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Abstract— Buildings are a large consumer of energy, and
reducing their energy usage may provide financial and societal
benefits. One challenge in achieving efficient building operation
is the fact that few financial motivations exist for encouraging
low energy configuration and operation of buildings. As a result,
incentive schemes for managers of large buildings are being pro-
posed for the purpose of saving energy. This paper focuses on
incentive design for the configuration and operation of building-
wide heating, ventilation, and air-conditioning (HVAC) systems,
because these systems constitute the largest portion of energy
usage in most buildings. We begin with an empirical model of
a building-wide HVAC system, which describes the tradeoffs
between energy consumption, quality of service (as defined
by occupant satisfaction), and the amount of work required
for maintenance and configuration. The model has significant
non-convexities, and so we derive some results regarding
qualitative properties of non-convex optimization problems with
certain partial-ordering features. These results are used to show
that “baselining” incentive schemes suffer from moral hazard
problems, and they also encourage energy reductions at the
expense of also decreasing occupant satisfaction. We propose
an alternative incentive scheme that has the interpretation of a
performance-based bonus. A theoretical analysis shows that this
encourages energy and monetary savings and modest gains in
occupant satisfaction and quality of service, which is confirmed
by our numerical simulations.

I. INTRODUCTION

Some large buildings have dedicated, full-time staff (called
building managers) who are tasked with configuration and
maintenance of the building. These building managers are
evaluated on their ability to properly regulate security, safety,
and occupant satisfaction of the building. On the other hand,
their roles have traditionally not included achieving sustain-
able building operation, especially since this objective can be
counter to occupant satisfaction (though safety and security
do not substantially affect building energy consumption).

Though building electricity use currently constitutes a
small percentage of total operating expenses of corporations,
achieving energy savings can bestow significant financial
and societal benefits. For instance, building electricity usage
constitutes seventy percent of total usage in the United States
[1]. As a result, monetary incentive schemes for improving
the sustainability of organizations utilizing large buildings
are slowly being introduced in some domains.
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This paper analyzes one proposed incentive scheme for
encouraging energy-efficient configuration by building man-
agers and then uses the insights gained to design another
incentive scheme with better properties. We focus on incen-
tives for building managers specifically applied to the energy
consumption of heating, ventilation, and air-conditioning
(HVAC) systems, and we have two reasons for this. First,
HVAC constitutes forty percent of total energy used in a
building [1]. Second, HVAC explicitly admits a quality of
service signal, in addition to energy usage, that can be
measured and considered in the incentive design [2].

Incentives for the electricity grid are similar to the single
building scenario. Such approaches can be classified [3] into
either dynamic pricing or demand response approaches. The
distinction is that demand response approaches establish a
baseline of electricity usage and then provide incentives
relative to this baseline (e.g., [4], [5], [6]). In contrast,
dynamic pricing involves treating consumers and producers
in a symmetric manner by pricing electricity to accurately
reflect generation costs and uncertainty along with demand
elasticity (e.g., [7], [8], [9], [10], [11], [12], [13], [14]).

A. Demand Response of Electricity

In this approach, a baseline of electricity consumption for
a consumer is established; next, consumers are rewarded
(or penalized) for reducing (increasing) their energy usage
from the baseline amount. It is well known [3] that this
approach suffers two major problems. Adverse selection
occurs whenever a consumer is given a reward for a reduction
that they would have made without the incentives. This can
occur, for instance, when a child leaves a home to go to
college. Moral hazard situations arise because consumers
are encouraged by the incentive (whenever they know about
the policy in advance) to artificially inflate electricity usage
during the period in which the baseline amount is established;
the reason is that the rewards achieved are relative to the
baseline period, and so a higher baseline will mean a higher
reward for a constant level of post-baseline energy savings.

B. Comparison of Static and Dynamic Models

This paper begins by performing a Monte Carlo analysis
in order to convert a hybrid system dynamical model of a
building-wide HVAC system and its energy characteristics
into a static model that describes the operational charac-
teristics of the HVAC system. Our static model has only
two states, which is fewer than the dynamical model; as a
result, it provides greater intuition about the problem. The
static model is easier to analyze with game-theory because
temporal effects typically complicate analysis. Moreover, the
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static model more closely reflects the fact that the agents
utilize fixed control strategies (i.e., the configuration is kept
constant) when commissioning a building.

This is not to say that the dynamic model is inferior. Such
models have been used to experimentally implement energy-
efficient HVAC controllers [15]. Moreover, incentive design
to encourage dynamic building configuration strategies will
lead to additional energy savings not possible with the
techniques discussed here. This is an open area.

C. Overview

The static model has significant non-convexities, and so
we derive some results on qualitative properties of non-
convex optimization problems with certain partial-ordering
properties. These results are used to analyze models of the
utilities of building managers and building owners. Next, we
analyze one scheme that has been proposed for incentivizing
building managers to seek reductions in building energy
usage; this incentive is shown to suffer from moral hazard
problems. Furthermore, this scheme provides reductions in
energy consumption at the expense of occupant satisfaction.
In response, we propose an alternative incentive that does not
suffer from moral hazard, and this scheme encourages energy
and monetary savings along with improvements to occupant
satisfaction; this is verified with numerical simulations.

D. Notation

A subscript on a variable denotes a different time step. For
instance, let E be the energy usage of a system. Then, E1 and
E2 refer to energy usage in time periods one and two. On the
other hand, superscript denotes different values of variables.
For instance, a superscript star ∗ denotes the maximizer
of specified optimization problems. As another example,
superscript min,max denote the extent of variables. Also,
we use the convention that the property of hemicontinuity
also includes compactness.

II. MODELING BUILDING HVAC OPERATION

We begin this section by summarizing a model of thermal
dynamics and energy consumption of a building-wide HVAC
testbed named BRITE-S [15] with variable air volume (VAV)
equipment, which was used to experimentally implement an
energy saving controller. Next, we conduct a Monte Carlo
analysis using this model to construct a static model that is
suitable for a game-theoretic analysis.

A. Thermal Dynamics of BRITE-S

Let T, F,R,Q ∈ Rn be vectors of temperatures, air flow
rates, air reheat amount, and amount of heating load at n
different locations in the building. A hybrid system model is

Tk+1 = A〈mk〉 ·Tk +B〈mk〉 ·Fk +C〈mk〉 ·Rk +Qk, (1)

where A〈m〉 ∈ Rn×n, B〈m〉 ∈ Rn×n, C〈m〉 ∈ Rn×n are
sets of matrices indexed by m ∈ {1, 2, 3}; this denotes that
the hybrid system model has three discrete modes.

Furthermore, the air flow rates F and reheat amount R
are functions of the current temperature T and the desired

temperature Td ∈ Rn. This is approximately modeled as a
linear function of T − Td with saturation: More details can
be found in [15]. Furthermore, each point in the building has
constraints on the minimum (maximum) amount of airflow
F ≥ Fmin ∈ Rn (F ≤ Fmax ∈ Rn).

B. Energy Model of BRITE-S

Building HVAC systems have several pieces of equipment
that contribute to the overall energy usage. Within BRITE-S,
most energy consumption is due to fans that distribute air,
chillers that cool the air, and the reheating of air at different
points in the building. Their respective sum is

Ek = a(1TFk)3 + b(ts〈m〉 − ok)(1TFk) + c(1TRk), (2)

where 1 is a vector of all ones, the superscript T denotes
a matrix transpose, a, b, c are positive constants, ts〈m〉 is
the temperature to which the air is centrally cooled in the
building (m ∈ {1, 2, 3} is the discrete mode of the thermal
dynamics), and ok is the outside air temperature.

C. Satisfaction Model of BRITE-S

Let (x)+ be the thresholding function, which is defined
so that (x)+ = 0 if x < 0 and (x)+ = x otherwise; we used
the following quantification

S = 1− 1

nk

∑
k 1T (|Tk − Td| −B)+, (3)

where B ∈ Rn is an amount of temperature deviation that
does not cause discomfort. The intuition of this quantity is
that satisfaction decreases whenever the temperature devia-
tion exceeds the desired temperatures Td by more than B,
and the amount of decrease in satisfaction is proportional to
the magnitude and duration of this deviation.

D. Monte Carlo Analysis of BRITE-S

The variables Fmin, Fmax,m correspond to different con-
figurations of the HVAC equipment, and the variables ok, Qk
relate to variations in weather and occupancy conditions. We
conducted a Monte Carlo analysis in which these variables
were randomly varied according to a uniform distribution
whose extents are physically realistic values. For different
instantiations of these variables, the energy consumption
E =

∑
k Ek and occupant satisfaction S over one day were

computed. Varying the distribution used in this analysis did
not significantly change the qualitative features of the results;
this is significant, because our theoretical results and analysis
depend only upon these qualitative features.

E. Static, Operational Model of BRITE-S

The results of the Monte Carlo analysis are summarized
in Fig. 1. A scatter plot (i.e., Fig. 1a) indicates the possible
range of the HVAC equipment operation in the space of
energy usage E versus satisfaction S. We denote this region
of feasible operating points, which can be bounded by a
nonconvex polygonO. The density of the points in the scatter
plot is shown in Fig. 1b.

We model the amount of work W (S,E) required by the
building manager to configure the building to operate at the
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Fig. 1: A Monte Carlo analysis of thermal and energy models for BRITE-S was used to generate a scatter plot of different
operating points of the BRITE-S system. Its corresponding density plot is shown, and more white values indicate greater
densities. The key points of the static, operational model as determined by the Monte Carlo analysis are also shown.

point (S,E) as being inversely proportional to the density of
the scatter plot. This is an approximate model that we pick
because it (i) describes the intuition that achieving (S,E)
is more difficult if fewer configurations keep the building
operating at that point, and (ii) admits a tractable analysis.
For simplicity, we normalize this function so that W (S,E) ∈
[0, 1] and W (S,E) ≥ 0 for all (S,E) ∈ O. Also, we assume
that W (S,E) is continuous.

The key points of this model (besides the set of feasible
operating points O) are shown in Fig. 1c. Our model features

1) Two Isolated Minima: (Sα, Eα), (Sω, Eω) ∈ int(O),
which obey the relationship that W (Sα, Eα) =
W (Sω, Eω) < W (S,E) for all (S,E) ∈ O \
{(Sα, Eα), (Sω, Eω)};

2) Minima Ordering: Sα < Sω and Eα < Eω;
3) Linear Bounds: (Smin, Emin), (Smax, Eopt), (Smax, E3),

and (S4, Emax) form the right boundary of O.
This model has some associated intuition. The smaller

minimum (Sα, Eα) corresponds to configurations in which
the HVAC system is turned off — though energy is easily
saved, this comes at the cost of reduced occupant satisfaction.
The larger minimum (Sω, Eω) corresponds to configurations
in which the HVAC system is minimally configured; the
satisfaction and energy usage are of moderate levels.

The upper portion of O is related to the fact that the
HVAC system can be configured to purposely waste energy,
but this does cause comfort to be reduced; an example of
this is increasing the amount of cooling in the building to
unreasonable levels. Lastly, there is a maximum amount of
satisfaction that can be achieved and a variety of config-
urations that can achieve this. This occurs in building-wide
HVAC because some configurations simultaneously cool and
heat air, which wastes energy without affecting comfort.

III. SOME GENERIC NON-CONVEX OPTIMIZATION

We provide results about qualitative properties of opti-
mization problems with certain generic properties. Essen-
tially, if certain terms in the objective have order-preserving

properties (e.g., strictly increasing or strictly decreasing func-
tions), then certain components of the minimizing argument
also obey order-preserving properties. For our purposes, we
assume that all variables involved in the optimization are
scalars. These results naturally extend to functions of vector-
valued functions that are order-preserving under appropri-
ately defined partial orders (e.g., convex cone partial orders).

Optimization 1.

max
x,y
{f(x) + λg(x, y) : (x, y) ∈ S}, (4)

where x, y ∈ R, S is a closed and bounded set, and both
f(x) and g(x, y) are continuous functions.

Remark 1. Note that these assumptions allow us to apply the
Berge maximum theorem [16], which gives that

1) the maximum (and minimum) of the objective in (4)
restricted to the set S is attained;

2) the set of maximizers M(λ) = arg (4) is upper
hemicontinuous.

Remark 2. The projection of the set of maximizers onto its
x-component, denoted x∗(λ) = Projx(M(λ)), is also upper
hemicontinuous because of the closed map lemma. Applying
the Berge maximum theorem again shows that the maximum
(and minimum) of the set x∗(λ) is attained. We define

x∗(λ) = max{x : x ∈ x∗(λ)} (5)
x∗(λ) = min{x : x ∈ x∗(λ)}. (6)

Theorem 1. Consider the generic problem Optimization 1.
If f(x) is strictly increasing in x and λ ≥ 0, then x∗(λ1) ≥
x∗(λ2) for 0 ≤ λ1 < λ2.

Proof. Suppose this theorem were not true. Then there exists
0 ≤ λ1 < λ2 such that x∗(λ1) < x∗(λ2). We show that this
results in a contradiction.

The first case occurs when λ1 = 0. Since f(·) is strictly
increasing, the corresponding maximizer is uniquely given
by x∗(0) = max{x : (x, y) ∈ S}. As a result, it must be
that x∗(λ2) ≤ x∗(0) for any λ2 > 0. This is a contradiction.



The second case occurs when λ1 > 0. Because there exists
some ν∗ such that (x∗(λ1), ν∗) is a maximizer for λ1, this
means that

f(x∗(λ1)) + λ1g(x∗(λ1), ν∗) ≥ f(x) + λ1g(x, y), (7)

for all (x, y) ∈ S. For any (x, y) ∈ S : x > x∗(λ1), the
hypothesis on the strictly increasing characteristic of f(·)
and the inequality (7) imply that

g(x∗(λ1), ν∗) > g(x, y). (8)

Next, adding (λ2−λ1)g(x, y) to both sides of the inequal-
ity (7) and then simplifying gives

f(x∗(λ1)) + λ1g(x∗(λ1), ν∗) + (λ2 − λ1)g(x, y) (9)

≥ f(x) + λ2g(x, y). (10)

Because this holds for all (x, y) ∈ S , it also holds for any
(x, y) ∈ S : x > x∗(λ1).

Now consider maximizing (9) over (x, y) ∈ S : x >
x∗(λ1). Because λ2 > λ1, this is equivalent to maximiz-
ing g(x, y) over (x, y) ∈ S : x > x∗(λ1). However,
the inequality (8) implies that the supremum value over
this range is g(x∗(λ1), ν∗). Consequently, f(x∗(λ1)) +
λ2g(x∗(λ1), ν∗) > f(x)+λ2g(x, y) for all (x, y) ∈ S : x >
x∗(λ1). This is a contradiction when assuming x∗(λ1) <
x∗(λ2) and λ1 > 0, because there exists some η∗ such that
(x∗(λ2), η∗) is a maximizer for λ2.

Corollary 1. Consider the generic problem Optimization 1.
If f(x) is strictly decreasing in x and λ ≥ 0, then x∗(λ1) ≤
x∗(λ2) for 0 ≤ λ1 < λ2.

Proof. If we define x̃ = −x, f̃(x) = f(−x), g̃(x, y) =
g(−x, y), and S̃ = {(−x, y) : (x, y) ∈ S}; then the result
follows by applying Theorem 1 to the optimization

max
x̃,y
{f̃(x̃) + λg̃(x̃, y) : (x̃, y) ∈ S̃}.

Remark 3. Note that the results in Theorem 1 and Corollary
1 are “tight” in the sense that the maximizers can be multi-
valued for fixed values of λ, even when the objective is linear.
An example of this is seen in Sect. IV-B.

Optimization 2.

max
x,y
{λf(x) + g(x, y) : (x, y) ∈ S}, (11)

where x, y ∈ R, S is a closed and bounded set, and both
f(x) and g(x, y) are continuous functions.

Remark 4. Under these assumptions, the facts in Remarks 1
and 2 also hold for Optimization 2.

Theorem 2. Consider the generic problem Optimization 2.
If f(x) is strictly increasing in x and λ ≥ 0, then x∗(λ1) ≤
x∗(λ2) for 0 ≤ λ1 < λ2.

Proof. Suppose λ1 > 0. If we define λ̃2 = 1/λ1 and λ̃1 =
1/λ2; then the result follows by applying Theorem 1 to the
optimization

max
x,y
{f(x) + λ̃g(x, y) : (x, y) ∈ S}.

Next suppose that λ1 = 0 and this theorem were not true.
Then there exists 0 = λ1 < λ2 such that x∗(λ1) > x∗(λ2).
We show that this results in a contradiction.

Because there exists some ν∗ such that (x∗(λ1), ν∗) is a
maximizer for λ1, this means that g(x∗(λ1), ν∗) ≥ g(x, y),
for all (x, y) ∈ S. Thus, it also holds for any (x, y) ∈ S :
x < x∗(λ1) that

g(x∗(λ1), ν∗) ≥ g(x, y). (12)

Next, adding (λ2−λ1)f(x) to both sides of the inequality
(12) and then simplifying gives

(λ2 − λ1)f(x) + g(x∗(λ1), ν∗) (13)

≥ λ2f(x) + g(x, y). (14)

Because this holds for all (x, y) ∈ S , it also holds for any
(x, y) ∈ S : x < x∗(λ1).

Now consider maximizing (13) over (x, y) ∈ S : x <
x∗(λ1). Because λ2 > λ1, this is equivalent to maximizing
f(x) over (x, y) ∈ S : x < x∗(λ1). However, the strictly
increasing nature of f(x) means that the supremum value
over this range is f(x∗(λ1)). Consequently, λ2f(x∗(λ1)) +
g(x∗(λ1), ν∗) > λ2f(x) + g(x, y) for all (x, y) ∈ S : x <
x∗(λ1). This is a contradiction when assuming x∗(λ1) >
x∗(λ2) and λ1 = 0, because there exists some η∗ such that
(x∗(λ2), η∗) is a maximizer for λ2.

Corollary 2. Consider the generic problem Optimization 2.
If f(x) is strictly decreasing in x and λ ≥ 0, then x∗(λ1) ≥
x∗(λ2) for 0 ≤ λ1 < λ2.

Proof. If we define x̃ = −x, f̃(x) = f(−x), g̃(x, y) =
g(−x, y), and S̃ = {(−x, y) : (x, y) ∈ S}; then the result
follows by applying Theorem 2 to the optimization

max
x̃,y
{λf̃(x̃) + g̃(x̃, y) : (x̃, y) ∈ S̃}.

IV. MODEL OF AGENTS

Here, we describe the utilities of the building manager
and building owner. Relevant features of these utilities are
described, and the moral hazard present in one proposed
incentive scheme is shown.

A. Model of Building Manager

The typical building is operated to maintain maximal oc-
cupant satisfaction and comfort, because building managers’
job performance is partly evaluated on the basis of occupant
complaints. More specifically, we model the manager as
maximizing the following utility

max
Si,Ei

{
∑
i Si − λ ·W (Si, Ei) : (Si, Ei) ∈ O}, (15)

where λ ≥ 0 is a constant that determines the personal trade-
off for the building manager between the amount of work
W required to maintain the building at an operating point of
(Si, Ei) and the occupant satisfaction Si. The subscripts refer
to multiple iterations (e.g., months) of this process; without
loss of generality, we assume two iterations: i = 1, 2.
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(c) Actual Operating Point

Fig. 2: The (a) key points of the static, operational model as determined by the Monte Carlo analysis, and (b) a trace
(indicted by the dotted line) of operating points for (15) as λ is varied are shown. Also, the actual operating point of the
building as configured in real life is indicated by the cross mark.

Proposition 1. If 0 ≤ λ1 < λ2, then the corresponding
maximizers of (15) are nonincreasing:

Smax ≥ S∗(λ1) ≥ S∗(λ2) ≥ Sω. (16)

Proof. The upper bound Smax is obvous, and so we first show
that the maximizers satisfy S∗(λ) ≥ Sω for any λ ≥ 0. By
assumption W (S,E) ≥ W (Sω, Eω) for all (S,E) ∈ O,
which implies that Sω − λ ·W (Sω, Eω) > S − λ ·W (S,E)
for all S < Sω . Therefore, S∗(λ) ≥ Sω . The remainder of
the ordering result (16) follows from Theorem 1.

Proposition 2. The maximizers converge

lim
λ→∞

S∗(λ) = lim
λ→∞

S
∗
(λ) = Sω (17)

lim
λ→∞

E∗(λ) = lim
λ→∞

E
∗
(λ) = Eω. (18)

Proof. We define an L1 ball of radius ρ about the point
(Sω, Eω) as the set

B(ρ) = {(S,E) : Sω ≤ S < Sω+ρ
∧
|E−Eω| < ρ}. (19)

Next, define the quantity

ε(ρ) = min{W (S,E)−W (Sω, Eω) : S ≥ Sω
∧

(S,E) ∈ O \ B(ρ)}.

Note that the Berge maximum theorem implies that this
minimum is attained on the corresponding constraint set.

By construction, whenever λ > (Smax−Sω)/ε(ρ), it holds
that Sω − λ ·W (Sω, Eω) > S − λ ·W (S,E) for all S ≥
Sω

∧
(S,E) ∈ O \B(ρ). Rewriting this — given any ρ > 0,

there exists Λ(ρ) = (Smax−Sω)/ε(ρ) such that the maximum
belongs to the set B(ρ) for all λ > Λ(ρ). This is the definition
of convergence, and so the result is proved.

Proposition 3. The maximizers of (15) for λ = 0 are given
by (S∗(0), E∗(0)) = {(Smax, E) : Eopt ≤ E ≤ E3}.

Proof. This follows by direct maximization of (15).

Remark 5. The intuition of Propositions 1, 2, and 3 is
that satisfaction S decreases as the building manager puts

more emphasis on reducing his own work W (S,E). At the
extreme of zero emphasis on work λ = 0, the building will
be configured to ensure maximum satisfaction S∗ = Smax;
and at the other extreme of all emphasis on work λ→∞, the
building will be configured to achieve the global minimum
of work that has the higher level of satisfaction (Sω, Eω).

Based on the intuition of these propositions, we can
examine the operating point of the building as actually
configured. This point is marked in Fig. 2c with a cross. We
can estimate the corresponding λ value as the one for which
(S∗(λ), E∗(λ)) is closest to the actual operating point. This
is useful for conducting further numerical analysis.

B. Model of Building Owner

From the perspective of the building owner, the problem
with the utility of the building manager (15) is that it
does not take into account the energy consumption of the
building. The owner’s preference is that the following utility
be maximized

max
Si,Ei

{
∑
i Si − µEi : (Si, Ei) ∈ O}, (20)

where µ > 0 is a constant that determines the trade-off for
the building owner between the amount of energy used and
the occupant satisfaction.

Proposition 4. The maximizers are given by the following
multi-valued function

(S∗i (µ), E∗i (µ)) =
(Smax, E) : Eopt ≤ E ≤ E3 if µ = 0

(Smax, Eopt) if 0 < µ < 1
m

(S,mS + k) : Smin ≤ S ≤ Smax if µ = 1
m

(Smin, Emin) if µ > 1
m

, (21)

where m = (Eopt − Emin)/(Smax − Smin) and k = Emin −
mSmin.
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Fig. 3: The key points of the static, operational model as determined by the Monte Carlo analysis are shown. Furthermore,
traces (indicted by the dotted line) of operating points as γ is varied are shown for both period 1 and period 2 of operation
of the incentive scheme in (27).

Proof. Note that we can rewrite the maximization as a nested
maximization problem

max
Si,Ei

{Si − µEi : (Si, Ei) ∈ O} =

max
Si

{max
Ei

{Si − µEi : (Si, Ei) ∈ O} : (Si, ·) ∈ O}. (22)

Now for a fixed value of Si, the objective is strictly decreas-
ing in Ei. This means that the objective is maximized along
the bottom boundary of the feasible set of operating points.
Specifically,

E∗i (Si) = arg max
Ei

{Si − µEi : (Si, Ei) ∈ O} (23)

= mSi + k. (24)

Iterating on the nested maximization problem gives that the
maximum is

S∗i = arg max
Si

{Si−µmSi−µk : Smin ≤ Si ≤ Smax}. (25)

If 1−µm > 0 (or equivalently µ < 1/m), then the objective
is strictly increasing in Si. Alternatively, if 1− µm = 0 (or
µ = 1/m), then the objective is independent of Si. Lastly,
if 1 − µm < 0 (or also µ > 1/m), then the objective is
strictly decreasing in Si. The result follows by appropriate
maximization of the corresponding objectives.

Remark 6. This result is consistent with Theorem 1.
Remark 7. The maximizers that correspond to µ = 0 and
µ = 1/m are not realistic reflections of the preference of
the building owner. This is because µ = 0 corresponds to no
interest in energy consumption, and µ = 1/m corresponds
to a non-robust set of maximizers. By non-robust, we mean
that arbitrarily small perturbations of µ from 1/m lead to a
qualitatively large change in the set of maximizers.

The only maximizer of interest is (Smax, Eopt); as a result,
the only interesting range of values is µ : 0 < µ < 1/m.
This is because the point (Smin, Emin) is equivalent to the
maximizer of the optimization problem

max
Si,Ei

{
∑
i−Ei : (Si, Ei) ∈ O}, (26)

which only tries to minimize energy usage. This is not
reflective of the typical building owner, because the own-
ers have external reasons for ensuring that occupants are
comfortable. For instance, satisfied occupants will be more
productive with their work; furthermore, satisfied occupants
will be more likely to remain within the building rather than
relocating to another location.

C. Moral Hazard with Baselining

To remedy the discrepancy between the utility of owners
and managers, there is interest in incentivizing building
managers to consider energy savings. One such proposal
has the structure of a Stackelberg game (i.e., leader-follower
pattern). The owner first measures the energy consumption
of the building during an initial “baselining” period E1.

After this initial period, the owner provides a monetary
payment (or fine) with value given by the linear function
γ · (E1 − E2). If less energy than the baseline energy is
used E2 < E1, then a payment is given to the building
manager; otherwise, when more energy than the baseline is
used E2 > E1, then the manager must pay a fine. For this
form of incentives, the corresponding utility is

max
Si,Ei

{γ · (E1 − E2) +
∑
i Si − λ ·W (Si, Ei) :

(Si, Ei) ∈ O}. (27)

Proposition 5. Let λ ≥ 0 be a fixed constant. If 0 ≤ γ1 <
γ2, then the corresponding maximizers of (27) denoted E∗1
are nondecreasing

Emax ≥ E∗1(γ2) ≥ E∗1(γ1), (28)

and the maximizers denoted E∗2 are nonincreasing

E∗2(γ1) ≥ E∗2(γ2) ≥ Emin. (29)

Proof. This follows from Theorem 2 and Corollary 2.



Proposition 6. The maxmizers converge

lim
γ→∞

S∗1(γ) = lim
γ→∞

S
∗
1(γ) = S4

lim
γ→∞

E∗1(γ) = lim
γ→∞

E
∗
1(γ) = Emax

lim
γ→∞

S∗2(γ) = lim
γ→∞

S
∗
2(γ) = Smin

lim
γ→∞

E∗2(γ) = lim
γ→∞

E
∗
2(γ) = Emin.

Proof. The proof is identical to that of Proposition 2.

Remark 8. The intuition of Propositions 5 and 6 is that a
moral hazard occurs with the proposed incentive scheme
in (27). During the first stage of baselining, the energy
consumption will generally by greater than the true operating
point of the building without incentives. For high enough
incentives, the energy consumption will be pushed towards
the maximum possible Emax. At the second stage, the energy
consumption will generally be lower than the true operating
point of the building without incentives; however, for very
high levels of incentives, the building will be pushed towards
a point in which satisfaction is not prioritized (Smin, Emin).

V. POSITIVE INCENTIVE DESIGN

As shown in Sect. IV-C, the proposed incentive scheme
(27) will encourage moral hazards; furthermore, it will likely
encourage suboptimal operation in which satisfaction will
also be minimized in order to reduce energy usage. One
interesting problem is to design an incentive that will en-
courage more efficient operation with high quality of service
without the associated problems of moral hazards.

A. Proposal and Properties

We propose an incentive proportional to S2 − κE2, with

κ = min{Smin/Emax, (Smax − Smin)/Emax}. (30)

Note that 0 < κ < 1/m, where m is as defined in Sect.
IV-B. With this incentive, the utility becomes

max
Si,Ei

{γ · (S2 − κE2) +
∑
i Si − λ ·W (Si, Ei) :

(Si, Ei) ∈ O}, (31)

where γ > 0 is a constant. This incentive is favorable.

Proposition 7. If (S2, E2) ∈ O, then S2 − κE2 ≥ 0.

Proof. Because E2 ≤ Emax, it must hold that S2 − κE2 ≥
S2−Smin. The result follows by noting that S2 ≥ Smin.

Proposition 8. The maximizers converge

lim
γ→∞

S∗2(γ) = lim
γ→∞

S
∗
2(γ) = Smax

lim
γ→∞

E∗2(γ) = lim
γ→∞

E
∗
2(γ) = Eopt.

Proof. The proof is identical to that of Proposition 2.

Remark 9. The intuition of Proposition 7 is that the incentive
is always positive; the building manager is never fined,
regardless of the operation of the building. As a result, the
incentive can be thought of as a performance-based bonus.

Remark 10. Proposition 8 says that as the incentive amount
is increased, the building will eventually be configured at the
optimal point (Smax, Eopt). This behavior is seen in Fig. 4.

There are two important implementation issues to mention.
First, it is not unreasonable to measure occupant satisfaction
for the purpose of implementing the incentive: The prolifera-
tion of Internet and mobile technologies is reducing the costs
and difficulties of conducting surveys to measure satisfaction.
Another advantage of this incentive is that it requires the use
of conceptually simple parameters. The size and usage of the
building allows estimation of Emax and Eopt; furthermore, an
upper bound on Smax and lower bound on Smin are needed.

There is a last issue regarding the maximum payout. In
practice, it is not possible to provide an arbitrarily large
incentive. Let P be the maximum payout that the building
owner is willing to provide. One possible value for the
incentive is given by γ = µP/(Smax − κEopt), where µ is
the elasticity of the building manager’s utility with respect
to a monetary payment.

B. Simulation Analysis

A pressing question is what monetary and energy savings
are possible with the incentive scheme proposed in (31);
a simulation is possible if µ is known. Using dimensional
analysis, we estimate µ = (S∗1 − λE∗1 )/R1, where R1 is the
monetary salary over period 1 and (S∗1 , E

∗
1 ) is the operating

point of the building manager without any incentives. For
definiteness, we assume that each period spans one day.

Under these assumptions, we can simulate the amount of
savings per day as a function of the maximum payout P
and the price of energy: This is shown in Table I. The units
of energy are in MWh/day, and the monetary values are in
United States Dollars per day (USD/day). For example, when
energy costs $100/MWh and maximum payout is $200/day,
then our analysis predicts 6.7MWh of energy savings per
day and an increase in occupant comfort. This translates to
a maximum payout over one year of $73,000 and a savings
of $171,550 and 2445.5MWh over the span of one year.

P $0 $50 $100 $150 $200
E∗

2 −E∗
1 0 0 0 –4.5 –6.7

S∗
2 − S∗

1 0 0 0 0.1 0.1
Savings w/ $0 –$38 –$75 –$49 –$64$20/MWh
Savings w/ $0 –$38 –$75 $130 $200$60/MWh
Savings w/ $0 –$38 –$75 $310 $470$100/MWh

TABLE I: Simulated Energy and Monetary Savings per Day
with Incentive Scheme in (31)

These numerical results have several interesting character-
istics. First, there is an element of adverse selection that is
present in this proposed incentive scheme. Observe that when
the maximum payout P is $50 or $100, the change in energy
usage and satisfaction is nearly zero; yet there is a bonus
that is given. Second, the monetary savings can be negative,
which means that the bonus given to the building manager
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Fig. 4: The key points of the static, operational model as determined by the Monte Carlo analysis are shown. Furthermore,
traces (indicated by a cross or the dotted line) of operating points as γ is varied are shown for both period 1 and period 2
of operation of the incentive scheme in (31).

exceeds the money saved from reducing energy consumption
for many combinations of payout values and energy costs.

These results have important implications for the imple-
mentation of incentive schemes such as (31): The proposed
incentive scheme is not cost effective unless both the cost
of energy is moderate and the maximum payout is high.
Because of the particularities of BRITE-S, the price of
energy is currently about $60/MWh. This means that the
incentive scheme is currently viable, but it requires a high
payout. The high payout required is due to a low elasticity
of the building manager’s utility with respect to a bonus —
this effectively reduces the value of the payout.

At a broader level, our analysis suggests that all incentive
schemes for reducing energy consumption will find difficul-
ties in producing monetary savings without also providing
high payouts. The key problem is the high inelasticity of the
manager’s utility, and this will reduce the effectiveness of
any incentive by essentially dampening its effect.

VI. CONCLUSION

One proposed incentive scheme (27) for encouraging
efficient building operation was shown to suffer from moral
hazard problems, in addition to encouraging reduced quality
of service. As a result, we propose an incentive amount

P · S2 − κE2

Smax − κEopt , (32)

where κ is as defined in (30).This incentive scheme provides
a tradeoff between quality of service and energy efficiency,
and it likely has applicability to other systems (such as
vehicle traffic networks [17] where individual drivers take
a role similar to that of a building manager) in which such
a tradeoff is desired. It has certain desirable properties,
such as not encouraging moral hazards and always being
nonegatively valued (so as to never penalize agents).
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