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On the Capacity of the One-Bit
Deletion and Duplication Channel

Hamed Mirghasemi and Aslan Tchamkerten

Abstract—The one-bit deletion and duplication channel is
investigated. An input to this channel consists of a block of
ℓ ≥ 1 bits which experiences a deletion with probability p,
a duplication with probability q, and remains unchanged with
probability 1 − p − q. For this channel a capacity expression is
obtained in the asymptotic regime wherep+ q = o(1/ log ℓ). As
a corollary, we obtain an asymptotic expression for the capacity
of the so called “segmented” deletion and duplication channel
where the input now consists of several blocks and each block
independently experiences either a deletion, or a duplication, or
remains unchanged.

I. I NTRODUCTION

Given an integerℓ ≥ 1 and two constantsp, q ∈ [0, 1]
such thatp + q ≤ 1, the segmented deletion and duplication
channel treats independently each consecutive lengthℓ binary
input block in one of the following ways:

• one bit is deleted with probabilityp,
• one bit is duplicated with probabilityq,
• the block remains unchanged with probability1− p− q.

Conditioned on a bit being deleted (duplicated) in a particular
block, the deletion (duplication) occurs randomly and uni-
formly over the block. Hence, the unconditional probability
that any particular bit is deleted or duplicated is equal top/ℓ
andq/ℓ, respectively.

When ℓ = 1, the segmented deletion and duplication
channel becomes the standard deletion and duplication channel
where each input bit is independently deleted with probability
p, duplicated with probabilityq, and is left unchanged with
probability of 1− q − p.1

An input to the channel consists ofs ≥ 1 consecutive blocks
of length ℓ. The corresponding output is thus a binary string
of known length betweenn− s andn+ s where

n
def
= s · ℓ .

RateR is said to be achievable if, for anyε > 0 and s
large enough, there exist2nR codewords and a decoder whose
average error probability over codewords is no larger thanε.
Capacity is the supremum of achievable rates and admits the
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1See,e.g., [1], [3], [6], [8], [11], [13] for recent references on the i.i.d.
deletion and duplication channel.

asymptotic expression

C = lim
s→∞

1

n
max
Xn

I(Xn;Y(Xn)) (1)

according to Dobrushin’s capacity theorem [2, Theorem 1].
Segmented channels with synchronization errors were in-

troduced by Liu and Mitzenmacher in [9] where, following
an algorithmic approach, they proposed a zero-error coding
scheme and thereby established a numerical lower bound on
the capacity of the segmented deletion channel (i.e., for q = 0).

A difficulty in obtaining a tight single-letter characterization
of C stems from the fact that the receiver does not know the
error pattern,i.e., which out of thes blocks experienced a
deletion or a duplication (albeit it knows the overall num-
ber of deletions and duplications). As a consequence, errors
“propagate” across blocks.

A useful technique to derive upper and lower bounds on
C is to reveal the receiver the error patternEs = {Ei}

s
i=1

where Ei = −1 if the i-th block experienced a deletion,
Ei = 1 if the i-th block experienced a duplication, andEi = 0
otherwise [4], [14]. When this side information is provided
to the receiver, each block can be considered in complete
isolation and we obtain the so-called “one-bit” deletion and
duplication channel. The capacityCSI of the one-bit deletion
and duplication channel is the capacity with respect to a single
lengthℓ block. We hence have the obvious upper bound

C ≤ CSI , (2)

where

CSI =
1

ℓ
max
Xℓ

I(Xℓ;Y(Xℓ)) , (3)

whereXℓ denotes a random input block to the channel, and
whereY(Xℓ) denotes the corresponding output.

A lower bound toC in terms ofCSI can be obtained by
using the argument of [14, Section II.C]. First observe that

I(Xn;Y(Xn), Es) ≤ I(Xn;Y(Xn)) +H(Es) .

Using thatH(Es) = sHb(p, q) whereHb(p, q) denotes2 the
entropy function−p log p−q log q−(1−p−q) log (1− p− q) ,
it then follows that

CSI −
1

ℓ
Hb(p, q) ≤ C . (4)

2Logarithms are taken to the base2 throughout the paper.
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Note that an analytical expression forCSI remains to be found
and a numerical evaluation, for instance, via the Arimoto-
Blahut algorithm, is computationally heavy already for mod-
erate values ofℓ, sayℓ ≥ 17.

In this paper, we provide analytical upper and lower bounds
on CSI which, via (2) and (4), yield upper and lower bounds
on C. These bounds are tight in certain asymptotic regimes
yielding the main capacity results.

Throughout the paper, the following notational conventions
are adopted. A binary lengthn vector is usually denoted by
a bold script,e.g., x, and its length is denoted by|x|. If we
want to emphasize the length of a vector, we alternatively write
xn. For computational convenience, we sometimes refer to a
particular sequencex using its runlength descriptionr(x) =
(x1, {ri(x)}) where ri(x) denotes itsith runlength.3 For
instance, the runlength description of0100110 is (0, 11221).

We usey ≺ x whenevery is a subsequence ofx, i.e.,
whenevery results from the deletions of|x| − |y| bits of x.

The next section contains our main results and Section III
is devoted to the proofs.

II. M AIN RESULTS

Let

Lα
SI

def
=

I(Xℓ(α);Y(Xℓ(α)))

ℓ
(5)

whereXℓ(α) = X1, X2, . . . , Xℓ refers to the Markovian input
given by

Pr(X1 = 0) = Pr(X1 = 1) =
1

2
Pr(Xi 6= Xi−1) = α, 2 ≤ i ≤ ℓ , (6)

for some fixed parameterα ∈ [0, 1].
An explicit expression for the lower bound (5) in terms of

the parametersℓ, p, q, andα is given in the appendix.
Further, define

U
def
=
p · (ℓ − 1) + q · log (2ℓ+1 − 2)

ℓ

+
(1− p− q) log

∑

xℓ∈{0,1}ℓ 2
− p+q

1−p−q
Ĥ(r(xℓ))

ℓ
, (7)

whereĤ(r(xℓ)) is the runlength empirical entropy ofxℓ

Ĥ(r(xℓ))
def
= −

∑

i≥1

ri(x
ℓ)

ℓ
log

ri(x
ℓ)

ℓ
.

Proposition 1. For any p, q, α ∈ [0, 1] such that p + q ≤ 1
and any integer ℓ > 1, we have

Lα
SI ≤ CSI ≤ U . (8)

In Fig. 1,

∆U,CSI
(ℓ)

def
= max

p,q:p+q≤1

U − CSI

CSI

(9)

3Notice that
∑

i ri(x) = |x|.
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and

∆LSI ,CSI
(ℓ)

def
= max

p,q:p+q≤1

CSI −maxα Lα
SI

CSI

(10)

represent the relative difference betweenCSI , which is ob-
tained numerically by the Arimoto-Blahut algorithm, and the
upper and lower boundsU and Lα

SI , respectively, the latter
being numerically optimized overα ∈ [0, 1].

As we can see, these bounds are fairly close for a wide
range ofp and q. For instance, their difference with respect
to CSI is at most5% for any p andq such thatp+ q ≤ 0.6,
as long asℓ ≥ 2. Moreover, numerical evidence suggests that
both∆U,CSI

(ℓ) and∆LSI ,CSI
(ℓ) tend to zero asℓ → ∞.

In Fig. 2

∆LSI
(q, ℓ)

def
= max

p∈[0,1−q]

maxα∈[0,1] L
α
SI − L0.5

SI

maxα∈[0,1] L
α
SI

(11)

represents the relative difference betweenL0.5
SI and the opti-

mized lower bound expressionmaxα Lα
SI as a function ofq,

for different values ofℓ. As we observe, when eitherℓ or
q decreases, non-uniform inputs perform significantly better
than uniform inputs.

We now turn to the case where there is no side information
at the receiver. For comparing our results with related work,
we restrict ourselves to the purely deletion case,i.e., q = 0.
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Fig. 3. Upper and lower bounds on the capacity of segmented deletion
channel forℓ = 8.
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channel forℓ = 2.

For this channel, a lower bound to capacity is obviously

Lα def
= Lα

SI −Hb(p, q)/ℓ

by (4) and (8).
Figures 3 and 4 represent the upper and lower bounds onC

given byU andmaxα Lα for ℓ = 8 and ℓ = 2, respectively.
The difference between these bounds is particularly significant
for p ≈ 1/2. Indeed, this is partly due to the fact that
the difference between the two bounds is lower by the side
informationHb(p, 0)/ℓ which is maximal forp = 1/2. Also
note thatU may be better or worse than the numerical upper
bound given in [14]. For instance, forℓ = 8 (Fig. 3) we have
that U is lower than the upper bound proposed in [14] for
p ∈ [0, 0.6] whereas the opposite holds forp ∈ (0.6, 1]. Finally
note thatU appears to be a very good approximation forCSI ;
the difference gets negligible forp ≤ 0.6 when ℓ = 8 and is
negligible for anyp ≤ 1 whenℓ = 2.

Asymptotics

In the regime of large blocks and small synchronization
errors we have:4

4We say thatf(ℓ) = O(g(ℓ)) if there exists a positive real numberk such
that |f(ℓ)| ≤ k · g(ℓ) when ℓ → ∞.

Theorem 1. i. For p and q such that p+ q ≤ 1, we have

L0.5
SI =1−

p+ q

ℓ
log ℓ+

p

ℓ
(K − 1) +

q

ℓ
(K + 1)

+ (p+ q)O(ℓ−2) ; (12)

ii. When (p+ q) log ℓ → 0, we have

U =1−
p+ q

ℓ
log ℓ+

p

ℓ
(K − 1) +

q

ℓ
(K + 1)

+O((p + q)2(log ℓ)2/ℓ) ; (13)

where K =
∑∞

j=1
j log j

2j+1 ≃ 1.2885.5

iii. When (p+ q) log ℓ → 0, we have

CSI =1−
p+ q

ℓ
log ℓ+

p

ℓ
(K − 1) +

q

ℓ
(K + 1)

+ (p+ q)O(ℓ−2) +O(
(p+ q)2

ℓ
log2 ℓ) . (14)

We note that forp = 1 (and henceq = 0), the1− log ℓ
ℓ

term
in (14) corresponds to the zero-error capacity of the one-bit
purely deletion channel ([12, Theorem 2.5]).

Note that p and q do not play symmetric roles in the
asymptotic capacity expression (14). An intuitive explanation
for this is as follows. From the length of the output block the
decoder knows whether the input to the channel experiences a
deletion, a duplication, or remains unchanged. If a duplication
occurs, then the decoder also knows the number of runs in the
input since duplication cannot change the number of runs. By
contrast, deletion errors can erase a run completely, thereby
increasing decoding ambiguity. From Theorem 1 and (4), we
readily obtain the following asymptotic expressions for the
segmented deletion and duplication channel:

Corollary 1. i. For any p and q such that p + q ≤ 1, we
have

C = 1− (p+ q)
log ℓ

ℓ
+O(ℓ−1) ; (15)

ii. When q = 0 and p = O(ℓ−1) we have

L0.5 =1 + (p/ℓ) log (p/ℓ)−K1 · (p/ℓ) +O(ℓ−3) (16)

where K1
def
= log(2e)−

∑∞
j=1

j log j

2j+1 ≃ 1.15416377;
iii. When p = 0 and q = O(ℓ−1) we have

L0.5 =1 + (q/ℓ) log(q/ℓ) +K2 · (q/ℓ) +O(ℓ−3) (17)

where K2
def
=

∑∞
j=1

j log j

2j+1 − log( e2 ) ≃ 0.84583623.

Note that the first three terms on the right-hand side of
(16) correspond to the first terms in the asymptotic expansion
of the capacity of the i.i.d. deletion channel with deletion
probabilityp/ℓ.

III. PROOFS

We denote bypd and pi the unconditional probabilities of
deletion and duplication, respectively, of each bit withina
block of lengthℓ, i.e.,

pd
def
= p/ℓ pi

def
= q/ℓ .

Also, we denote bynr(x) the number of runs in a sequencex.

5This constant appeared asA1 in [7, Theorem 1].



A. Proof of Proposition 1

1) Lower bound: The left-hand side of (8) holds because
of (3).

2) Upper bound: For any lengthℓ output sequencey, we
havePY (y

ℓ) = (1−p−q)PX(yℓ) andQ(yℓ|xℓ) = (1−p−q).
For a lengthℓ − 1 (respectively,ℓ + 1) output sequencey,
resulting from a one-bit deletion (respectively, duplication) in
thei-th run ofxℓ, we haveQ(y|xℓ) = p·ri

ℓ
(respectively,q·ri

ℓ
).

Thus, we can write

I(Xℓ;Y(Xℓ)) = H(Y(Xℓ))−H(Y(Xℓ)|Xℓ)

= (1 − p− q)H(Xℓ)

+ (p+ q)
∑

x∈{0,1}ℓ

PX(x)
∑

i∈{1,...,nr(x)}

ri
ℓ
· log

ri
ℓ

−
∑

|y|=ℓ−1

PY (y) logPY (y)−
∑

y:|y|=nr(y)

PY (y) logPY (y)

+ p log p+ q log q , (18)

The sum of the first two terms on the right-hand side of the
second equality is a concave function ofPX . By the Lagrange
multipliers method one deduces that the maximum is attained
for the distribution

P ∗
X(xℓ) =

2−
p+q

1−p−q
Ĥ(r(xℓ))

∑

x∈{0,1}ℓ 2
− p+q

1−p−q
Ĥ(r(x))

.

Maximizing separately the third and the fourth terms on the
right-hand side of the second equality in (18) under the con-
straints

∑

|y|=ℓ−1 PY (y) = p and
∑

y:|y|=nr(y)
PY (y) = q

is similar to entropy maximization and the maximums are
achieved by the distributions

P ∗∗
Y (yℓ−1) =

p

2ℓ−1
and P ∗∗∗

Y (yℓ+1) =
q

2ℓ+1 − 2
,

respectively.
Substituting distributionsP ∗

X , P ∗∗
Y , andP ∗∗∗

Y on the right-
hand side of the second equality in (18) we obtainU .

B. Proof of Theorem 1

i. This part of the theorem is obtained by deriving the
asymptotic behavior of (27) asℓ → ∞. To do this, we
need the following lemma:

Lemma 1. For any positive s, t such that s+ t = 1, we
have:

n
∑

k=1

(

n

k

)

sktn−kk log k =sn log(sn) + t log e +
s− 1

2

+O(
1

n
) . (19)

Proof of Lemma 1: This lemma is proved via
the moment generating function method of [5]. For any
sequence of real numbers{fk}, the Bernoulli transform
of fk is defined as

Sn
def
=

n
∑

k=0

(

n

k

)

fks
ktn−k ,

Further, forfk and its Bernoulli transformSn, the gen-
erating functions are defined by

f(z)
def
=

∑

k≥1

fkz
k and S(z)

def
=

∑

n≥1

Snz
n ,

respectively.
It is easy to check (see [5]) thatf andS satisfy

S(z) =
1

1− tz
f(

sz

1− tz
) .

Now we consider two sequences of real numbersf
(1)
k

def
=

log k andf (2)
k

def
= k log k, k ≥ 1. For f (i)

k and i ∈ {1, 2},
we denote the Bernoulli transform, generating function,
and generating function of the Bernoulli transform by
S
(i)
n , f (i)(z), andS(i)(z), respectively. Also, we denote

by g′ the first derivative of a functiong.
It is easy to check thatf (2)(z) = z · (f (1))′(z) which
implies that

S(2)(z) = −tzS(1)(z) + (1− tz)z(S(1))′(z) .

Now, from [5, Propostion 1], we know that

S(1)
n = log sn+

s− 1

2sn
+O(

1

n2
) .

Denote by [zn]A(z) the n-th coefficient of a gener-
ating function A(z). Since [zn]zkS(z) = Sn−k and
[zn]S′(z) = (n+ 1)Sn+1, we obtain

S(2)
n = −t[log (s(n− 1)) +

s− 1

2s(n− 1)
+ O(

1

n2
)]

+ n[log (sn) +
s− 1

2sn
+O(

1

n2
)]

− t(n− 1)[log s(n− 1) +
s− 1

2s(n− 1)
+O(

1

n2
)]

= sn log(sn) + t log e+
s− 1

2
+O(

1

n
) .

SinceS(2)
n corresponds to the left-hand side of (19) the

proof is complete.
For anyp andq, asℓ → ∞, we have

p+ q

ℓ2

ℓ−1
∑

j=1

ℓ− j + 3

2j+1
j log j

=
(p+ q)K

ℓ
+ (p+ q)O(ℓ−2) , (20)

whereK is defined as

K
def
= lim

ℓ→∞

ℓ
∑

j=1

2−(j+1)j log j .



Also, we have

q

ℓ2 · 2ℓ−1

ℓ
∑

m=1

m

(

ℓ

m

)

logm

=
2 · q

ℓ2

ℓ
∑

m=1

(0.5)m(0.5)ℓ−m

(

ℓ

m

)

m logm

a
=

2 · q

ℓ2
[
ℓ

2
log

ℓ

2
] + q O(ℓ−2)

= −
q

ℓ
+

q

ℓ
log ℓ+ q O(ℓ−2) , (21)

wherea follows from Lemma 1 by settings = t = 0.5.
By substituting (20) and (21) into (27) we obtain (12).

ii. Since the runlengths of a lengthℓ sequence are between
1 and ℓ, we haveĤ(r(xℓ)) ≤ log ℓ. If we assume that
(p+ q) log ℓ → 0, we can use Taylor’s expansion of2−x

aroundx = 0 to get

2−
p+q

1−p−q
Ĥ(r(xℓ)) =1−

(p+ q)

(1− p− q) log e
Ĥ(r(xℓ))

+O((p+ q)2ℓ2) . (22)

Thus, we have
∑

xℓ

2−
p+q

1−p−q
Ĥ(r(xℓ)) = 2ℓ(1−O((p+ q)2ℓ2))

−
(p+ q)

(1− p− q) log e

∑

xℓ

Ĥ(r(xℓ)) . (23)

Now, we establish the asymptotic behavior of
∑

xℓ Ĥ(r(xℓ)). Denoting by n(ℓ, j), the number of
times a run with length ofj appears in all lengthℓ
sequences, we have

∑

xℓ

Ĥ(r(xℓ)) = −

ℓ
∑

j=1

n(ℓ, j)
j

ℓ
log (

j

ℓ
)

a
= −

ℓ−1
∑

j=1

2ℓ−j−1 ℓ− j + 3

ℓ
j log

j

ℓ

= −2ℓ
(

ℓ−1
∑

j=1

2−j−1 ℓ− j + 3

ℓ
j log j

− log (ℓ) ·

ℓ−1
∑

j=1

2−j−1 ℓ− j + 3

ℓ
j
)

b
= 2ℓ(log ℓ−K) , (24)

wherea follows from [11, Proposition 2] and whereb
follows from

∑∞
j=1

j
2j+1 = 1. Therefore, we have

log (
∑

xℓ

2−
p+q

1−p−q
Ĥ(r(xℓ)))

= ℓ+ log (1−
p+ q

(1− p− q) log 2
(log ℓ−K)

+O(((p+ q) log ℓ)2))

= ℓ−
p+ q

1− p− q
(log ℓ−K) +O(((p+ q) log ℓ)2) .

(25)

By substituting (25) in (7), we obtain (13).
iii. The capacity expansion in (14) follows from (12), (13).

C. Proof of Corollary 1

i. Since Hb(p,q)
ℓ

= O(ℓ−1), we have

L0.5 = 1−
(p+ q) log ℓ

ℓ
+O(ℓ−1) .

Also (2), (8) , (13) imply thatC is upper bounded by
1− (p+q) log ℓ

ℓ
+O(ℓ−1). The proof is complete.

ii. We expand(1− p) log (1− p) aroundp = 0 to obtain

L0.5 =1−
p

ℓ
log ℓ−

p

ℓ
+

p

ℓ
log (

p

ℓ
ℓ) + (

p

ℓ
)K

+
(1− p)

ℓ
(−p+O(p)2) log e+ pO(ℓ−2)

= 1 + pd log pd − (log 2e−K)pd +O(ℓ−3) .

iii. The proof is similar to the previous case.
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APPENDIX

For anyp, q, α ∈ [0, 1] such thatp+ q ≤ 1, and any integer
ℓ > 1 we have

Lα
SI =

1 + (1− p)(ℓ − 1)Hb(α) + (p+ q)(1− α)ℓ−1 log ℓ

ℓ

−
p

ℓ2(1− α)

[(

2α3(ℓ − 2)− (ℓ2 + ℓ− 6)α2

+ (ℓ2 − 3ℓ− 2)α+ 2ℓ
)

logα

+
(

− 2α3(ℓ − 2) + α2(ℓ2 + ℓ− 6)

− 2α(ℓ2 − 2ℓ− 1) + ℓ(ℓ− 3)
)

log(1− α)
]

−
pα2(1− α)ℓ−3

ℓ2

ℓ−2
∑

m=0

[

(

ℓ− 2

m

)

(β + γ + γm)×

(
α

1− α
)m log (β + γ + γm)

]

−
qαℓ

ℓ2(1− α)

ℓ
∑

m=1

(

ℓ

m

)

(
α

1− α
)−mm logm

+
p+ q

ℓ2

ℓ
∑

m=2

mαm−1(1− α)ℓ−m×

(

ℓ−m+1
∑

k=1

(

ℓ− k − 1

m− 2

)

k log k
)

, (26)

where

γ
def
=

1− 2α

α2
and β

def
=

ℓ− 1 + (α2 − α)(2ℓ− 4)

α2
.

Whenα = 1/2 the above expression reduces to

L0.5
SI =1−

p

ℓ
−

q

ℓ2 · 2ℓ−1

ℓ
∑

m=1

m

(

ℓ

m

)

logm

− (p−
p+ q

2ℓ−1
)
log ℓ

ℓ

+
p+ q

ℓ2

ℓ−1
∑

j=1

(ℓ− j + 3)

2j+1
× j log j . (27)

Proof: In order to prove (26), we need the following
lemmas.

Lemma 2. For any integer n ≥ 1, we have
n
∑

k=0

(

n

k

)

k · tk = n(1 + t)n−1t

n
∑

k=0

(

n

k

)

k2 · tk = n(1 + t)n−1t+ n(n− 1)(1 + t)n−2t2 .

(28)

Proof of Lemma 2: The first and second equations can
be obtained by taking the first and second derivatives with
respect tot of the Binomial equation

n
∑

k=0

(

n

k

)

tk = (1 + t)n .

Lemma 3. • The number of length ℓ sequences containing
m runs is

n′(ℓ,m) = 2

(

ℓ− 1

m− 1

)

. (29)

• The number of length k runs among all length ℓ se-
quences containing m runs is

n′′(k,m, ℓ) =







2 if m = 1, k = ℓ

2m
(

ℓ−k−1
m−2

)

if m ≥ 2, k ≤ ℓ−m+ 1

0 otherwise
(30)

Proof of Lemma 3:

• The number of lengthℓ sequences containingm runs is
twice the number of positive integer solutions of equation

r1 + · · ·+ rm = ℓ (31)

which is [10]
(

ℓ− 1

m− 1

)

.

• Since the only two sequences containing1 run are the all-
zero and all-one sequences we haven′′(ℓ, 1, ℓ) = 2. The
number of runs of lengthk among all lengthℓ sequences
containingm runs is twice the number of timesk appears
in the solution set of (31). The number of times that the
first run has lengthk is twice the number of positive
integer solutions ofr2+ · · ·+ rm = ℓ−k. Therefore, the
number of times a run of lengthk appears in all length
ℓ sequences containingm runs is equal to2m

(

ℓ−k−1
m−2

)

.

We writeLα
SI as

Lα
SI =

H(Ỹ)−H(Ỹ|Xℓ(α))

ℓ
.

First, we calculateH(Ỹ(Xℓ(α))). To compute this entropy,
we need to calculate the probabilities of all output sequences.
We classify the output sequences according to their lengths.
For lengthℓ sequences, we have

PY (y
ℓ) = (1− p− q)PX(yℓ) ,

which results in

−
∑

yℓ

PY (y
ℓ) logPY (y

ℓ) = (1 − p− q)H(Xℓ(α))

− (1 − p− q) log(1− p− q)
(32)

where the input block entropy is given by

H(Xℓ(α)) = 1 + (ℓ− 1)Hb(α) . (33)

Now, we turn to output sequences of lengthℓ − 1. For any
α ∈ [0, 1] and integersℓ ≥ 1 andm ≤ ℓ, we define

f(ℓ,m, α)
def
= 0.5 (1− α)ℓ−m−1αm . (34)



The probability of any sequence generated by a first-order
Markov process is a function of the number of its transitions.6

Since the number of transitions of a sequencex is equal to
nr(x)−1, for any lengthℓ sequence generated by (6), we can
write

PX(x) = f(ℓ, nr(x) − 1, α) . (35)

To calculatePY (y
ℓ−1), we need to calculate the probability

of each of its lengthℓ super-sequences.7 A length ℓ super-
sequence ofy can be generated by inserting one bit intoyℓ−1

in one of the following ways:

• Insert one zero (one) to one of its runs of zeros (ones).
The number of distinct super-sequences generated under
this scenario is equal tonr(y). Letx′ be sequencey with
one bit inserted in itsi-th run. Hence we haveQ(y|x′) =
(ri(y) + 1) · pd. Also, note that for any suchx′ we have
nr(y) = nr(x

′) and thus,PX(x′) = f(ℓ, nr(y) − 1, α).
• Insert one opposite bit at one of its ends. The number

of possible super-sequences generated under this sce-
nario is 2. For any such super-sequencesx′′ we have
Q(y|x′′) = pd. Also, note thatnr(x

′′) = nr(y) + 1 and
thusPX(x′′) = f(ℓ, nr(y), α).

• Insert one opposite bit inside of one of its runs. Since
for any sequence of lengthℓ − 1, there areℓ + 1 super-
sequences of lengthℓ, the number of possible super-
sequences generated under this scenario isℓ−nr(y)−1.
For any suchx′′′ we haveQ(y|x′′′) = pd andPX(x′′′) =
f(ℓ, nr(y) + 1, α).

Therefore, for anyy ∈ {0, 1}ℓ−1, we have

PY (y) =
∑

xℓ

PX(xℓ)Q(y|xℓ)

=
(

β + γ · nr(y)
)

f
(

ℓ, nr(y) + 1, α
)

pd . (36)

Hence, we have

−
∑

y∈{0,1}ℓ−1

PY (y) logPY (y)

= −(pd log pd)
∑

y

(

β + γ · nr(y)
)

f
(

ℓ, nr(y) + 1, α
)

− pd
∑

y

(

β + γ · nr(y)
)

f
(

ℓ, nr(y) + 1, α
)

×

log
[(

β + γ · nr(y)
)

f
(

ℓ, nr(y) + 1, α
)]

= −(pd log pd) · A1 − pd · (A2 +A3) , (37)

where

A1
def
=

∑

y

(

β + γ · nr(y)
)

f
(

ℓ, nr(y) + 1, α
)

= ℓ , (38)

6Number of transitions of a sequence is the number of times itstwo
consecutive bits differ

7
x is super-sequence ofy if y is a subsequence ofx

A2
def
=

ℓ−1
∑

m=1

[

n′(ℓ − 1,m)(β + γm)f(ℓ,m+ 1, α)×

log (β + γm)
]

= α2(1− α)ℓ−3
ℓ−2
∑

m=0

[

(

ℓ− 2

m

)

(β + γ + γm)×

(
α

1− α
)m log (β + γ + γm)

]

, (39)

A3
def
=

ℓ−1
∑

m=1

[

(

ℓ− 2

m− 1

)

(β + γm)(1− α)ℓ−m−2αm+1

× log
(

0.5(1− α)ℓ−m−2αm+1
)]

= B1 +B2 −B3 , (40)

with

B1
def
= α(1 − α)ℓ−2 logα×

ℓ−1
∑

m=1

[

(

ℓ− 2

m− 1

)

(β + γm)× (
α

1− α
)m(m+ 1)

]

=
logα

1− α
[2α3(ℓ− 2)− (ℓ2 + ℓ− 6)α2

+ (ℓ2 − 3ℓ− 2)α+ 2ℓ] , (41)

B2
def
=α(1 − α)ℓ−2 log(1 − α)×

ℓ−1
∑

m=1

[

(

ℓ− 2

m− 1

)

(β + γm)(
α

1− α
)m(ℓ−m− 2)

]

=
log(1− α)

1− α
[−2α3(ℓ− 2) + α2(ℓ2 + ℓ− 6)

− 2α(ℓ2 − 2ℓ− 1) + ℓ(ℓ− 3)] , (42)

B3
def
=

ℓ−1
∑

m=1

[

(

ℓ− 2

m− 1

)

(β + γm)(1− α)ℓ−m−2αm+1
]

= ℓ . (43)

Now, we consider the lengthℓ+1 output sequences. Obviously,
for the alternating sequences (i.e., y such that|y| = nr(y))
of lengthℓ+ 1, we havePY (y) = 0. Denoting byY∗ the set
of lengthℓ+1 non-alternating sequences, for anyy ∈ Y∗ the
duplicated bit can be found in one of the runs ofy with a
length greater than1. Hence, for anyy ∈ Y∗, we have

PY (y) =
∑

j:rj(y)>1

(rj(y) − 1)pi · f(ℓ, nr(y) − 1, α)

= (ℓ+ 1− nr(y))pi · f(ℓ, nr(y) − 1, α) ,

where the second equality follows from the fact that duplica-
tion error can not create a new run in the received sequence.



Thus, we have

−
∑

y∈Y∗

PY (y) logPY (y) = q(1− log q) + q(ℓ − 1)Hb(α)

+ q log ℓ−
q

ℓ

αℓ

1− α

ℓ
∑

m=1

(

ℓ

m

)

(
α

1− α
)−mm logm.

(44)

Now, we turn toH(Y(Xℓ)|Xℓ). We have

H(Y(Xℓ)|Xℓ) = Hb(p, q) + (p+ q) log ℓ

−
p+ q

ℓ

∑

x∈{0,1}ℓ

PX(x)

nr(x)
∑

i=1

ri(x) log ri(x) . (45)

Denoting byn′′(k,m, ℓ) the number of times a run of length
k appears in all possible lengthℓ sequences containingm runs

we have

∑

x∈{0,1}ℓ

PX(x)

nr(x)
∑

i=1

ri(x) log ri(x)

=

ℓ
∑

m=1

∑

x:nr(x)=m

PX(x)

nr(x)
∑

i=1

ri(x) log ri(x)

=
ℓ

∑

m=1

f(ℓ, α,m− 1)
∑

x:nr(x)=m

m
∑

i=1

ri(x) log ri(x)

=

ℓ
∑

m=1

f(ℓ, α,m− 1)

ℓ−m+1
∑

k=1

n′′(k,m, ℓ) · k log k

=

ℓ
∑

m=2

mf(ℓ, α,m− 1)

ℓ−m+1
∑

k=1

2

(

ℓ− k − 1

m− 2

)

· k log k

+ (1− α)ℓ−1ℓ log ℓ (46)

where the last equality follows from Lemma 3. Putting (36),
(37), (38), (39), (40), (41), (42), (43), (44), (45), (46) together,
we getLα

SI .
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