matrix of the underlying linear code. Generate
the Z[ω]-lattice Λf asΛf = BΛ′. It can be observed thatΛ ⊂ Λf with a coding rate of k

2n
log q. Given

n, k, q andΛ whereΛ is a Z[ω]-lattice obtained from Construction-A, we define the(n, k, q,Λ,Z[ω])
ensemble as the set of lattices obtained fromΛ and Construction-A as previously mentioned where for
each of these lattices, the elements of the generator matrixof the underlying linear codeGij is i.i.d with
a uniformly distribution overFq.

Theorem 14:There exists a pair of nestedZ[ω]-lattices where the coarse lattice is good for covering
and the fine lattice achieves the Poltyrev limit.

Proof: For this proof, we build nestedZ[ω]-lattices as mentioned above. Using our result from Theo-
rem 12, we pick a coarse latticeΛ which is good for covering. We then pickΛf from the(n, k, q,Λ,Z[ω])
ensemble as described in Section V-C and show that the Minkowski-Hlawka theorem can be proven for
this ensemble [4]. We would like to note that the steps we follow are very similar to the steps followed in
[4]. Some of the important differences are as follows. Sincewe are constructingZ[ω]-lattices, we consider

the fundamental Voronoi region of the latticeZ[ω]n which has a volume of
(√

3
2

)n

. Therefore this should

be taken into account when Vol
(

VΛf

)

is kept constant asn → ∞. In the detailed proof provided in
Appendix C, it can be observed that a latticeΛf picked from the(n, k, q,Λ,Z[ω]) ensemble achieves the
Poltyrev limit as long as the generator matrixB of Λ is full rank. We would like to note that this result
is a generalized version of what was stated in [4] whereB was assumed to be an identity matrix. One
of the consequences of picking an arbitrary full rank matrixB would be thatVΛ might stretch out in
some dimensions while shrinking in others. Nonetheless, since the growth ofq in Theorem 12 ensures
that q → ∞, there is exactly one element in the kernel ofσ̃ contained in the bounded region, i.e., the left
term of (114) vanishes, and the result holds.
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Now, we are ready to state the main theorem in the paper.
Theorem 15:At relay m, givenhm andam, a computation rate of

R(hm, am) = log+

(

(

‖am‖2 −
P |hHmam|2
1 + P‖hm‖2

)−1
)

, (39)

whereaml ∈ Z[ω], is achievable.
Proof:

We would like to note that the steps we follow in this proof arevery similar to the proof of Theorem
5 in [11]. Nonetheless, there are some important differences we would like to point out. Sinceaml are
Eisenstein integers in our framework, their real and imaginary components are not independent and we
cannot use a real and imaginary decomposition as in [11]. Therefore, the channel coefficients and channel
noise cannot be decomposed into real and imaginary components either. Due to this, we are constrained
to employZ[ω]-lattices in our framework. Furthermore, in order to obtainbml from aml, we use a ring
homomorphismσ, which can be thought of as the equivalent of a modulo operation for aml ∈ Z. We
would also like to mention that this proof can be trivially extended to the case where information vectors
at transmitters have different lengths by considering a sequence of nested lattice codes. We proceed as
follows.

Using the result from Theorem 14, a fineZ[ω]-latticeΛf and a coarseZ[ω]-latticeΛ, which is nested in
Λf with a corresponding coding rateR

2
= k

2n
log q, is chosen such thatΛf achieves the Poltyrev limit and

Λ is good for covering. BothΛ andΛf are scaled such thatσ2
Λ = P . Following this, the lattice codebook

Λf ∩ VΛ is constructed.
Source nodel maps its information vectorwl ∈ Fk

q , whereq = |̺|2 and̺ is an Eisenstein prime, to a
lattice codewordtl ∈ Λf ∩ VΛ, respectively, via a bijective mappingψ,

tl = ψ(w) =
[

B̺−1σ−1(Gw)
]

, (40)

whereσ was defined in Section V-B. It then constructs a dither vectordl, which is uniformly distributed
within VΛ and subtracts this dither vector from the lattice codewordtl and transmits the following:

xl = [tl − dl] mod Λ. (41)

Given a channel coefficient vectorhm ∈ CL, relaym observes

y
m
=

L
∑

l=1

hmlxl + zm. (42)

The relay approximateshm, in some sense, by an Eisenstein integer vectoram ∈ Z[ω]L and its goal will
be to recover the following:

vm =

[

L
∑

l=1

(amltl)

]

mod Λ. (43)

It proceeds by removing the dithers and scaling the observation with αm, and therefore,

ỹ
m
= αmym +

L
∑

l=1

amldl, (44)

whereαm is the MMSE coefficient.
Then ỹ

m
is quantized to the closest lattice point in the fine latticeΛf modulo the coarse latticeΛ and

estimates the following:
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v̂m =
[

QΛf

(

ỹ
m

)]

mod Λ, (45)

whereQΛf
denotes the quantization with respect toΛf . The remaining steps of the proof would be

identical to the steps in the proof of Theorem 5 in [11] with the only difference being as follows. The
relay mapŝvm to f̂

m
via ψ−1, where

ψ−1 (v̂m) = f̂
m
=
(

G
T
G
)−1

G
Tσ
(

̺
([

B
−1v̂m mod Λ

]))

=
L
⊕

l=1

bmlŵl, (46)

and bml = σ (aml).
Due to the fact thatΛ is good for covering and the dithers are uniformly distributed inVΛ, the probability

density function of the equivalent noisezeq,m is upper-bounded by a zero-mean complex Gaussian with
a variance that approaches|αm|2 + P ||αmhm − am||2 multiplied by a constant asn → ∞ ([11, Lemma
8]). We would like to note that the error probability Pr

(

zeq 6∈ VΛf

)

goes to zero asn→ ∞, however this
decay is not necessarily exponential inn, since we have only proven the existence ofZ[ω]-lattices which
achieve the Poltyrev limit and this result does not provide information about the error exponents of such
lattices. Nonetheless, it is sufficient to achieve the computation rate in (39).

GivenH and assuming that the relays do not cooperate with each other, each relay would attempt to
pick am ∈ Z[ω]L that maximizes its individual computation rate, i.e.am = argmax

a∈Z[ω]L
R(hm, am) in order

to maximizeR (H,A). A straightforward method to determine the optimalam would be to employ an
exhaustive search over allam that satisfies‖am‖2 < 1+‖hm‖2P ([11, Lemma 1]). One major challenge in
the compute-and-forward paradigm is that for largeP andL, exhaustively searching optimalam becomes
infeasible. Nonetheless, this problem can be molded into a different form which enables the utilization
of much more efficient algorithms (see [12] forZ[i] and [13] forZ[ω] for example.) In the following
subsection, we review this approach for the sake of completeness.

D. An efficient algorithm for choosingam
As can be seen in ([11]), upon scalingy

m
with the MMSE coefficientαm, the effective noise variance

at relaym, which we denote asσ2
eff,m, can be computed as

σ2
eff,m = |αm|2 + P‖αmhm − am‖2, (47)

where

αm =
PhHmam

1 + ‖hm‖2
. (48)

Furthermore, the achievable computation rate at each relaycan be expressed in terms ofP andσ2
eff,m as

R (hm, am) = log+

(

P

σ2
eff,m

)

. (49)

Therefore,

argmax
am∈Z[ω]L

R (hm, am) = argmin
am∈Z[ω]L

σ2
eff,m. (50)
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We now take a closer look atσ2
eff,m. Substituting (48) in (47), it can be observed that

σ2
eff,m = PaHmam − P 2aHmhmh

H
mam

1 + P‖hm‖2

= PaHm

(

I− Phmh
H
m

1 + P‖hm‖2
)

am (51)

Due to the Matrix Inversion Lemma [24],

I− Phmh
H
m

1 + P‖hm‖2
=
(

I + Phmh
H
m

)−1
, (52)

andσ2
eff,m can be expressed as

σ2
eff,m = PaHm

(

I + Phmh
H
m

)−1
am. (53)

Note that
(

I + Phmh
H
m

)

, which we denote asS, is a Hermitian matrix. Therefore, the singular value
decomposition ofS can be expressed asVDV

H, whereD is a diagonal matrix which has the eigenvalues
of S as non-zero entries andV is an orthogonal matrix which has the corresponding eigenvectors ofS
in its columns. Hence,

σ2
eff,m = PaHm

(

VD
−1
V

H
)

= P‖D−1/2
V

Ham‖2, (54)

and therefore it can be concluded that

argmin
am∈Z[ω]L

σ2
eff,m = argmin

am∈Z[ω]L
‖D−1/2

V
Ham‖2. (55)

Thus, the search in (55) is equivalent to finding the non-zerominimal Euclidean norm point generated
by D

−1/2
V

H as aZ[ω]-lattice, which is commonly referred to as the shortest vector problem (SVP).
For reasonable values ofL, e.g.L ≤ 32, one of the shortest lattice vectors can be found via a Pohst
enumeration or a Schnorr-Euchner enumeration in a way similar to standard sphere decoding [25][26]. A
polynomial-time method to approximate (55) is based on LLL reduction [27]. For our lattices, an LLL
over Z[ω] should be used as devised by Napias for Euclidean rings [28] including bothZ[i] andZ[ω].
Also in [29], LLL has been proposed in a different methodology with no singular value decomposition
of S. Finding approximately optimalam efficiently is an active research area. The interested reader is
referred to [30] and the references therein.

VI. NUMERICAL RESULTS

In this section, we present some numerical results on the achievable computation rates withZ[ω]-
lattices and compare them to the maximum achievable rates with Z-lattices. We consider the case of
L = 2 transmitters and there isM = 1 relay. For a given channel coefficient vectorh, let RE(h) and
RG(h), denote the maximum achievable rate usingZ[ω]-lattices andZ-lattices, respectively, i.e.,

RE(h, P ) = max
a∈Z[ω]2

log+

(

(

‖a‖2 − P |hHa|2
1 + P‖h‖2

)−1
)

, (56)

and

RG(h, P ) = max
ã∈Z[i]2

log+

(

(

‖ã‖2 − P |hH ã|2
1 + P‖h‖2

)−1
)

. (57)

In Fig. 3, we fixh1 = 1 and chooseh2 such thatℜ(h2),ℑ(h2) ∈ [−4, 4]. We would also like to note that
we do not impose a probability distribution onh2. For each pair(h1 = 1, h2), we plot the region where
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Fig. 3. Regions ofℜ (h2) ,ℑ (h2) whereRG(h, P ) > RE(h, P ), RG(h, P ) < RE(h, P ) or RG(h, P ) = RE(h, P ): SNR=10 dB

RG(h) > RE(h), RG(h) < RE(h) or RG(h) = RE(h). For the total number of realizations considered,
RE > RG, RE < RG. andRE = RG for 22.6%, 15.9%, and 61.5% of the realizations, respectively.
One might expect thatZ[ω]-lattices would attain a greater maximum achievable rate when h2 is closer
to an Eisenstein integer,Z-lattices would attain a greater maximum achievable rate when h2 is closer
to a Gaussian integer and both lattices would achieve the same maximum achievable rate whenh2 is
closer to a natural integer. However as seen from Fig. 3, other factors also contribute to the maximum
achievable rate. For example when‖h2‖ ≫ ‖h1‖ or ‖h2‖ ≪ ‖h1‖, the relay choosesa1 = 0, ‖a2‖ = 1 or
‖a1‖ = 1, ‖a2‖ = 0, respectively since treating the other transmitted signalas noise (decode-and-forward)
results in maximum achievable rate. Also, the MMSE scaling coefficientα plays a very important role
as seen in (22), (23) and (44). Note that (56) and (57) can be written as

RE(h, P ) = max
a∈Z[ω]2

log+

(

1 + P‖h‖2
‖a‖2 + P

(

‖a‖2|h‖2 − |hHa|2
)

)

(58)

and

RG(h, P ) = max
ã∈Z[i]2

log+

(

1 + P‖h‖2
‖ã‖2 + P

(

‖ã‖2|h‖2 − |hH ã|2
)

)

,

(59)

respectively.
As one can see from the denominators in (58) and (59), it is desirable to aligna (ã) with h as much

as possible in order to minimize the second term. However, whenh 6∈ Z[i]2,h 6∈ Z[ω]2, or the elements of
h cannot be written as the ratio of Gaussian integers or Eisenstein integers, orh is not a rotated version
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of a Gaussian integer vector or Eisenstein integer vector,‖a‖ → ∞ (‖ã‖ → ∞) for perfect alignment.
Unfortunately, this results in the first term of the denominator to grow and hence there is a tradeoff.
Therefore even thoughh2 might be closer to an Eisenstein integer (Gaussian integer), i.e. h is aligned
better with a vector inZ[i]2 (Z[ω]2), the magnitude of this vector might be too large and thus a larger
computation rate may be achieved by choosinga ∈ Z[i]2 (ã ∈ Z[ω]2).
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Fig. 4. A comparison ofRE(h, P ) andRG(h, P ) for h = [1.4193 + j0.2916; 0.1978 + j1.5877]

In Fig. 4, we fix the channel realization to beh = [1.4193 + j0.2916; 0.1978 + j1.5877] and compare
RE(h, P ), RG(h, P ) for different SNRs. For this particularh, it can be observed thatZ[ω]-lattices can
achieve substantially higher rates thanZ-lattices in the medium SNR regime. We would like to note that
this is not necessarily the case for every channel realization, nonetheless it is a perfect example of how
channel realizations affect the performance ofZ[ω]-lattices andZ-lattices. Therefore, a larger number of
channel realizations should be considered in order to make afair comparison of their performance in the
average sense.

A. Outage performance comparison ofZ-lattices vs.Z[ω]-lattices in compute-and-forward

In this subsection, we compare the outage performance lattice codes overZ and lattice codes over
Z[ω] for compute-and-forward. Given a target rateRT and a probability distributionP on h, i.e. h ∼ P,
we define the outage event of usingZ-lattices andZ[ω]-lattices asRG(h) < RT and RE(h) < RT ,
respectively. In Fig. 5, we plot the outage probability withZ[ω]-lattices andZ-lattices as a function of
SNR (P ) whereℜ (h1) ,ℑ (h1) ,ℜ (h2) ,ℑ (h2) ∼ N (0, 1). We average over 100000 realizations ofh at
each SNR and choose the target rate to beRT = 1/2 log2 7 bits/symbol/Hz. As seen in Fig. 5, there is a
0.4 dB gain from usingZ[ω]-lattices instead ofZ-lattices in terms of outage performance. We would like
to note that this gain comes with no additional computational complexity.

B. Error correcting capability ofZ-lattices vs.Z[ω]-lattices in compute-and-forward
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In this subsection, we compare the error-correcting capability of lattice codes overZ and lattice codes
over Z[ω] for compute-and-forward. Before we do that, we would like topoint out that in general, the
nested lattice shaping adopted in the previous sections is very difficult to be implemented. In fact, it is
equivalent to the SVP and hence is NP-hard. In practice, one could trade performance for complexity by
considering the use of hypercube shaping. Then the proposedscheme would reduce to the concatenation
of a linear code overFq with a constellation corresponding to a set of minimum energy coset leaders of
the quotient ringZ[ω]/̺Z[ω] (or Z/qZ). In the following, we compare the error-correcting capability for
this practical scheme.

In order to construct a lattice code over Eisenstein integers, we have used a rate 1/2, regular (3,6),
uniformly distributed edge weight, length 10000 LDPC code over F25 and mapped each codeword
component to the constellation carved fromZ[ω]/5Z[ω] via a ring homomorphism. In order to construct a
lattice code over natural integers, we have used a rate 1/2, regular (3,6), uniformly distributed edge weight,
length 10000 LDPC code overF5 and mapped each codeword component to the coset leaders of the
quotient ringZ/5Z, i.e. {−2,−1, 0, 1, 2}. Note that for the lattice code over natural integers, we consider
F5 due to the real and imaginary decomposition. We have generated 100000 channel realizations, used
these channel realizations over a range of SNR, and we have plotted the average symbol error probability
of these lattice codes for the compute-and-forward framework. As seen in Fig. 6 simulation results show
that lattice codes over Eisenstein integers outperform lattice codes over integers by roughly 0.4 dB, which
is consistent with our outage simulation results.

VII. CONCLUSION

In this paper, we have shown the existence of lattices over Eisenstein integers that are simultaneously
good for quantization and that achieve the Poltyrev limit. These lattices were then used to generate lattice
codes over Eisenstein integers which were implemented for compute-and-forward and thus enable the
relays to decode to linear combinations of lattice points with Eisenstein integer coefficients instead of
Gaussian integers. Due to the fact that Eisenstein integersquantize channel coefficients better than Gaussian
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integers, one can expect an increased achievable computation rate on average. Simulation results suggest
that for compute-and-forward, lattice codes over Eisenstein integers provide improved outage performance
and error-correcting performance in the average sense compared to lattice codes over integers without the
cost of additional computational complexity.

APPENDIX

In this section, we provide the proofs for Theorem 12 and Theorem 14. We would like to note that
the proof techniques used in proving Theorem 12 are very similar to those used in [5] and our proof of
Theorem 14 is largely based on the proof in [4]. However, there are a few steps that have to be re-derived
since Eisenstein integers are considered. We present the entire proof for the purpose of completeness. We
first give some definitions and preliminaries that will be very useful for the proofs.

A. Notations and Definitions forZ[ω]-lattices

In [14, p. 54], it is stated that ann-dimensional complex lattice can be equivalently thought of as a
2n-dimensional real lattice by the following mapping

[λ(1) · · ·λ(n)]T → [ℜ(λ(1)) ℑ(λ(1)) · · ·ℜ(λ(n)) ℑ(λ(n))]T
(60)

where the left hand side is ann-dimensional complex lattice point and the right hand side is its 2n-
dimensional real representation. Thus we shall considern-dimensional Eisentein lattices as2n-dimensional
real lattices and useCn andR2n interchangeably. We shall now introduce the notation that will be used
in this section.

• S ′: S \ 0, whereS is any discrete set.
• V: Fundamental Voronoi region of the latticeZ[ω]n.
• GRID: The lattice̺−1

Z[ω]n, where̺ is an Eisenstein prime.
• x∗ = x mod V = x mod Z[ω]n = x−QZ[ω]n (x) wherex ∈ Cn.
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• A∗ = A mod V, whereA is any set inCn and the mod V operation is done element-wise.
• A′ , A \ {0} whereA ⊂ Rn, A ⊂ Cn or A ⊂ Fn

q

• Λ: An n-dimensionalZ[ω]-lattice nested in GRID, i.e.,Λ ⊂ GRID .
• Vol(·): Volume of a closed set inCn, or equivalently volume of a closed set inR2n.
• GRID∗: GRID∩ V.
• B(r):A complex n-dimensional, or equivalently real2n-dimensional, closed set of points inside a

sphere of radiusr centered at the origin.
• Λ∗: The lattice constellation, i.e.Λ∗ = Λ ∩ V. Note thatΛ∗ can generateΛ as follows:

Λ = Λ∗ + Z[ω]n. (61)

• M = |Λ∗|: Cardinality of the lattice constellation.
• Λ∗

i : A point in Λ∗, i ∈ {0, · · · ,M − 1}.
Note that by our construction, the lattices chosen from the(n, k, q,Z[ω])-lattice ensemble are periodic
modulo the regionV. Thus we can restate all the properties of our lattice in terms of the lattice constellation
Λ∗ that lies withinV. The (n, k, q,Z[ω])-lattice ensemble has the following properties:

1) Λ∗
0 = 0 deterministically.

Proof: 0 is always a valid lattice point due to the definition of a lattice and0∗ = 0. Thus the
result holds.

2) Λ∗
i is distributed uniformly over GRID∗ for i ∈ {1, · · · ,M − 1} whereM = qk.

Proof: Each element ofG is chosen uniformly overFq, therefore each codeword of the
underlying linear code is distributed uniformly overFn

q . Due to last step in Construction A in
Section V-B where the lattice is scaled with̺−1 and the ring homomorphism̃σ, the result holds.

3) The difference(Λ∗
i − Λ∗

l )
∗ is uniformly distributed over GRID∗ for all i 6= j.

Proof: This result holds due to the previous property and the definition of the∗ operation.
4) |Λ∗| = qk with high probability ifn− k → ∞

Proof:

Pr{rank(G) < k} ≤
∑

c6=0

Pr

{

k
∑

i=1

ciGi = 0

}

= q−n(qk − 1), (62)

whereci would be elements of ak × 1 coefficient vectorc.
We shall refer toB(r)∗ = B(r) mod V as aV-ball. Under the assumption thatr < 1

2
, we say that

(Λ∗ + B(r))∗ is aV-covering if

V ⊆
⋃

λ∈Λ∗

(λ+ B(r))∗ . (63)

Note thatΛ + B(r) is a covering if and only if(Λ∗ + B(r))∗is aV-covering

In our lattice ensemble, we will constraink < βn for some0 < β < 1. Therefore Pr{rank(G) 6= k}
goes to zero at least exponentially. IfG is full rank, there areM = qk many codewords that lie inV.
Also, ann-dimensionalV is known to have a volume of

(√
3
2

)n

. Then the volume of the Voronoi region

of our lattice is equal to
(√

3
2

)n

q−k. In our analysis very similar to [5], we will hold the effective radius
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of the Voronoi region ofΛ, denoted asreff
Λ approximately constant asn→ ∞. This implies the following:

qk =

(√
3
2

)n

VB
(

reff
Λ

) =

(√
3
2

)n

Γ (n+ 1)

πn
(

reff
Λ

)2n

=
√
2nπ

( √
3

2
(

reff
Λ

)2

)n
(n

e

)n
(

1 +O

(

1

n

))

. (64)

Note thatq can either be a natural prime congruent to1 mod 3 or the square of a natural prime congruent
to 2 mod 3, nonetheless we shall restrictq to be a natural prime congruent to1 mod 3 for the sake of
simplicity. We would like to note that it is not possible to keep reff

Λ constant asn grows sinceq has to be
a natural prime congruent to1 mod 3 andk has to be an integer. Therefore, we will relax this condition
to

rmin < reff
Λ < 2rmin, (65)

as n grows, where0 < rmin <
1
4
. Although we have restrictedq to be a natural prime congruent to1

mod 3 , with the assumption ofk ≤ βn for β < 1, (65) can be satisfied for any large enoughn due to the
following. Let q∗ be the real number that satisfies (64) for a radius of2rmin. Then,q∗

k

= 1

VB(
√

2√
3
2rmin)

and from (65),q must satisfy

q∗ < q < 22n/kq∗. (66)

Finally, to show that for eachn > 4 in our sequence a correspondingq exists that satisfies (66), we use
the following lemma.

Lemma 16 ([23]): There always exists a natural prime congruent to1 mod 3 between integersm and
2m wherem > 4.

We would also like to note that from (64), the growth ofq is O(n
1

β ). Thus,

lim
n→∞

n/q = 0. (67)

B. Proof: Existence ofZ[ω]-lattices that are good for covering

The proof of this theorem is divided into two parts. In the first part, sufficient conditions are obtained
such that most Eisenstein lattices in the ensemble are “almost complete”V-coverings. In the second part,
stricter conditions are imposed such that most of the Eisentein lattices in the ensemble arecomplete
V-coverings and thuscomplete coverings .

Part I: Almost complete covering

Denoted to be half of the largest distance between any two points thatlie within the Voronoi region
of an element in GRID.

d =

√

n

3q
. (68)

Note that by (66),d→ 0 asn→ ∞.
Consider the lattice constellationΛ∗ of the ensemble and definek1, k2 such thatk1 + k2 = k. We

shall denote the Eisenstein lattice constellation obtained from the firstk1 columns ofG by Λ∗[k1] and let
Λ∗[k1+ j], j = 1, · · · , k2 denote the Eisenstein lattice constellation obtained fromthe firstk1+ j columns
of G. Let x be an arbitrary point such thatx ∈ V. Let S1(x) denote the set of GRID points within a
modulo distancer − d from x whered was defined in (68).

S1(x) = GRID∗ ∩ (x+ B(r − d))∗ . (69)
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Furthermore, denoteS2(x) to be the set of GRID points such that their Voronoi regions intersect a sphere
of radiusr − 2d centered atx.

S2(x) =
{

y ∈ GRID∗ :
(

y + ̺−1V
)

∩ (x+ B(r − 2d))∗
}

.

(70)

It can be observed thatS2(x) ⊂ S1(x). Thus, the cardinality ofS1(x) can be bounded as:

|S1(x)| ≥ |S2(x)| ≥
⌈

VB(r − 2d)/Vol(̺−1V)
⌉

=
⌈

qn(
√
3/2)−nVB(r − 2d)

⌉

. (71)

By the second property of the ensemble, the probability thatx is covered by a sphere of radius(r − d)
centered at any point ofΛ∗[k1] satisfies

Pr{x ∈ (Λ∗
i [k1] + B(r − d))∗} =

|S1(x)|/qn ≥ (
√
3/2)−nVB(r − 2d),

(72)

for i = 1, · · · ,M1 − 1 whereM1 = qk1 andΛ∗
i is the ith point of Λ∗. The indicator random variableηi

for i = 1, · · · ,M1 − 1 is defined as

ηi = ηi(x)

{

1, if x ∈ (Λ∗
i [k1] + B(r − d))∗

0, otherwise

Note thati = 0 is not considered sinceΛ∗
0[k1] = 0 deterministically. Thus,ηi is statistically independent

of both i andx. DefineX = X (x) as follows:

X =

M1−1
∑

i=1

ηi. (73)

Hence,X is equal to the number of nonzero codewords(r − d)-coveringx. Computing the expectation
of X and using the lower bound from (72),

E(X ) =

M1−1
∑

i=1

E(ηi)

≥ (M1 − 1) (
√
3/2)−nVB(r − 2d). (74)

Since theηi’s are pairwise independent and thus uncorrelated, similarto [5] one has

Var(X ) ≤ E(X ). (75)

Using (75), by Chebyshev’s inequality, for anyν > 0

Pr
{

|X −E(X )| > 2ν
√

E(X )
}

<
Var(X )

22νE(X )
≤ 2−2ν . (76)

Define
µ(ν) = E(X )− 2ν

√

E(X ). (77)

Then from (76),
Pr{X < µ(ν)} < 2−2ν . (78)

If µ(ν) ≥ 1, Pr{X < 1} is upper-bounded by2−2ν as well.
A point x ∈ V will be referred asremotefrom a discrete set of pointsA if it is not r − d-covered by

(A+ B(r − d))∗, i.e. if x does not belong to an(r − d)- sphere centered at any point ofA. Therefore,
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X (x) < 1 implies that “x is remote fromΛ∗[k1]”. DefineQ (A) to be the set of (continuous) points which
are remote from the discrete setA. DenoteQi = Q (Λ∗[k1 + i]) , i = 0, 1, · · · , k2 and define

qi = |Qi|/Vol (V) , (79)

to be the fraction of (continuous) points inV which are remote fromΛ∗[k1 + i]. Then,

|Q0| =
∫

V
1 (X (x) < 1) dx (80)

≤
∫

V
1 (X (x) < µ(ν)) dx, (81)

under the condition thatµ(ν) > 1. Then, from (78) we have

E(q0) < 2−2ν . (82)

Applying Markov’s inequality we get

Pr{q0 > 2νE(q0)} < 2−ν . (83)

Using (82),
Pr{q0 > 2−ν} < 2−ν . (84)

Therefore, by takingν → ∞ and keepingµ(ν) ≥ 1, this probability can be made arbitrarily small as
n→ ∞. In order to satisfy these constraints it is sufficient to take ν = o(logn) andE(X ) > nλ for some
λ > 0. By (74) this would be satisfied if we choose a radiusr such that

qk1 − 1 =
nλ

VB(r − 2d)

(√
3/2
)n

. (85)

Hence, we conclude that for these choice of parameters, for most lattices chosen from the(n, k, q,Z[ω])
ensemble,almost allpoints are covered by spheres of radiusr − d.

Part II: Complete covering

We would like to obtain an ensemble ofZ[ω]-lattices such that most of its members are able to cover
all the points inV. Q(A) is redefined to be the set of GRID∗ points, i.e.,x ∈ GRID∗ which are remote
from A andqi is redefined to be the fraction of GRID∗ points that are remote fromΛ∗[k1+ i]. Therefore,
an (r − d)-covering of all GRID points implies anr-covering of all points inV.

By augmenting the generator matrixG with an additional small number of columnsk2(k2 ≪ k1), the
fraction of uncovered GRID∗ points can be made smaller than1/| GRID∗| which implies that all GRID
points arer − d-covered. We proceed as follows.

Choosek1 andq such thatk1 grows faster thanlog2 n and (64) and (65) are satisfied. Define the set

S = Λ∗[k1] ∪
(

Λ∗[k1] +
{

σ−1(Gk1+1) ∩ V
})

, (86)

whereσ is the ring isomorphism defined in section V-B. Also note that,

Λ∗[k1 + 1] =

q−1
⋃

m=0

(

Λ∗[k1] + σ−1 ([m · (Gk1+1)] mod q)
)

. (87)

Hence,S ⊂ Λ∗[k1 + 1] andq1 is upper-bounded byQ(S)
|GRID|∗ . SinceΛ∗[k1] + {σ−1(Gk1+1) ∩ V} is an inde-

pendent shift ofΛ∗[k1], conditioned onΛ∗[k1], the event thatx is remote fromΛ∗[k1]+{σ−1(Gk1+1) ∩ V}
is independent from whetherx is remote fromΛ∗[k1] and the probability of such an event isq0. Then,

E

{ |Q(S)|
|GRID∗|

∣

∣

∣
q0

}

= q20. (88)
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Due to the fact thatS ⊂ Λ∗[k1 + 1], we haveE {q1|q0} ≤ q20. By Markov’s inequality,

Pr
{

q1 > 2γE(q1|q0)
∣

∣

∣
q0

}

. (89)

Therefore,
Pr
{

q1 ≤ 2γ−2ν
∣

∣

∣
q0 ≤ 2−ν

}

≥ 1− 2−γ. (90)

From Bayes’ rule and (84),

Pr
{

q1 ≤ 2γ−2ν
}

≥ Pr
{

q1 < 2γ−2ν , q0 ≤ 2−ν
}

(91)

≥
(

1− 2−γ
) (

1− 2−ν
)

. (92)

Repeating this procedure forl = 0, 1, . . . , k2 − 1, we obtain

ql+1 ≤ 2γE(ql+1|ql) (93)

≤ 2γq2l , (94)

with probability at least1−2−γ. Hence, the intersection of all thesek2 events and the event thatq0 < 2−ν

has the probability(1− 2−ν) (1− 2−γ)
k2, which implies

qk2 ≤ 22
k2 (γ−ν)−γ . (95)

We would like to choosek2 such that

qk2 < q−n = 2−n log q. (96)

The interpretation of (96) isqk2 = 0 since there areqn points in GRID∗. Therefore, choosingγ = ν − 1
and

k2 = ⌈log n + log log q⌉, (97)

or faster suffices. Due to the fact thatk = k1 + k2, we conclude that with probability at least
(

1− 2−ν
) (

1− 2−ν+1
)(logn+log log q)

(98)

Λ∗[k] satisfiesqk2 < q−n, in other words everyx ∈ GRID∗ is covered by at least one sphere of radius
(r − d). We would like to impose a condition onν such that bothν → ∞ and the probability in (98)
goes to 1 asn→ ∞. It suffices to choose

ν = 2 log (log n+ log log q) . (99)

Note that asµ(ν) ≥ 1, the probability that there remains a pointx ∈ GRID∗ that is not(r − d)-covered
is arbitrarily small asn→ ∞. If every point of GRID∗ is (r− d)-covered, thenV is r-covered. Thus, the
probability of a complete covering with spheres of radiusr goes to 1 wherer satisfies(see (85))

M = qk1+k2 =
nλ

VB(r − 2d)

(√
3/2
)n

qk2 (100)

≤ nλ

VB(r − 2d)

(√
3/2
)n

q(log n+log log q)+1 (101)

=
nλ

VB(r − 2d)

(√
3/2
)n

2log q[(logn+log log q)+1]. (102)
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From (100) and (102),

r

reff
Λ

= 2n

√

VB(r)

VB(r − 2d)
nλqk2 (103)

≤
(

r

r − 2d

)

· nλ/2n · 2(log q logn+log q log log q+log q)/2n. (104)

For ρcov → 1, the left-hand side of (103) should go to 1. Hence, we requireeach of the three terms on
the right-hand side of (104) goes to 1. From (67) and (68), it follows thatd → 0 asn → ∞ provided
that k ≤ βn andβ < 1. Therefore,

lim
n→∞

(

r

r − 2d

)

= 1. (105)

For any fixedλ > 0, we havelimn→∞ nλ/2n = 1. Also, sincek grows faster thanlog2 n, by (64) we have
log p grows slower thano log(n/ logn). Then,

lim
n→∞

2(log q logn+log q log log q+log q)/2n = 1. (106)

Thus, we have thatr
cov
Λ

reff
Λ

→ 1 in probability asn→ ∞ which completes the proof.

C. Proof: Existence of good nestedZ[ω]-lattices

Using our result from Theorem 12, letΛ be ann-dimensionalZ[ω]-lattice obtained through Construction-
A with a corresponding generator matrixB which is good for covering.

Definition 17: A setC of linear (n, k) linear code overFn
q is balancedif every nonzero element ofFn

q

is contained in the same number, denoted byNC of codes fromC.
Note that for fixedn, k, and q, the set of all linear(n, k) codes overFq is balanced. We shall now

state Lemma 1 in [4].
Lemma 18:Let f(·) be an arbitrary mappingFn

q → R and letC be a balanced set of linear(n, k) codes
overFq. Then, the average over all linear codesC in C of the sum

∑

c∈C′ f(c) is given by

1

C
∑

C∈C

∑

c∈C′

f(c) =
qk − 1

qn − 1

∑

v∈(Fn
q )

′

f(v). (107)

For proving Theorem 14, we shall use nestedZ[ω]-lattices obtained from Construction-A as mentioned
in Section V-C. A scaled version ofΛC denoted asγΛC , whereγ ∈ R+ andΛC was defined in section V-B
is constructed. Then, we multiplyγΛC with the generator matrixB and obtain the latticeΛf = γBΛC . It
can be observed thatγ̺Z[ω]n ⊂ γ̺Λ ⊂ Λf and there areqk elements ofΛf that lie within the fundamental
Voronoi region ofγ̺Λ. Hence, the volume of the fundamental region ofΛf is

Vol
(

VΛf

)

= γ2nqn−k

(√
3

2

)n

Vol (VΛ) . (108)

We can now extend the Minkowski-Hlawka Theorem in [4] to Eisenstein lattices as follows, following
similar steps.

Theorem 19:(Minkowski-Hlawka Theorem:) Let f be a Riemann integrable functionR2n → R of
bounded support(i.e.,f(v) = 0 (if ‖v‖ exceeds some bound). Then for any integerk where0 < k < n,
and any fixed Vol(VΛf

), the approximation

1

C
∑

C∈C

∑

v∈g(γBΛ′
C
)

f(v) ≈ Vol(VΛf
)−1

∫

R2n

f(v)dv, (109)
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whereC is any balanced set of linear(n, k) codes overFq and whereg(·) : Cn → R2n as in (60), becomes

exact in the limitq → ∞, γ → 0, γ2nqn−k
(√

3
2

)n

Vol (VΛ) = Vol
(

VΛf

)

fixed. Note that these conditions
imply that γq → ∞.

Proof:

1

|C|
∑

C∈C

∑

v∈g(γBΛ′
C
)

f(v) (110)

=
1

|C|
∑

C∈C

[

∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv) . . .

. . . +
∑

v∈g(Z[ω]n):σ̃(v)∈C′

f(γBv)
]

(111)

=
∑

v∈(g(Z[ω]n)′):σ̃(v)=0

f(γBv)

+
1

|C|
∑

C∈C

∑

c∈C′





∑

v∈g(Z[ω]n):σ̃(v)=c

f(γBv)



 (112)

=
∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv)

+
qk − 1

qn − 1

∑

c∈(Fn
q )

′





∑

v∈g(Z[ω]n):σ̃(v)=c

f(γBv)



 (113)

=
∑

v∈g((Z[ω]n)′):σ̃(v)=0

f(γBv)

+
qk − 1

qn − 1

∑

v∈g(Z[ω]n):σ̃(v)6=0

f(γBv), (114)

where the step from (112) to (113) is due to Lemma 18 and due to the fact thatf has bounded support,
the left term of (114) vanishes for sufficiently largeγq and the right term of (114) becomes

qk − 1

qn − 1

∑

v∈g((Z[ω]n)′)
f(γBv) ≈

γ−2nqk−n

(

2√
3

)n

Vol(VΛ)
−1

∫

R2n

f(v)dv, (115)

which becomes exact in the limit asγ → 0, γq → ∞, i.e, a Riemann sum approaching to a Riemann

integral. Note that the termγ−2nqk−n
(

2√
3

)n

appears in front of the integral in (115) since it is the
reciprocal of the volume of the fundamental Voronoi region of Λf = γBΛC.

Suppose now that a transmitter selects a codewordx from an Eisenstein latticeΛ ∈ C
n (or equivalently

R2n) andx is transmitted over an AWGN channel where a random noise vector z ∈ Cn(or equivalently
R2n) gets added with the variance of each2n components equal toPz/2. The receiver obtainsy = x+ z
and tries to recoverx. Furthermore, letE ⊂ R2n be a set of typical noise vectors. We say that anambiguity
occurs if y can be written in more than one way asy = x + e wherex ∈ Λ and e ∈ E. Let Pamb|E be
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the probability of ambiguity given thatz ∈ E. Assuming that the receiver is able to recoverx whenever
z ∈ E and there is no ambiguity, the probability of decoding erroris upper-bounded by

Pe ≤ Pamb|E + P (z /∈ E). (116)

Due to the fact that Minkowski-Hlawka theorem can be proven for Λf , the following theorem immediately
follows.[4]

Theorem 20:Let E be a Jordan measurable bounded subset ofR
2n and letk be an integer such that

0 < k < n. Then, for anyδ > 0, for all sufficiently largeq, and for all sufficiently smallγ, the arithmetic
average ofPamb|E over all latticesΛf = γBΛC , C ∈ C, which we denote asPamb|E, is bounded by

Pamb|E < (1 + δ)Vol(E)/Vol
(

VΛf

)

, (117)

whereC is any balanced set of linear(n, k) codes overFq and where Vol
(

VΛf

)

, γ2nqn−kVol(VΛ)
(√

3
2

)n

is the fundamental volume of the latticesΛf = γBΛC , C ∈ C.
Note that asn→ ∞, E will approach the shell of a2n-dimensional ball with radiusrz =

√

nPz. Thus

Vol(E) ≤ Vol(B(
√

nPz)) =

(√
πr2z
)n

Γ(n + 1)
as n→ ∞, (118)

which immediately follows that

Pamb|E ≤ (1 + δ)

(

rz
reff
γBΛC

)2n

, (119)

asn→ ∞. This implies thatPamb|E → 0 asn→ ∞ for rz < reff
γΛC

. Hence for a given latticeΛf = γBΛC ,
Pamb|E → 0 in probability asn→ ∞. Taking into account thatP (z /∈ E) → 0 asn→ ∞, from (116) we
conclude thatPe → 0 in probability asn→ ∞. This completes the proof.
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