
Wireless Network Design Under Service Constraints
Martin Kasparick and Gerhard Wunder

Heinrich-Hertz-Lehrstuhl für Informationstheorie und theoretische Informationstechnik
Technische Universität Berlin

Einsteinufer 25, 10587 Berlin, Germany
Abstract—In this paper we consider the design of wire-

less queueing network control policies with special focus on
application-dependent service constraints. In particular we con-
sider streaming traffic induced requirements such as avoiding
buffer underflows, which significantly complicate the control
problem compared to guaranteeing throughput optimality only.
Since state-of-the-art approaches for enforcing minimum buffer
constraints in broadcast networks are not suitable for application
in general networks we argue for a cost function based approach,
which combines throughput optimality with flexibility regarding
service constraints. New theoretical stability results are presented
and various candidate cost functions are investigated concerning
their suitability for use in wireless networks with streaming
media traffic. Furthermore we show how the cost function based
approach can be used to aid wireless network design with
respect to important system parameters. The performance is
demonstrated using numerical simulations.

I. INTRODUCTION

Multimedia traffic, in particular streaming content, is in-
creasingly gaining importance as it constitutes an ever larger
fraction of the traffic observed in nowadays wireless networks.
However, routing streaming content through a wireless net-
work raises hard constraints on the network and corresponding
control policies.

Research on queueing control in stochastic networks
long focused solely on throughput optimality (i.e. stabil-
ity), following the celebrated MaxWeight policy of Tassiulas
and Ephremides [1]. However it was soon discovered that
MaxWeight-type policies can lead to significant delays [2]
which may render their application in practice impossible.
Significant research activities followed, focusing on delay
reduction in backpressure based policies, such as [3][4][5]).
A general class of throughput optimal policies with improved
delay performance is presented recently in [6], and a general
survey on recent policy synthesis techniques can be found for
example in [7]. However, delay clearly is not the only perfor-
mance measure relevant for modern multimedia applications.

In this paper we want to look at wireless network and
policy design from a different angle. In particular we adopt
a service centric or application centric view point. Our main
motivation is that (especially with the ever growing amount
of streaming traffic) it is of lesser importance to be e.g. delay
optimal as long as the service requirements are fulfilled and–
in case of streaming traffic–the stream is not interrupted. In
fact, a throughput optimal or even more a delay optimal policy
can be even harmful in case of size-limited buffers. In such
a case it can be better to absorb traffic peaks at intermediate
buffers instead of routing packets as fast as possible to the
user. On the other hand, when the application is satisfied with
the offered service it is not necessary to put huge efforts in

small improvements of particular performance measures. By
contrast, it is much more important that a network control
policy is able to cope with changing services and thus with
changing constraints, however without sacrificing stability.

For control policy synthesis, we assume that the service
layer constraints can be expressed as requirements on the
buffer states. For example a general delay sensitive application
may require certain maximum levels of the buffer states while
a multimedia streaming application will additionally need
minimum buffer constraints, such that the stream will not be
interrupted due to buffer underflows. While the first type of
constraint is well investigated, especially in multihop networks
the second type bears serious challenges. In a way, this
also implies a change of viewpoint: from stabilizing transmit
buffers to controlling the user or application buffers1.

While performance metrics such as throughput, delay (in-
cluding deadline constrained traffic), and fairness are well
investigated in the literature, the problem of minimum buffer
constraints was to date mainly considered in the context of
stochastic processing networks [8]. Considering queueing net-
works, previous works consider underflow constraints mainly
in broadcast or simpler networks [9][10]. In [9] the problem
of guaranteeing minimum buffer constraints in a network of
multiple transmitter-receiver pairs with transmitters being able
to cooperate is tackled in the following quite simple way. The
available resources per user are divided into a fixed and a
variable part. Essentially, whenever the user buffer states are
low the transmitter increases the variable rate and decreases it
when the user buffer states are high. However, this approach is
limited to applications in broadcast or point to point links and
cannot easily be generalized to the case of arbitrary networks,
due to the complex interactions. For example, it is required
that buffer levels for each user progress independently of other
users ([9]). Clearly this is not the case in a multihop network.
Already in the simple case of tandem networks, as depicted in
Figure 1, the approach is stretched to its limits when more than
two buffers are involved, since all buffers are strongly coupled.
Assume we want to steer the level of buffer m towards a

Q1 Q2 Qmα Ra

Fig. 1. Tandem Network

certain value, in this case it is not anymore obvious how
to control the output for example of the first buffer. This is

1Throughout the paper we use the terms ’user buffer’ and ’application
buffer’ synonymously.

1

ar
X

iv
:1

20
8.

29
72

v1
 [

cs
.S

Y
]

 1
4

A
ug

 2
01

2

even further complicated when different costs are assigned to
different buffers. Apart from generalization issues to multihop
networks, another drawback of these approaches is that they
are rather static with respect to service constraints.

The latter is more than a side note since in addition to guar-
anteeing specific service requirements, a sophisticated control
approach should also be flexible with respect to different and
possibly changing requirements for different buffers in the
network. In [5] we introduced a control framework, called µ-
MaxWeight, which–based on an underlying cost function–is
highly suitable for application in such cases. Besides, when
carefully designed we still maintain throughput optimality.
In this paper we provide general sufficient conditions on
the stability of a µ-MaxWeight based control policy and
subsequently prove two simpler stability results which are
based on additional assumptions on the network model.

In summary, our approach guarantees stability of all buffers
in the network and, being derived from an underlying cost
function, allows incorporation of application requirements.
Moreover it can flexibly react to changing user requirements
by using different cost functions.

As we will demonstrate, the choice of the underlying
cost function is crucial for the performance of the resulting
control policy. In particular we show that with a sophisticated
cost function choice, buffer sizes of particular queues can
be steered towards beneficial operating points. As a main
performance measure to compare various cost functions we
define a notion of queue outage to be minimized. This not
only incorporates buffer overflows to capture effects of high
packet holding costs or even dropped packets, but also buffer
underflows to capture service interruptions.

In addition to above mentioned benefits our framework can
also be used to aid a priori design of important network
parameters, in order to achieve a given required performance.
Eventually–using numerical experiments–we attempt to an-
swer the following two questions:

1) Which cost-function is most suitable to minimize the
probability of buffer outage events?

2) How much system resources are needed to achieve a
given required outage performance?

As an example for the second issue we consider the problem
of wireless bandwidth provisioning.

The rest of the paper is organized as follows. In Section
II we introduce our stochastic queueing network model and
important stability definitions. In Section III we introduce
important preliminaries and in Section IV we introduce our
control approach and further present new theoretical results
on the stability of resulting policies. Further we propose a
pick-and-compare based variant, which significantly reduces
complexity. Section V is dedicated to the choice of the
underlying cost function and illustrates the implications using
a simple tandem queue example. Using numerical simulations,
Section VI evaluates the performance of the control approach
and exemplarily demonstrates how it can be used for the design
of wireless networks. We conclude the paper in Section VII.

Notation: We use boldface letters to denote vectors as
well as matrices, and common letters with subscript are the
elements, such that Ai is the i’th element of vector A and Bij
is the element in row i and column j of matrix B. Moreover
AT refers to the transpose of A. E{X} denotes the expected
value of random variable X . Let I denote the identity matrix
of appropriate dimension. Furthermore we denote 1 the vector
of all ones. diag(a1, a2, ...) refers to a diagonal matrix built
from the elements a1, a2, ... and ‖ · ‖i denotes the li vector
norm and ‖x‖ is an arbitrary norm. Furthermore we use Ac
to denote the complement of a set A. The probability of A is
denoted as Pr{A}. The indicator I{·} equals 1 if the argument
is true and equals 0 otherwise.

II. SYSTEM MODEL

Similar to [11] we use a simple stochastic network model:
the Controlled Random Walk (CRW) model. We consider a
queueing network with m queues in total representing m phys-
ical buffers with unlimited storage capacity. We arrange the
queue backlog in the vector Q, such that Q = [Q1, . . . , Qm]

T

which we refer to as the queue state. LetM be the set of queue
indices. Suppose that the evolution of the queueing system is
time slotted with t ∈ N0. Then, the CRW model is defined by
queueing law:

Q (t+ 1) = [Q (t) + B (t+ 1) U (t)]
+

+ A (t+ 1) (1)

where [x]+ = max{0, x}. Here, the vector process A (t) ∈
Nm0 is the (exogenous) influx to the queueing system with
mean α ∈ Rm+ (vector of arrival rates in packets per slot);
B (t) ∈ Zm×l0 is a matrix process with average B ∈ Zm×l0 ,
containing both information about network topology (that is,
connectivity or routing paths) and service rates. The control
u = U (t) in slot t is an element of the set {0, 1}l constrained
by Cu ≤ 1 using the binary constituency matrix C ∈ Zlm×l0

(with lm > 0 being the number of resource constraints in the
network). For the sake of notational simplicity we omit the
time index in the following where possible. Throughout the
entire paper x ∈ Nm0 denotes the current backlog.

In what follows, the queueing system (1) is assumed to be
a δ0-irreducible Markov chain (δ0 being the point measure at
x = 0).

A. Stability

The stability of an δ0-irreducible Markov chain can be
defined in different manners. Throughout this paper we use
the following definition of stability.

Definition 1. A Markov chain is called f-stable, if there is
an unbounded function f : Rm+ → R+, such that for any
0 < B < +∞ the set B := {x : f (x) ≤ B} is compact, and
furthermore it holds

lim sup
t→+∞

E {f (Q (t))} < +∞. (2)

In the definition the function f is unbounded in all positive
directions so that f (x)→∞ if ‖x‖ → ∞. Choosing directly
f (x) = ‖x‖, Definition 1 is equivalent to the definition of

2

strongly stable [12] which implies weak stability. Clearly, for
any f (x) which grows faster than ‖x‖, inequality (2) implies
that the Markov chain is strongly stable. We call a vector
of arrival rates α ∈ Rm+ stabilizable when the corresponding
queueing system driven by some specific scheduling policy is
positive recurrent.

A scheduling policy is now called throughput optimal if it
keeps the Markov chain positive recurrent for any vector of
arrival rates α for which a stabilizing policy exists.

III. PRELIMINARIES

Let us introduce a cost function

c : Nm0 → R+,x ↪→ c (x) ,

assigning any queue state a non-negative number. Typically,
the goal is to minimize the average cost over a given finite
or infinite time period or some discounted cost criterion. The
optimal solution to the resulting problems –which in discrete
time can be modeled as a Markov Decision Problem– can be
found by dynamic programming, which is, however, infeasible
for large networks. A simple approach to queueing network
control is the myopic or greedy policy. Such a policy selects
the control decision that minimizes the expected cost only for
the next time slot.

In [11], a cost function based policy design framework
called h-MaxWeight is introduced which is a generalization
of the MaxWeight policy. Meyn considers a slightly different
definition of the CRW model, which is characterized by
queueing law:

Q (t+ 1) = Q (t) + B (t+ 1) U (t) + A (t+ 1) (3)

The control U (t) ∈ Nl0 is an element of the region

U∗ (x) := U (x) ∩ {0, 1}l ,

with

U (x) :=
{
u ∈ Rl+ : Cu ≤ 1, [Bu +α]i ≥ 0 for xi = 0

}
.

In the h-MaxWeight based control policy, the control vector
is derived according to

arg min
u∈U∗(x)

< ∇h(x),Bu+α > . (4)

Thus, the policy is myopic with respect to the gradient of some
perturbation h of the underlying cost function. Meyn develops
two main constraints on the function h: the first requires the
partial derivative of h to vanish when queues become empty:

∂h

∂xi
(x) = 0 if xi = 0 (5)

Moreover the dynamic programming inequality has to hold for
the function h:

min
u∈U(x)

< ∇h(x),Bu+α >≤ −c(x)

When h is non-quadratic, the derivative condition (5) is
not always fulfilled. Therefore a perturbation technique is
used where h(x) = h0(x̃), hence it is a perturbation of a

function h0. Two perturbations are proposed: an exponential
perturbation with θ ≥ 1 given by

x̃i := xi + θ
(
e−

xi
θ − 1

)
,

and a logarithmic perturbation with θ > 0 defined as

x̃i := xi log
(

1 +
xi
θ

)
. (6)

While the first approach shows better performance in sim-
ulations, the stability of the resulting policy depends on
the parameter θ being sufficiently large (determined by the
considered network setting). This is overcome by the second
perturbation which is stabilizing for each feasible θ, however
it comes with the additional constraint

∂h0

∂xi
(x) ≥ εxi, ∀i ∈M,

which is a significant limitation on the space of functions that
can be chosen as h0.

IV. µ-MAXWEIGHT

In this section, we give generalized sufficient conditions
for throughput optimality of the systems (1) and (3). In what
follows, we consider scheduling policies of the form

u∗(x) = arg min
u∈Rn+:Cu≤1

〈µ (x) ,Bu +α〉, (7)

where µ (x) is a vector valued function Rm+ → Rm+ , which
is called the weight vector for some actual queue state x.
Note that µ is reminiscent of a vector field and can thus
be interpreted as a scheduling field for which we present a
stability characterization. Observe that by construction of the
policy we can without loss of generality normalize the weight
vector as

µ̄(x) :=
µ(x)

‖µ(x)‖1
(8)

and hence ‖µ̄(x)‖1 = 1. Furthermore, we assume that the
resulting policy is non-idling, i.e. ‖µ(x)‖1 = 0 if and only if
x = 0.

Theorem 1. Consider the queueing system (1) driven by the
control policy (7) with some scheduling field µ. The policy is
throughput optimal if the corresponding normalized schedul-
ing field given in Eqn. (8) fulfills the following conditions:

1) Given any 0 < ε1 < 1 and C1 > 0, there is some
B1 > 0 so that for any ∆x ∈Rm with ‖∆x‖<C1, we
have |µ̄i (x + ∆x)− µ̄i (x)| ≤ ε1 for any x ∈ Rm+ with
‖x‖ > B1, ∀i ∈M.

2) Given any 0 < ε2 < 1 and C2 > 0, there is some
B2 > 0 so that for any x ∈ Rm+ with ‖x‖ > B2 and
xi < C2, we have µ̄i(x) ≤ ε2, for any i ∈M.

Moreover, for any stabilizable arrival process the queueing
system is f-stable under the given policy where f is an
unbounded function as defined in Definition 1. The exact
formulation of f depends on the field µ̄(x).

Proof: The proof is based on [5] and is provided in full
detail in [13].

3

With further assumptions on the underlying network these
conditions can be significantly simplified. The following ad-
ditional requirement on the network topology (also assumed
in Theorem 1.1 of [11]) is needed for subsequent corollaries.
• Bij(t) ≥ −1 for each i,j and t, and for each j ∈
{1, . . . , lu} there exists a unique value ij ∈ {1, . . . , l}
satisfying

Bij(t) ≥ 0 a.s. ∀i 6= ij . (9)

Corollary 1. Consider the queueing system (3) driven by the
control policy (4) with some cost function h. Suppose the
corresponding scheduling field µ(x) := ∇h(x) is continu-
ously differentiable and Condition (9) on network topology
{B(·)} holds. Then, the following conditions are sufficient for
throughput optimality:

1) For any ε > 0 there is some C∗1 > 0 so that for all
‖x‖ ≥ C∗1 :

‖∇ log (µi (x))‖ ≤ ε, ∀i ∈M

2) If xi = 0 then µi(x) = 0, ∀i ∈M.

Proof: By Condition 2) of Corollary 1 we can assume
that the random walk evolves on Rm+ . Hence, we can skip
Condition 2) of Theorem 1 since this condition (as its coun-
terpart in Corollary 1) ensures positivity of the random walk.
We need to show that from

‖∇ logµi (x)‖ ≤ ε, ∀i ∈M, ‖x‖ > C6 (ε) , (10)

(where C6 (ε) is sufficiently large) it follows:∣∣∣∣∣ µi(x+ ∆x)∑
j∈M µj(x+ ∆x)

− µi(x)∑
j∈M µj(x)

∣∣∣∣∣ ≤ ε (11)

For orientation, let us assume more restrictive conditions
first: take µi, ∀i ∈ M Lipschitz continuous and let∑
j∈M µj(x)→∞ if ‖x‖ → ∞. Note, that these conditions

already encompasses Meyn’s perturbation (6) together with
e.g. a linear cost function.

It is easy to prove the corollary with these assumptions: by
the mean value theorem we have

µi (x+ ∆x) = µi (x) +∇Txµi (x̃) ∆x

where x is an (arbitrary) point on line connecting x and
x+∆x whereas x̃ is a point connecting x+∆x. Since the field
is Lipschitz we have ∇Txµi(x) ≤ C7 uniformly. Furthermore,
since the policy is non-idling

∑
j∈M µj (x+ ∆x) ≥ C8

where the normalization constant C8 can be chosen as large
as possible without altering the policy (by the construction of
the policy). Moreover, since

∑
j∈M µj(x) → ∞, ‖x‖ → ∞,

condition (11) is equivalent to

|µi (x+ ∆x)− µi (x)| ≤ ε
∑
j∈M

µj (x)

and, again, by the mean value theorem:∣∣∇Tµi (x) ∆x
∣∣ ≤ ε ∑

j∈M
µj (x)

Here, we tacitly assumed that we have selected x accordingly.
Since ∆x is fixed and by the positivity of µi it is sufficient
that

‖∇µi (x)‖ ≤ ε

‖∆x‖
µi (x)

which is equivalent to condition (10) with some ‖x‖ > C6 (ε′)
(ε′ slightly smaller).

Let us now prove the general case. Condition (10) can be
written as

1∑
j∈M µj(x)

∇Tµi(x)∆x = εn,

for some x with ‖x‖ > C (εn) where εn is a zero sequence
and C (εn) is strictly increasing for any fixed ∆x ∈ Rm. Now,
again, by the mean value theorem∣∣∣∣∣ µi(x + ∆x)∑

j∈M µj(x̄) +∇Tµj(x̃)∆x
− µi(x)∑

j∈M µj(x̄)−∇Tµj(x̃)∆x

∣∣∣∣∣ ≤ ε,
(12)

where we set x̄ as before and let x + ∆x = x̄ and x̄ +
∆x̄ = x+ ∆x. x̃, x̃ are points on the line connecting x and
x̄ respectively x̄ and x+ ∆x. Note that µj(x̄) is zero if and
only if µi(x+ ∆x) and µi(x) are both zero since otherwise
by condition (10) the gradient would be zero as well. Since in
this case the condition is trivially satisfied so that we exclude
it.

Hence from (12) it follows∣∣∣∣∣∣∣∣∣∣∣∣∣∣
µi(x+ ∆x)− µi(x)

∑
j∈M µj(x̄)(1 +

(A)︷ ︸︸ ︷
∇Tµj(x̃)∆x̄

µj(x̄)
)

∑
j∈M µj(x̄)(1−∇

Tµj(x̃)∆x

µj(x̄)︸ ︷︷ ︸
(B)

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ ε ·

∑
j∈M

µj(x̄)

(
1 +
∇Tµj(x̃)∆x̄

µj(x̄)

)
.

We can prove that, because of condition (10), (A) and (B) are
zero sequences: suppose ∇Tµj(x̃) is non-zero (then we can
stop anyway) then by the repeated application of the mean
value theorem, the denominator of, say, (A) can be written as:

µj(x̄) = µj(x̃) +∇µj(x2)∆x2

This process generates sequences in Rm+ with x̃ = x1,x2, ...
and ∆x̄ = ∆x̄1 ⊂ ∆x̄2, ... which are bounded and hence
we can pick subsequences converging to some set of limit
points x(k)

∞ , k = 1, 2, Note that we can restrict the number
of limit points to at most two since by definition every limit
point is visited arbitrarily often and infinitely close and by
construction of the sequence there is no possibility of more
than two limit points which neither contain the other in
between them. Take these two limit points with corresponding
subsequence x(k)

n , k = 1, 2: by continuous differentiability we
have µj(x

(k)
n)→ µj(x

(k)
∞) and ∇µj(x(k)

n)→ ∇µj(x(k)
∞), k =

1, 2. It must also hold in the limit:

µj(x
(1)
∞) +∇Tµj(x(2)

∞)(x(1)
∞ − x(2)

∞) = µj(x
(2)
∞)

4

(and vice versa). Since then

∇Tµj(x(2)
∞)(x

(1)
∞ − x(2)

∞)

µj(x
(2)
∞)µj(x

(2)
∞)

≤ ε,

(and vice versa) where ε > 0 is arbitrarily small by condition
(10) we conclude that µj(x

(1)
∞) = µj(x

(2)
∞) (but not necessar-

ily x(1)
∞ = x

(2)
∞).

Now, we can proceed the process sufficiently often as

∇Tµj(x1)∆x1

µj(x̄)

≤ ∇Tµj(x1)∆x1

µj(x1)
(

1 +
∇Tµj(x2)∆x2

µj(x1)

)
≤ ...

such that in the final step

∇Tµj(xn+1)∆xn+1

µj(xn)
=

(∇Tµj(x(k)
∞) + εkn)∆xn+1

µj(x
(l)
∞) + εln

=
(∇Tµj(x(k)

∞) + εkn)∆xn+1

µj(x
(k)
∞) + εln

≤ ε, k, l = 1, 2,

by condition (10). Hence, we have∑
j∈M µj(x̄)

(
1 +

∇Tµj(x̃)∆x̄
µj(x̄)

)
∑
j∈M µj(x̄)

(
1 +

∇Tµj(x̃)∆x
µj(x̄)

) =
(1 + ε′n)

(1 + ε′′n)

= 1 + ε′′′n ,

ε′n, ε
′′
n zero sequences, and further

|µi(x+ ∆x)− µi(x)(1 + ε′′′n)|
≤ |µi(x+ ∆x)− µi(x)|+ µi(x)ε′′′n

≤ ε
∑
j∈M

µj(x̃)(1 + ε′n),

which is equivalent to:

|µi(x+ ∆x)− µi(x)| ≤ ε
∑
j∈M

µj(x̄)(1 + ε′n)− ε′′nµi(x).

Since x̄ is arbitrary and can be suitably choose, condition (10)
with some ‖x‖ > C6 (ε′′′′) is sufficient for the latter to hold.

Corollary 2. Suppose, everything is as in Corollary 1. Let
the scheduling field be defined as µ(x) := ∇h0(x̃) for some
given simple perturbation x̃. Then, for some ε > 0,

∂x̃i
∂xi

is Lipschitz, and
∂x̃i
∂xi
→∞, xi →∞,

∂h0

∂xi
is Lipschitz, and

∂h0

∂x̃i
(x̃) ≥

(
∂x̃i
∂xi

)1+ε

, xi →∞,

is sufficient for stability.

Proof: We can write

µi(x) =
∂h

∂xi
(x) = l(xi)

∂h0

∂x̃i
(x̃)

where we defined l := ∂x̃i
∂xi

. Note, that here x̃i only depends
on xi. The gradient of the weight µi(x) is given by:

∂µi
∂xj

(x) =

{
∂l
∂xi

(xi)
∂h0

∂x̃i
(x̃) + l(xi)

∂
∂xi

∂h0

∂x̃i
(x̃) i = j

∂
∂xj

∂h0

∂x̃i
(x̃) · l(xi) i 6= j

Define x∆ := x+ ∆x and x̃∆ := x̃(x∆). From the proof of
Corollary 1 it is clear that we only have to show that∣∣∇Tµi(x)∆x

∣∣
‖µ(x∆)‖

≤ ε,

for some ε > 0 arbitrarily small. This can be rewritten as:

∂l
∂xi

(xi)
∂h0

∂x̃i
(x̃)∆xi + l(xi)

∂
∂xi

∂h0

∂x̃i
(x̃)∆xi∑

j∈M l(x∆
j)∂h0

∂x̃j
(x̃∆)

+
l(xi)

∑
j∈M,j 6=i

∂
∂xj

∂h0

∂x̃i
(x̃)∆xj∑

j∈M l(x∆
j)∂h0

∂x̃j
(x̃∆)

≤ ε

Since ∂h0

∂x̃i
, l are Lipschitz, thus ∂

∂xj
∂h0

∂x̃i
, ∂l∂xi are uniformly

bounded, and l(xi), ∂h0

∂x̃i
(x̃) ≥ l1+ε(xi)→∞ when xi →∞,

the effect of ∆x vanishes in the denominator. The condition
∂h0

∂x̃i
(x̃) ≥ l1+ε(xi) is required since we have expressions of

the form
l(xi)l(xj)

l(xi)
∂h0

∂x̃i
(x̃) + l(xj)

∂h0

∂x̃j
(x̃)

which then become arbitrarily small.

A. Handling Complexity: A Pick and Compare Approach

Centralized throughput optimal scheduling policies, such
as MaxWeight, usually suffer from a high computational
complexity. This naturally also applies to a µ-MaxWeight
based policy. More precisely, a large computational burden
arises since the selection of the best control vector in (7)
has to be carried out in every time slot, since the number of
candidate control vectors grows exponentially with the size of
the vector. To tackle the complexity issue there are several
known approaches, such as randomized pick-and-compare
based methods [14] which reduce complexity at the expense
of higher delay or Greedy/Maximal scheduling [15] which has
good delay performance but achieves only a fraction of the
throughput region.
To circumvent the complexity problem we propose a ran-
domized version based on the first approach. As noted for
example in [14] and [16], throughput optimality can be
preserved by using a linear-complexity randomized Pick-and-
Compare method. Tailored to µ-MaxWeight, the approach can
be summarized as follows: At t = 0, use u(0) = û ∈ U∗
chosen randomly. Afterwards in each timeslot t > 0 first pick
a control û ∈ U∗ randomly, and second, choose the control
u(t) of this particular timeslot to be either the vector û if

〈µ(x),Bû+α〉 < 〈µ(x),Bu(t− 1) +α〉,

5

or u(t− 1) otherwise. Above algorithm preserves throughput
optimality as long as

P (û = u∗) ≥ δ,

for δ > 0 [14][16] (which is trivially satisfied). The reduced
complexity, however, comes at the expense of a higher con-
vergence time. Yet, a tradeoff can be achieved by repeatedly
applying the pick and compare steps in every particular
timeslot. In the simulations presented in Section VI, we apply
the procedure ns times per timeslot.

Note that, although not focus of this paper, the randomized
algorithm was shown to be amenable as a basis for implement-
ing decentralized throughout optimal control policies [17][18].

V. COST-FUNCTION CHOICE

A vital design choice in the proposed control approach
is the underlying cost-function to be minimized. Different
applications induce different constraints on network control
and thus need different cost functions. As mentioned before,
applications may require both minimum and maximum buffer
constraints. Assume we want to find a cost function that is best
suited to steer the buffer levels of application buffers towards
a target buffer state Q̃.

In previous work such as [5][19] a linear cost function was
used, given by

c(Q) =
∑
i

ciQi, (13)

since the aim was to minimize total buffer occupancy, corre-
sponding to end-to-end delay. However, this cost function is
unsuitable to avoid buffer underflows since it does not penalize
buffer states below the target level. A simple and straight
forward cost function choice that penalizes deviations from
target buffer state Q̃ in both directions is the shifted quadratic
cost function, given by

c(Q) =
∑
i

ci(Qi − Q̃)2. (14)

However (14) naively treats all buffers in the network equally
although most likely only application buffers have minimum
state constraints.

In fact, a better performance can be observed by combining
(13)-(14), such that only user buffers have quadratic cost
terms, while all other buffers induce linear costs. We call the
resulting function composite cost function, given by

c(Q) =
∑
i∈Iu

ci(Qi − Q̃)2 +
∑
j /∈Iu

cjQj , (15)

where Q̃ denotes the desired target buffer level of the applica-
tion buffers2 and Iu denotes the set of all user buffer indices.

Of course, the shifted quadratic terms in (15) are only one
of many possibilities to steer the buffers towards a desired
working point. Intuitively, any cost function that produces low

2For simplicity we assume all application buffers have the same target
buffer level.

costs around the target level and increasing costs for under-
flows and overflows should lead to the anticipated behaviour.
Another approach is to explicitly design a cost function with
desired properties. Motivated by the required behaviour we
additionally consider a cost function which is inspired by the
transfer function of a Butterworth bandstop filter, which we
subsequently call bandstop cost function.

The resulting cost function, is given by

c(Q) =
∑
i∈Iu

cmax

1− 1

1 +
(
Qi−Q̃
w

)k
+

∑
j /∈Iu

cjQj . (16)

Thereby the parameter k is the analogue to the filter’s order, w

0 2 4 6 8 10 12 14 16 18

x 10
5

0

2

4

6

8

10

x 10
5

C
O

S
T

BUFFER SIZE

Cost Functions (Single Buffer)

Bandstop CF (k=10, c
max

 = 10e5)

Bandstop CF (k=2, c
max

 = 10e5)

Linear CF

Shifted Quadratic CF

Fig. 2. Cost function trajectories for a single buffer, Q̃ = 8 · 105

determines the width of the interval of buffer state around the
target buffer level that produce very low costs, and cmax scales
the function to the desired maximum cost value that occurs
when the deviation from the target buffer state is significantly
large. For a single buffer system the considered cost functions
are illustrated in Figure 2.

Having chosen an appropriate cost function the question
remains, how to construct a corresponding weight function µ.
In order to guarantee stability, it is sufficient to show that the
weight function fulfills the stability conditions of Theorem 1.
For this purpose we employ a perturbation technique (cf. [11]).
In [5] we pointed out that a simple way to construct a weight
function is µ(x) = Pθ (x)∇h0(x), where a perturbation
matrix Pθ (x) := diag

(
1− exp

(
− xi
θ(1+

∑
j 6=i xj)

))
is used.

It is based on the following perturbation of variables:

x̃i := xi + exp

(
− xi
θ(1 +

∑
j 6=i xj)

)
. (17)

It can be easily verified that the conditions given in Section
IV hold for suitable h0, i.e. it is throughput optimal for any
θ > 0 ([5][13]). Here we directly use our cost function as
h0. For sufficiently large buffers the stability conditions are
clearly fulfilled (while the behaviour when buffers are close
to zero is controlled by perturbation (17)).

In general for throughput optimality only the behaviour
matters when buffers grow very large [6]. Therefore we are not
necessarily confined to everywhere differentiable cost func-
tions. It is also possible to use a for example piecewise linear
function to construct the weight function and still maintain
throughput optimality, by using an arbitrary subgradient in

6

(7) at non-differentiable points. Although the control that is
chosen at these point may not necessarily lead to a negative
drift, concerning the stability conditions given in Section IV it
is sufficient to assume that the cost function is differentiable
when ‖x‖ is larger than some arbitrary B.

A. Example: Controlling a network of queues in tandem

Let us clarify the influence of the cost-function choice by
considering a very simple network known as tandem queue
(cf. Figure 1), comprising a number of m buffers in series.
To model for example a streaming service, we assume traffic
arrives at the first buffer with mean rate α and some application
removes traffic from the m’th buffer at a constant rate Ra.
The output of buffers 1 through m − 1 can be regulated by
the control policy. While ’ordinary’ tandem queue networks
(without considering a specific application) are investigated
thoroughly in the literature (see e.g. [7]), we have two addi-
tional issues here. First, we have no explicit control over the
rate at which data is extracted from application buffer Qm.
Second, in addition to stability (i.e. boundedness of buffers
from above) we also have minimum buffer state requirements.

Consider now the most simple network of m = 2. The
second queue is thereby considered as the application queue,
thus the only control dimension remaining is whether to send
traffic from queue 1 to queue 2 or not. How the buffer
state can be steered towards the target buffer level using an
appropriate cost function is shown in Figure 3. It depicts
queueing trajectories3 of this system for 20000 time slots
using two different underlying cost functions. The dashed lines
represent policies based on the simple linear cost function,
given in (13). This cost function obviously does not stop the
second buffer from growing, since both buffers are weighted
equally. By contrast, the solid lines are obtained using the
composite cost function (15), which produces a quadratic cost
at the second buffer when the buffer state deviates from the
target buffer level. It turns out that this function stops buffer 1
from sending further traffic to buffer 2 when the latter reaches
a certain level. Instead the excessive traffic is queued at buffer
1, since it generates lower costs.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
x 10

4

0

0.5

1

1.5

2

2.5

3x 10
8 Tandem Queue Trajectories

Time Slot

Q
u

e
u

e
 S

iz
e
 (

b
it

)

Queue 1, Composite CF
Queue 2, Composite CF
Queue 1, Linear CF
Queue 2, Linear CF

Fig. 3. Queue Trajectories under different cost-functions

3To increase readability we performed an exponential averaging of the
(strongly fluctuating) buffer values over a time window of 100 time slots.

VI. DESIGN AND CONTROL OF LARGE MULTIMEDIA
NETWORKS: NUMERICAL PERFORMANCE RESULTS

Using numerical experiments we subsequently evaluate the
previously introduced cost functions in a larger network de-
signed for entertainment purposes, thus especially relying on
streaming traffic. Figure 4 schematically depicts the considered
network.

...

... ...

Server

Wired Backbone

AP 1 AP K

User 1-1 User 1-N User K-1 User K-N

Fig. 4. Schematic representation of considered multimedia network

We have several wireless access points each serving a cer-
tain number of user terminals, potentially running streaming-
based applications, in its area. Some terminals which are
located in between several access points can potentially be
served by more than one access point. The access points
are connected via a wired backbone network to a central
application server. The server itself may in turn be connected
to the Internet, thus traffic for the each user arrives in a random
fashion. Each component in the system has a number of queues
or buffers with different requirements. The considered system
can for example be used to model a wireless entertainment
system (for example inside an aircraft cabin [20]).

To account for the anticipated multimedia applications we
define a notion of queue outage as a measure of a policy’s
performance (in addition to the average cost incurred by
the application of a particular control policy). Therefore we
first define a buffer underflow as the event when the size
of a buffer falls below a predefined value Q(1). The buffer
underflow frequency Fmin

i (T) of user i is consequently defined
as the sum of the timeslots t ≤ T in which its buffer is
lower than Q(1). Similarly we can define a buffer overflow
event as an event where the buffer grows beyond a certain
value Q(2). The buffer overflow frequency Fmax

i (T) of user i
measures the number of timeslots in which its buffer is larger
than Q(2). The total sum of buffer outages is consequently
F̄ out(T) =

∑
i∈Iu F

min
i (T) + Fmax

i (T), and eventually the
relative frequency of queue outage events is defined as

P̄ out(T) =
1

T · I
F̄ out(T), (18)

where I denotes the number of user buffers. The values of
Q(1) and Q(2) can be flexibly adopted to the requirements

7

of the desired application. The goal of the control policy is
consequently to keep the buffer states in between Q(1) and
Q(2). Thus it is reasonable to choose Q̃ = 1

2

(
Q(1) +Q(2)

)
for the target buffer state.

Using this definition we want to evaluate the cost functions
from Section V with respect to two main aspects. First we
want to ask how the queue outage performance evolves with
respect to varying traffic intensities. This gives us an estimate
of the robustness of the various cost functions. Second we
demonstrate how the proposed approach can be used as a tool
for wireless network design. We clarify this by an example,
evaluating how the performance evolves with varying system
bandwidths. This allows an a priori assessment of how much
bandwidth has to be provided in order to support service
constrains expressed by a predefined queue outage probability.

Traditionally the CRW network model summarized in Sec-
tion II comprises static links. However in our system we
assume time-varying wireless links between access points and
terminals. Since we are mainly concerned with MAC-layer
performance we use a simple abstraction of the wireless link
capacities. For this, we apply a result from [21] which deter-
mines the mutual information distribution of a multi-antenna
OFDM-based wireless system. To obtain rate expressions we
use the notion of outage capacity (also derived in [21]) Iout,po
for a given outage probability po, defined as the maximum rate
guaranteed to be supported for 100(1 − po)% of the channel
realizations and is given by

Iout,q = E[IOFDM]−
√
V ar(IOFDM)Q−1(po)

with Q(·) being the Gaussian Q-function and po the desired
outage probability. E[IOFDM] and V ar(IOFDM) are determined
according to above mentioned mutual information distribution.

In the following we show performance results in an example
network structured according to Figure 4. Configuration details
of the simulations are summarized in Table I.

TABLE I
GENERAL SIMULATION PARAMETERS

Parameter Value
Simulation Duration (T) 100000 time slots
Number of Users per AP 10
Number of Access Points 3
Wired Link Capacity (Rs) 100 Mbit/s
Wireless Link Outage Probability (po) 0.01
Target User Buffer Size (Q̃) 20 Mbit
Minimum User-Buffer Constraint (Q(1)) 10 Mbit
Maximum User-Buffer Constraint (Q(2)) 30 Mbit
Application Rate (Ra) 3 Mbit/s
Iterations of Pick-And-Compare (ns) 100

A. Traffic Intensity

Especially when traffic is generated outside of the con-
sidered network it is reasonable to assume that the offered
arrival rate can deviate from the anticipated operating point.
Therefore we subsequently investigate how the candidate cost
functions influence the policy’s behaviour with varying traffic
intensity. Note, that the application drains application queues

at a rate of 3Mbit/s, thus intuitively one can expect that
at traffic lower than this value the influence of underflows
dominates while at traffic rates larger then this value overflows
are more likely to occur. We first consider the buffer underflow
probability, since as opposed to other state-of-the art control
approaches, a main incentive considered here is to prevent
service interruptions due to low buffers. Consider Figure 5,
comparing the underflow probability of various cost functions
together with classical MaxWeight as baseline. When the

2.8 2.85 2.9 2.95 3 3.05
0

0.05

0.1

0.15

0.2

0.25

Relative Frequency of Buffer Underflows

Mean Arr. Rate (Mbit/s)

Linear CF

MaxWeight

Shifted Quadratic CF

Bandstop CF

Composite CF

Fig. 5. Buffer underflow frequencies obtained by different cost functions

mean arrival rate equals the application service rate Ra (or
is larger) all policies produce low underflow frequencies,
however one can already observe a performance gain from the
more sophisticated cost functions (CF). The gain significantly
grows when the arrival rates are slightly lower than Ra.
While MaxWeight and the linear CF (13) show almost the
same high underflow frequency (since both controls do not
penalize low buffer states at the application buffers), already
the shifted quadratic CF (14) shows some improvement. The
best performance is obtained with the sophisticated bandstop
and composite CFs (given by (16) and (15), respectively)
which assign different costs to application buffers and non-
application buffers. However, the performance gap between the
two is relatively small. Therefore we choose the much simpler
CF (15) in the following. However not only buffer underflows
have to be avoided, in some cases it may be desirable to
avoid large queues as well. Therefore we next investigate
the performance with respect to the queue outage probability
defined in (18). Figure 6 summarizes the results. Naturally, at

2.75 2.8 2.85 2.9 2.95 3 3.05 3.1 3.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Relative Probability of Queue Outage

Mean Pck. Arr. Rate

µ−MaxWeight, Linear Cost Function
µ−MaxWeight, Quadratic Cost Function
MaxWeight
µ−MaxWeight, Composite Cost Function

Fig. 6. Relative queue outage frequencies of various cost functions

traffic arrival rates lower than the application’s service rate,
all cost functions produce decreasing outages with increasing

8

arrival rates, since queue underflows become less frequent.
Beyond the applications service rate, the policies without a
sophisticated cost function rapidly increase the queue outages
with further increasing traffic due to overflows. Only the
composite cost function can further decrease the number of
queue outages, since exceeding traffic is stored at buffers that
produce lower costs (cf. the tandem network in Section V-A).

B. Network Design

Given a concrete application which requires a certain out-
age performance, it is of great interest how many system
resources have to be provided. For example when planning
some entertainment network it is important to know how much
wireless bandwidth is actually needed to support the desired
services. Therefore we next investigate the influence of the
system bandwidth, when a certain target outage rate is to be
achieved. For this, we use the composite cost function (15),
and again plot MaxWeight as a baseline. Figure 7 compares the
relative frequency of user buffer outages for varying wireless
bandwidths. Assume we want a queue outage probability
(defined according to (18)) of 2% not to be exceeded, marked
by the dashed black line in Figure 7. Obviously a simple
scheduling strategy which is not designed based on a cost-
function such as MaxWeight is not able to push the outage
performance below this limit. By contrast using the cost-
function based control a wireless bandwidth of 20 MHz would
be sufficient to guarantee the desired performance in the
considered configuration.

0 1 2 3 4 5 6 7 8
x 10

7

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Relative Frequency of Queue Outage

Available Bandwidth [Hz]

µ−MaxWeight
MaxWeight

Fig. 7. Comparison of policies with respect to system bandwidth

VII. CONCLUSIONS

We presented a framework for the design and control of
queueing networks with special emphasis on service induced
constraints. Therefore we introduce a cost-function based
approach to queueing control and provide sufficient conditions
for its throughput optimality. The inherent complexity is tack-
led by a randomization approach. Furthermore we show how
particular buffers can be steered to desired operating points
with an appropriate cost function design, which can be used
for example to avoid buffer underflows in a streaming-traffic
based scenario. We evaluate different cost functions for their
suitability using numerical simulations of a large entertainment
network. Eventually we demonstrated how the approach can
aid the network design process, by a priori determining how

many system resources are needed to support given service
requirements.

REFERENCES

[1] L. Tassiulas and A. Ephremides, “Stability properties of constrained
queueing systems and scheduling policies for maximum throughput in
multihop radio networks,” IEEE Transactions on Automatic Control,
vol. 37, no. 12, pp. 1936–1948, 1992.

[2] D. Subramanian and D. Leith, “Draining time based scheduling algo-
rithm,” in Proc. IEEE Conf.Decision and Control, (Miami), 2007.

[3] L. X. Bui, R. Srikant, and A. Stolyar, “A Novel Architecture for
Reduction of Delay and Queueing Structure Complexity in the Back-
Pressure Algorithm,” IEEE/ACM Transactions on Networking, vol. 19,
no. 6, pp. 1597–1609, 2011.

[4] L. Ying, S. Shakkottai, A. Reddy, and S. Liu, “On Combining Shortest-
Path and Back-Pressure Routing Over Multihop Wireless Networks,”
IEEE/ACM Transactions on Networking, no. 99, p. 1, 2010.

[5] G. Wunder and M. Kasparick, “Universal Stability and Cost Optimiza-
tion in Controlled Queueing Networks,” in IEEE Wireless Communica-
tions and Networking Conference WCNC (2012), (Paris, France).

[6] M. Naghshvar, H. Zhuang, and T. Javidi, “A General Class of Through-
put Optimal Routing Policies in Multi-Hop Wireless Networks,” IEEE
Transactions on Information Theory, vol. 58, no. 4, pp. 2175–2193,
2012.

[7] S. Meyn, Control Techniques for Complex Networks. New York, NY,
USA: Cambridge University Press, 1st ed., 2007.

[8] L. Huang and M. J. Neely, “Utility optimal scheduling in processing
networks,” Performance Evaluation, vol. 68, no. 11, pp. 1002–1021,
2011.

[9] V. Majjigi, D. O’Neill, C. Huppert, and J. Cioffi, “Multi-User Buffer
Control with Drift Fields,” in IEEE Global Telecommunications Confer-
ence (GLOBECOM), pp. 1–5, 2010.

[10] D. I. Shuman, M. Liu, and O. Q. Wu, “Energy-Efficient Transmission
Scheduling With Strict Underflow Constraints,” IEEE Transactions on
Information Theory, vol. 57, no. 3, pp. 1344–1367, 2011.

[11] S. Meyn, “Stability and Asymptotic Optimality of Generalized
MaxWeight policies,” SIAM Journal on Control and Optimization,
vol. 47, no. 6, pp. 3259–3294, 2008.

[12] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “Bounds on delays
and queue lengths in input-queued cell switches,” Journal ACM, vol. 50,
no. 4, pp. 520–550, 2003.

[13] G. Wunder, C. Zhou, and M. Kasparick, “Universal Stability and Cost
Optimization in Controlled Queueing Networks,” Submitted to SIAM
Journal on Control and Optimization.

[14] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” in Proceedings Seventeenth
Annual Joint Conference of the IEEE Computer and Communications
Societies (INFOCOM), vol. 2, pp. 533 –539 vol.2, 1998.

[15] C. Joo, X. Lin, and N. B. Shroff, “Understanding the capacity region
of the Greedy maximal scheduling algorithm in multihop wireless
networks,” IEEE/ACM Trans. Netw., vol. 17, pp. 1132–1145, Aug. 2009.

[16] A. Eryilmaz, E. Modiano, and A. Ozdaglar, “Randomized Algorithms
for Throughput-Optimality and Fairness in Wireless Networks,” in 45th
IEEE Conference on Decision and Control, pp. 1936–1941, 2006.

[17] A. Eryilmaz, O. Asuman, and E. Modiano, “Polynomial Complexity
Algorithms for Full Utilization of Multi-Hop Wireless Networks,” in
26th IEEE International Conference on Computer Communications
(INFOCOM), pp. 499–507, 2007.

[18] L. X. Bui, S. Sanghavi, and R. Srikant, “Distributed Link Scheduling
With Constant Overhead,” IEEE/ACM Transactions on Networking,
vol. 17, no. 5, pp. 1467–1480, 2009.

[19] M. Kasparick and G. Wunder, “Combining Cost-Based Queueing Con-
trol With Resource Allocation In Wireless Networks,” in 16th Interna-
tional ITG Workshop on Smart Antennas (WSA), (Dresden), 2012.

[20] M. Kasparick and G. Wunder, “mu-MaxWeight Queueing Network Con-
trol With Application To In-Flight Entertainment Systems,” in Future
Network & Mobile Summit 2012, (Berlin).

[21] M. R. McKay, P. J. Smith, H. A. Suraweera, and I. B. Collings, “On the
Mutual Information Distribution of OFDM-Based Spatial Multiplexing:
Exact Variance and Outage Approximation,” IEEE Transactions on
Information Theory, vol. 54, pp. 3260–3278, July 2008.

9

	I Introduction
	II System Model
	II-A Stability

	III Preliminaries
	IV -MaxWeight
	IV-A Handling Complexity: A Pick and Compare Approach

	V Cost-Function Choice
	V-A Example: Controlling a network of queues in tandem

	VI Design and control of large multimedia networks: numerical performance results
	VI-A Traffic Intensity
	VI-B Network Design

	VII Conclusions
	References

