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Abstract—The universal secure network coding presented by network coding with MRD codes. In their scheme, the network
Silva et al. realizes secure and reliable transmission of aesret must transport packets of sine> n. The MRD code used in
message over any underlying network code, by using maximum the scheme is defined over , whereFqn is anm-degree

rank distance codes. Inspired by their result, this paper casiders . . ) . .

the secure network coding based on arbitrary linear codes, f!eld extgnsmn of a f'elqu W't_h Ord(?rq' Thus, the S'Z.e _Of the
and investigates its security performance and error corretion  field Fgqn increases exponentially witi, and the restriction of
capability that are guaranteed independently of the underying MRD codes withm > n invokes the large computational cost
network code. The security performance and error correctim  for encoding and decoding of MRD codesrifis large. It is
capability are said to be universal when they are independent nqegiraple especially in resource constraint envirorisaen

of underlying network codes. This paper introduces new code c ideri twork codi ithout h i
parameters, the relative dimensiofintersection profile (RDIP) onsidering secure network coding without such a restric-

and the relative generalized rank weight (RGRW) of linear tion, Ngai et al. [17], and later Zhang et al. [25], investegh
codes. We reveal that the universal security performance ah the security performance of secure network coding based on

universal error correction capability of secure network cading general linear codes. They introduced a new parameter of
are expressed in terms of the RDIP and RGRW of linear codes. |jnear codes, called thelative network generalized Hamming
The security and error correction of existing schemes are ab . .
analyzed as applications of the RDIP and RGRW. yve|ght(RNGI-!W), and revealed that the security performance
is expressed in terms of the RNGHW. The RNGHW depends
|. INTRODUCTION on the set of coding vectors of the underlying network code.
In the scenario ofecure network codingtroduced by Cai Hence, the RNGHW is not universal.
et al. [2], a source node transmitspackets fromn outgoing The aim of this paper is to investigate the security perfor-
links to sink nodes through a network that implements nétwomance of universal secure network coding based on general
coding [1,11,13], and each sink node receimgsackets from linear codes, which is always guaranteed caey underlying
n incoming links. In the network, there is a wiretapper whoetwork code, even over random network code. This paper
observes:(< n) links. The problem is how to encode a secredefines the universal security performance by the following
message into transmitted packets at the source node, in sutho criteria. One is called theniversal equivocatio®,, that
a way that the wiretapper obtain no information about thie the minimum uncertainty of the message under observation
message in the sense of information theoretic security.  of u(< n) links, guaranteed independently of the underlying
As shown in [6], secure network coding can be seen asnatwork code. The other is called theniversal Q-strong
generalization of the wiretap channel Il [18] or secret Bigar security where Q is a performance measure such that no
schemes based on linear codes [3,5] for network codingart of the secret message is deterministically revealed ev
Hence, in secure network coding, the secrecy is realizédat mostQ links are observed. The paper [12] proposed a
by introducing the randomness intotransmitted packets asspecific construction of the secure network coding thairedta
follows. Suppose the message is represented Ipackets the universal if — 1)-strong security, and such a scheme is
S1,...,S (1 < | < n). Then, the source node encodesalled universal strongly secure network coding [20]. NBme
(S1,...,S)) together withn—1 random packets by linear codesthe definition of universal-strong security given in this paper
and generates transmitted packets [6,17,21]. is a generalization of universal strongly secure netwoikirugp
Silva et al. [21] proposed theniversal secure network considered in [12,20] for the number of tapped links.
coding that is based on maximum rank distance (MRD) In order to expres®, andQ in terms of code parameters,
codes [8]. Their scheme was universal in the sense that thibiis paper introduces two parameters of linear codes, ctalle
scheme guarantees that owamy underlying network code, the relative dimensiofntersection profile(RDIP) and the
no information abouS leaks out even if any — | links are relative generalized rank weigfRGRW). The RGRW is a
observed by a wiretapper. As shown in [21], their scheme witfeneralization of the minimum rank distance [8] of a code. We
MRD codes is optimal in terms of security and communicatiaeveal that®, andQ can be expressed in terms of the RDIP
rate. However, there exists some restrictions in univessalire and the RGRW of the codes. Duursma et al. [5] first observed
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that therelative generalized Hamming weiglit4] exactly B. Linear Network Coding
expresses the security performance and the error connectioAS in [2,6,17,21,25], we consider a multicast communica-

capability of secret sharing. Our definitions of RGRW ang,, hetwork represented by a directed multigraph with unit
RDIP are motivated by their result [5]. capacity links, a single source node, and multiple sink sode
Assume that the attacker is able not only to eavesdrop RNt assume thalinear network coding11,13] is employed
also to inject erroneous packets anywhere in the netwogker the network. Elements of a column vector Spﬁgél
Also assume that the network mayfawr from the rank gre calledpackets Assume that each link in the network can
de’f|C|ency of the transfer matrix at a sink node. Silva %Iarryasinglqu-symbol per one time slot, and that each link
al’s scheme based on MRD codes [21] enables to corrgginsports a single packet over time slots without delays,
such errors and rank deficiency at each sink node, where di$ s res or errors.
error correction capability is guaranteed over any un@&gly  The source node producagacketsX; X, € F™L and
network code, i.e., universal. This paper also generatizeis transmitsX, ..., X, 0N n outgoing links ovem consecutive
result and reveals that the universal error correctionioiéife  time siots. Define thenx n matrix X = [Xi,..., %] The data
of secure network coding based on arbitrary linear codes ¢@§y on any link can be represented as Bplinear combi-
be expressed in terms of the RGRW of the codes. nation of packetsy, ..., X, € ™. Namely, the information
The remainder of this paper is organized as follows. Sectihnsmitted on a linke can be denoted asXT € FX™ where
presents basic notations, and introduces linear netwodk CP, € F} is called aglobal coding vecto(GCV) of g_ Suppose
ing. Sect. Il defines the universal security performance ag,at a sink node hal incoming links. Then, the information
universal error correction capability of secure networkliog received at a sink node can be represented d$xam matrix
over wiretap network. Sect. IV defines the RDIP and RGRW fxT ¢ pNxm \yhereA e FN*" is the transfer matrix constructed
linear codes, and introduces their basic properties. In. Sec by gathcéring the GCV’g oN incoming links. The network
the universal security performance is expressed in termiseof ¢ode is calledeasibleif every transfer matrix to a sink node

RDIP and RGRW. The security of existing schemes [12,20,24}s ranin overF,. The system is callecoherentf Ais known

Examples 17 and 21. Sect.VI gives the expression of the
universal error correction capability in terms of the RGRW,III. UnNiversaL SEcURITY PERFORMANCE AND UNIVERSAL ERROR
and also analyze the error correction of [21] by the RGRW in Correction CaPABILITY OF SECURE NETWORK CODING

Example 27. This section introduces the wiretap network model with

packet errors and the nested coset coding scheme in secure
II. PRELIMINARY network coding [6,17,21,25]. Then, we define the universal
security performance in terms of theniversal equivocation
and theuniversal Q-strong securityon the wiretap network
Let H(X) be the Shannon entropy for a random varia¥Je model. We also define the universal error correction cajpabil
H(X]Y) be the conditional entropy of givenY, andI(X;Y) of secure network coding. From now on, only one sink node
be the mutual information betweed and Y [4]. We write is assumed without loss of generality. In addition, we fooos
|X| as the cardinality of a seX. The entropy and the mutualthe fundamental case of coherent systems in this paper due to
information are always computed by using Jog the space constraint. But, as in [21], all analysis in thisgra
Let Fy stand for a finite field containing elements an@g  can be easily adapted to the case of noncoherent systems.
be anm-degree field extension dfy (m > 1). Let Fy denote ) )
an n-dimensional row vector space ov&g. Similarly, Fgm A. Wiretap Networks with Errors, and Nested Coset Coding
stands for am-dimensional row vector space ov&. Unless Following [2,6,17,21,25], assume that in the setup of
otherwise stated, we consider subspaces, ranks, dimensi®ect. II-B, there is a wiretapper who has access to packets
etc, over the field extensidiy» instead of the base field;.  transmitted on any: links. Let ‘W be the set ofW| = u
An [n, K] linear codeC overF., is ak-dimensional subspacelinks observed by the wiretapper. Then the packets observed
of Fy.. Let C* denote adual codeof a codeC. A subspace by the wiretapper are given By" = By X", where rows of
of a code is called aubcoddq15]. ForC C ]Fgm, we denote by By € ]FGX“ are the GCV'’s associated with the links .
ClIFq asubfield subcodef C overFq [15]. Observe thatlimC In the scenario [6,17,21,25], the source node first regards a
means the dimension ¢f as a vector space ovEg» whereas m-dimensional column vector spagg™* asFqn, and fix| for
dim C[F, is the dimension o€|F, overF. 1<l<n. Let S=[Sy,...,S]€F., be the secret message, and
For a vectord = [v1,...,vn] € ]Fgm and a subspac¥ C ]Fgm, assume tha$,, ..., S, are uniformly distributed ovdF'qm and
we denoter? = [ui,...,vﬂ] and VY = {79 : 7 € V}. Define a mutually independent. Under the wiretapper’s observatios
family of subspace¥ C ]Fgm satisfyingV = VY by F(]Fgm) £ source node wants to transn@itwithout information leakage
{subspace/ C Fgm 'V = V9. Also definel"i(Fgm) £ {V € to the wiretapper. To prote& from the wiretapper, the source
I“(]Fgm) :dimV = i}. For a subspac¥ CF},, the followings are node encode$ to a transmitted vectoK = [Xy,..., Xq] €
equivalent: 1)VeI“(]Fgm); 2) dimV =dimV|Fq [22, Lemma 1]. ]Fgm of n packets by applying thaested coset coding scheme

A. Basic Notations
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[3,5,23,24] onS. In [3,5], its special case is called secret Def. 3 defines the security for the whole components of a
sharing scheme based on linear codes messages = [Sy,...,S|]. Here we focus on the security for

Definition 1 (Nested Coset Coding Schemét C; < Fi, be every part ofS, and give the following definition.

a linear code oveFgn (m > 1), andC» & C1 be its subcode Definition 4 (UniversalQ-Strong Security) Let Sz = (S; :
with dimensiondimC, = dimCy — | overFgn. Lety : ]F'qm — i€ ) be atuple for a subsef C {1,...,l}. We say that a
C1/C> be an arbitrary isomorphism. For a secret messhge secure network coding scheme attains tinéversalQ-strong
]F'qm, we chooseX from a cosety(S) € C1/C» uniformly at securityif we have

random and independently &
_ 1(Sz;BX") =0, VZ,VBeF{ o (1)
Then, the source node finally transmitover the network

coded network. Def. 1 includes the Ozarow-Wyner coset cod-As [9,16,20], a scheme with univers&l-strong security
ing scheme [18] as a special case with= ]Fgm. Hence, when does not leak anyZ| components ofS even if at most
we setC; = ]Fgm, this is the secure network coding based of2 — |Z| + 1 links are observed by the wiretapper. Moreover,
Ozarow-Wyner coset coding scheme [6,17,21]. this guarantee holds over any underlying network code as
Corresponding toX transmitted from the source node, th@®,. We note that if a scheme achieves festrong security,
sink node receives a vector &f packetsY € Fl,. Here we the universal equivocatio®, for u = Q — | + 1 must be
extend the basic network model described in Sect.ll-B ®q_.1 = H(S) as shown in Def.4. However, the converse
incorporate packet errors and rank deficiency of the transfioes not always hold.
matrix A € ]FQ‘X” of the sink node. Suppose that at mbstrors ~ The scheme in [12] achievés = n—1 providedm > |+n by
can occur in any of links, causing the corresponding packetssted coset coding with MRD codes. The universal strongly
to become corrupted. Then, as [1¥]can be expressed by security in [20] is a special case of Def.4 wigh=n- 1.

T _ T T
Y =AX'+DZ,, C. Definition of the Universal Error Correction Capabilityf o
whereZ € F, is thet error packets, and e F)* is the Secure Network Coding

A

transfer matrix ofZ. We definep = n—rankA as the rank |5 the model described in Sect. IlI-A, the error correction

from Y. If the network is free of errors and the network codgngerlying network code, is defined as follows.

used is feasibleX can be always reconstructed frofh = AXT

as described in Sect. II-B. Then, the cog¢é8), and hences, Definition 5 (Universallyt-Errorp-Erasure-Correcting Secure
is uniquely determined fronX from Def. 1. Network Coding) A secure network coding scheme is called

o ) ) universally t-errorp-erasure-correctingif
B. Definition of Universal Security Performance

The security performance of secure network coding in the1(SIY) =0, Y' = AX" +DZ,

above model was measured by the following criterion [17,25] VA€F*" : rank A>n—p,¥X € y(S), YD eFy ", YZeFyn.,

Definition 2 (Equivocation) The minimum uncertainty, of e s can be uniquely determined fro¥hagainst errors over
S given ByyXT for all possibleW’s (‘W] = ) in the network - any underlying network code with at mgstrank deficiency.
is calledequivocationdefined ag, = min H(S|ByX"). . . S
WiWi=u Silva et al.’s scheme [21, Section VI] is universatfgrror-

As defined in Def. 26, depends on the underlying networkp-erasure-correcting when the minimum rank distance [8] of
code. In [17,25]4, for m= 1 was expressed in terms of theC; is greater than 2+ p.
relative network generalized Hamming weight (RNGHW) of
C1 andC,. The RNGHW is the value determined according tolV. NEw ParAMETERS OF LINEAR CODES AND THEIR PROPERTIES
GCV's of all links in the network. Hence, the RNGHW cannot Tpjs section introduce theelative dimensiofntersection
determine the equivocation over random linear network cogf;of”e (RDIP) and therelative generalized rank weight
[10]. Here, we extend Def. 2 by requiring the independence giGRw) of linear codes. In the following sections, these
the underlying network code, as follows. parameters are used to characterize the universal security
Definition 3 (Universal Equivocation) The universal equivo- Performance and the universal error correction capabdity
cation ®, is the minimum uncertainty o given BX' for all Secure network coding.
B e Fy", defined as

©, = min H(S|BX").
BeFg "

A. Definition

We first define therelative dimensiofntersection profile

As defined in Def. 3@, does not depend on the setWf’s (RDIP) of linear codes as follows.

in the network. Silva et al.'s universal secure network ngdi Definition 6 (Relative Dimensiofintersection Profile) Let
scheme based on MRD codes [21] achie@gs, = H(S) in C1 C ]Fgm be a linear code an@, & C; be its subcode. Then,
Def. 3 providedm > n. the i-th relative dimensiofintersection profile (RDIP) of>;



andCs is the greatest éierence between dimensions ogr  increasing withi. Moreover,Mgo(C1, C2) = 0 and
of intersections, defined as " .
MRi(C1,C>2) = mm{J i Krj(C1,C2) = I}
Kri(C1,C2) = Vg](%ﬁ(m){d'm(clﬁV)—d'm(CzﬁV)}’ @ =min{dimV : V € [(F}).dim (C1 N V) - dim (C2n V) = i},
for0<i<n. where 0< i < dim(C1/C2).

Next, we define therelative generalized rank weight Proof. First we have

(RGRW) of linear codes as follows. min{j : Krj(C1,C2) = i}

Definition 7 (Relative Generalized Rank Weightlet C; ¢ =min{j : AVelj(Fgn), such thatdim (C1NV)~dim (C2NV)>i}

Egm be a linear cod.e and; & Cl-be its subcode. Then,_ the:min{dimv V€ [(E), dim (C1 N V) - dim (G2 N V) > i}
i-th relative generalized rank weight (RGRW)©f andC: is
defined by =Mgi(C1, C2).

From Theorem 8, we have{j:KR,j(Cl,Cg)zi} N

Mri(C1.C>)
' {j " Krj(C1,C2) =i + 1} = (. We thus have

2min{dimV : Vel (F), dim (C1nV)—dim (C2nV) 2i}, (3)
Mri(C1.C2) = min{j : Kg;j(C1.C2) > i}

for 0<i < dim (C1/C2). in{j: Krj(C1.C2) = i}
=minij : Krj(C1,C2) = 1;.

The relative dimensigtength profile and the relative gen-
eralized Hamming weight introduced in [14] are equivalent tTherefore the RGRW is strictly increasing witland thus
Egs. (2) and (3) with'i(Fj») andI'(Fg.) replaced by suitable Mgi(C1, Co)
smaller sets, respectively. RV &2
= min{dimV : V & T(Fqn). dim (C1 N V) — dim (C2 N V) = i},
B. Basic Properties of the RDIP and the RGRW, and trfg established.

Relation between the Rank Distance and the RGRW "

Next, we show the relation between the rank distance [8]
This subsection introduces some basic properties of thed the RGRW. Letpy, : Fgn — Fi™' be an Fg-linear
RDIP and the RGRW, and also shows the relation betwetsomorphism that expands an elementH as a column
the RGRW and the rank distance [8]. These will be usegbctor overF, with respect to some fixed basis fey» overFy.
for expressions of the universal security performance aed tThen, we define theank overFq of a vectorx = [Xy,..., X] €
universal error correction capability of secure networkling. Fgn, denoted byrankg,(x), as the rank ofm x n matrix
First, we introduce the following theorem and lemma abolpm(x1), . . ., ¥m(X,)] over Fy. The rank distance [8] between
the RDIP and the RGRW. two vectorsX, jj € ]Fgm is given bydr(X, %) = rankg, (7 — X).
The minimum rank distance [8] of a codds given agir(C) 2
min{dr(X, 7) : X, 7€C, X i} = min{d(X, 0) : e C, X+ C}. For
a subspac® C F7,, we define byv* £ Y™ 1vd the sum of
subspace¥, Ve, ..., v,

Theorem 8 (Monotonicity of the RDIP) Let C; C ]Fgm be
a linear code and; & C; be its subcode. Then, thieth
RDIP Kgi(C1,C>2) is nondecreasing withfrom Kro(C1,C2) =
0 to Krn(C1,C2) = dim(C1/C2), and 0 < Kgj:1(C1,C2) —

Kri(C1,C2) < 1 holds. Lemma 10. For a subspac¥ C Fl, with dimV = 1, we have
Proof: KR,O(C]_, CZ) =0 and KRn(Cl, CZ) = dim (Cl/CZ). dimV* = dR(V)—)
are obvious from Def. 6. Recall that Proof: Let b=[bs,...,by] €V be a nonzero vector, which

implies rank g, (B) = dr(V). Let Mé[a,j]:zlng“mX”, aj=bl .
Each vector inv* is represented by aIF‘t;m—Iinear combination
for 1 < i < n from [22, Lemma 1]. This implies that for of B.b%....6"", and hencelim V* =rank M.
any subspace/; € Ti,1(F}n), there always exist somey's Foray, az € Fy, B1, B2 € Fgn, We haverigm(B1) + a2¢m(B2) =
satisfyingVs, € T (]pgm) andV, ¢ V1. This yieldsKgi(C1, C2) < dm(a1B1 +_a2ﬂ2). This |mp_I|es_ that there always exists some
Kris1(C1, C2). Pe]FgX” with rank P=n satisfying

Next we show that the increment at each step is at most 1. Po_ no
Consider arbitrary subspacesv’ e T(Ff,) such thatlim V' = bP=[g1.....gdxv). 0. ..., 0]€Fgn. gj #0, (4)
dmV+1andV V. Let f =dim(C.NnV)-dim(C2NV);, wheregs,...,g4v) are linearly independent ovefy, and
g =dim(C1NV) —dim(C, N V’). Sincedim(C:NnV) + 1> note thatP represents the elementary column operation on
dim(C1NV’)>dim(C1NV) andC; & C1, we havef+1>g > f  [¢n(b1), ..., dm(bn)]. Also for ai,ar € Fq, B1,B82 € Fqn, we
and hencekr;(C1,C2) + 1 > Kgr;j11(C1,C2) > Kri(C1.C2). M have alﬂ(fl + aszgI = (@B +axB)? (0 < i < m-1).

Lemma 9. Let C, C Fg. be a linear code and, & C; Hence, forP e F*" satisfying Eq. (4), we also have’P =
be its subcode. Then, theh RGRW Mg;i(C1,C>) is strictly [gi,...,ggRN),o,...,O]ngm forall 0 <i <m-1. Thus, by

Ti(Fgn) = {V CFjn:V = {UG: U € Fyp}, G € Fy", rank G = i},



the elementary column operation & over Fy, represented for 1 <i < dim(C1/C>).

by P, we getMP. By eliminating zero columns fronMP,
we obtain a matrixM’ = "

rank M’ = rank M. Let M; e Fin®") (1 < k < dr(V)) be

m,dr(V) i-1
[fi’j]"i , fi,j = g? , where

Proof: We can consider tha€, is a systematic code
without loss of generality. That is, the firdim C, coordinates
of each basis o€ is one of canonical bases Eﬁﬁ“cﬁ Let

the submatrix consisting of the firdt rows of M’. Since S & ]Fgm be a linear code such thay is a direct sum ofC;

dr(V) <min{m,n} andgy,...

,gd(v) are linearly independent, andS. Then, after suitable permutation of coordinates, a basis

M, is the generator matrix ofdk(V), k] Gabidulin code and of S can be chosen such that its fiditn C, coordinates are
rank My = k [8]. Thus, Mg, is nonsingular, and hence wezero. Then, theféective length [7] of a codé is less than or

have rank Mg, = rank M’ = dr(V). Therefore,dimV"
rank M =rank M’ =dg(V).

Lemma 11. For a codeC; C ]Fgm and its subcode’,
C1, the first RGRW can be represented Il 1(C1,C>2)
min{dx(x.0) : X € C1\C2}.

Proof: Mr(C1,C2) can be represented as
Mr1(C1,C>)
= min{dimW : Wel(Fj). dim (C1 N W) —dim (C> N W) > 1}
= min{dimW : W € T(Fj.),
AV cWsuch thaV c(C1 W), VE(C2 N W), dimV>1}. (5)

¥ W

For any subspac¥ c F, with dimV >1, there always exists .

someWeI'(Fgn) satisfyingW2V, because we hawe" eI'(FFgn)
andV*2V. Also, for subspace¥/ andVcW with dimV>1,
if W is the smallest space iF(]Fgm) includingV, thenW=V*
[22]. Thus Eq. (5) can be rewritten as

min{dimW : VCFjn, dimV>1
AW2V, WeT(Fjn), such thaV < (C1 N W), VE(C2 N W)}

= min{dimV" : VCFj, VC(C1nV"), VZ(C2nV7), dimV > 1}

=min{dimV*:V CC1,V ¢ C,dimV > 1}, (6)

where the last equality of Eq.(6) is obtained Wyc (C1 N

V) &V cCp,andV ¢ (C2nV*) &V ¢ Cy from VD V.

For subspace¥ andV’ 2 V, we havedimV* < dimV’.
Therefore, Eq. (6) can be rewritten as follows.

min{dimV*:V € Cy,V € Co,dmV > 1}
=min{dimV*:V CCy,V ¢ Co,dimV = 1}
=min{dr(V) : V C C1,V € C2,dimV =1} (by Lemma 10)
= min{dg(%.0) : X € C1\C2). -
Lemma 11 immediately yields the following corollary.
Corollary 12. For a linear cod€, dg(C) = Mr1(C, {G}) holds.

This shows thatMR,l(-,{ﬁ}) is a generalization ofig(:).

equal ton — dimC,. Hence we have

dr(S) < min{l, } (n—dimCz —dimS) + 1,

n-dimcC;

. m .
= mln{l, m} (n — d|mC]_) + 1,

from the Singleton-type bound for rank metric [8].

Here we writex = min{1, m/(n—dimC,)} for the sake of
simplicity. Recall thatdg(S) = MR,l(S,{ﬁ}) from Corol. 12,
and Mg1(S. {0}) < kx(n— dimCy) + 1 holds from Eq. (8).

We shall use the mathematical induction biWe see that
Eq. (9) is true fort = 1. Assume that for some> 1,

Mgi(S, {0}) < k(N = dimCy) +1,

(8)

9)
is true. Then, by the monotonicity shown in Prop. 9,
Mg:1(S. {0}) < Mgry(S. {0}) + 1 < k(n— dimCy) + t + 1,

holds. Thus, it is proved by mathematical induction that(8).
holds for 1<t < dim (C1/C>).

Lastly, we prove Eq.(7) by the above discussion about the
RGRW ofS and{@}. For an arbitrary fixed subspatec ]Fgm,
we havedim (C1NV) = dim (SnV)+dim (C2NV), becaus€; is
a direct sum ofS andC;. Hencedim (C1NV)—dim (C2NV) >
dim (S N V) holds, and we havéMgi(C1,C2) < Mgi(S, {0})
for 1 < i < dim(C1/C2) from Def.7. Therefore, from the
foregoing proof, we have

Mg;i(C1,C2) < Mri(S,{0}) < k(n —dimC1) +1,

for 1 <i <dim(C1/C»), and the proposition is proved. =

Prop. 13 immediately yields the following corollary.
Corollary 14. For a linear codeC < ]Fgm, MR,i(C,{G}) <
min{1, m/n}(n — dimC) +i for 1 < i < dimC. The equality
holds for alli if and only if C is an MRD code.

V. UNIVERSAL SecURITY PERFORMANCE ON WIRETAP NETWORKS

In this section, we expresd, and Q given in Sect. lll-B
in terms of the RDIP and RGRW. From now on, we use the
following definition.

Now we present the following proposition that generalites t Definition 15. For BeF; ", we definevg = {UB: Ue]Fgm}C]F“

Singleton-type bound of the rank distance [8].

= qm-
Recall that if anFg-linear space/ C F, admits a basis in

Proposition 13 (Generalization of Singleton-Type Bound)Fj thenV € I“(]Fgm) [22], which implies

Let C1 C ]Fgm be a linear code an@, < C; be its subcode.

Then, the RGRW o>, andC» is upper bounded by

MRi(Cl,Cz) < min{ }(n—dimCl)+i, (7)

1M
" (n—dimC»)

Vg € T(EY). (10)

First, we give the following theorem for the universal
equivocation®, given in Def.3



Theorem 16. Consider the nested coset coding in Def. 1.

Then, the universal equivocati@), of C1,C> is given by

@, = | - Kr,(C2.CL).

Proof: From Eq.(12), the smallest numbgrof tapped
links satisfyingl (S;BX)) =j (1<j<l)is

min{u : 3B € Fy",1(S; BX") = j}

— i . T _
Proof: Let Be F;*" be an arbitrary matrix. By the chain = mm{p 1 ABeFG "1 - H(SIBX) = J}
rule [4], we have the following equation for the conditional — min{p : AB € Fy™", dim (C3 N VB) — dim (C; N V) = j}.

entropy ofS given BXT:

H(SIBX) = H(S, X|BX") - H(X|S, BX")
= H(X|BX") + H(SIX, BX") - H(X|S, BX")

= H(X|BXT) — H(X|S, BXT). (11)
Then, from [25, Proof of Lemma 4.2], we have

H(XIBX") = n—dimC} — dim Vg + dim (C+ N Vg),
H(X|S, BX) = n—dimC4 — dim Vg + dim (C4 N V).

By substituting these equations into Eq. (11), we have

H(SIBX") = dim C£ —dim C+ —dim (C4 N Vg)+dim (C N Vg)

= | —dim (C4 N Vg) +dim (C+ N V). (12)
By Eq. (10) we have
(Vg :BeFy" = U T (Ffp). (13)

i<u
Thus, by Eq. (12) and Def. 6, the universal equivoca@ipns
given as follows.

®, = min H(S|BXT
h = Jmin, (SIBX")
=1 - max{dim (C3 N Vg) - dim (C N Ve)}
BeF, "

=1 max ){dim (C3 NV) —dim (C1 NV)} (by Eq. (13))

- VEUisu Fi(Fgm
{dim (C3 nV) - dim (C NV)} (boy Thm. 8)

max
Ve, (Fn)

=1 - Kru(C3,C7). -

Example 17. The existing schemes [12,20,21] used MR
codes axC; andCy, wherem > n. By Corol.12, we have
0 for any V € TIgimc,(Fgn). This implies

dm(V nCy) =
Kru(C%,CE) = Kru(C3,(0}) = 0 for 0< pu < dimCy.

On the other handgraime,(C3,{0}) = dimC; — dimC, by
Corol. 14. Sincedim (V N C1) = 0 for any V € Lgimc, (Fgn)
by Corol. 12, we havé&Krdimc,(Cy,Cy)=dimCi—dimCz. By
Theorem 8Kg,(Cy, C;)=p—dimC> for dimCz<u<dimCi.

By Theorem 16, we see th&, =1-max0, u—dimCs} for
O<pu<dimCi(= 1+dimCy) in the schemes [12,20,21].

We then have the following corollary by the RGR
Corol. 18 shows that the wiretapper obtain no information

S from any Mr1(C5,C7) — 1 links.

Corollary 18. Consider the nested coset coding in Def.la subsety < {1,...

Then, the wiretapper must observe at ledgt;(C5,Cy) links
to obtain the mutual information (1 < j <) betweenS and
observed packets.

dvhereG €

W&rbitrarily distributedS from the nonnegativity of mutual

From [22, Lemma 1] and Lemma 9, this equation can be
rewritten as follows.

min{u : 3B € Fy", dim (C3 N Vi) — dim (C1 N Ve) = j}

=min{dimV : V € T(F).dim (C3 NV) - dim (C1 NV) = j}

= Mr;(C3,C3). -
Although the messag® has been assumed to be uniformly

distributed overF', in Sect.lll-A, the following proposition

reveals that the wiretapper still obtain no information $f

from any Mr1(C5.C7) — 1 links even if S is arbitrarily
distributed.

Proposition 19. Fix the transfer matrixB to the wiretapper.
Suppose that the wiretapper obtain no informatiorsdfom
BX" whenS is uniformly distributed oveF.,, as described in
Sect. lll-A. Then, even ifs is chosen according to an arbitrary
distribution oveﬂF'qm, the wiretapper still obtain no information
of S from BX", that is, 1(S; BX) = 0.

Proof: When we assume th& is arbitrarily distributed
over}F'qm, H(X|S, BX") is upper bounded as follows from [21,
Proof of Lemma 6] and [25, Proof of Lemma 4.2].

H(XIS, BX") < n—dimC4 —dim Vg + dim (C4 N V).

Also, since X is uniformly distributed over a coset(S) €
C1/C; for fixed S, we haveH(X|S) = dimC, = n—dimC;.
For the dimension of a subspaf@X' : X € C1}, we have
dim{BX" : X € C1} = rank BG" = rank GB"
=dim{G7" : 7€ Vg} = dimVp — dim (C; N Vg),
is a generator matrix of’;. Hence we
haveH(BX™) < dim Vg — dim (C1 N Vg). We thus have
1(S; BX") = I(S, X; BX") - I(X; BX"|S)
= H(BX") - H(X|S) + H(X|S, BX")
< dim (C3 N Va) — dim (C+ N Vp) (14)
for any distribution ofS. By I(S; BX") = H(S)-H(S|BX") and
Eq.(12) we can see that the equality hold$Sifs uniformly
distributed. Therefore, for fixe®, if 1(S; BX") = 0 holds for

uniformly distributedS, then the right hand side of Eq. (14)
is zero, which implies that(S;BX") = 0 also holds for

dim Ci1xn
qu .

information [4]. [ ]
Lastly, we expres$) in Def.4 in terms of the RGRW. For

,N} and a vector¢ = [cy,...,Cn] €

]F’(;‘m, let P4(C) be a vector of length 7| over Fgn, ob-

tained by removing theé-th components; for t ¢ 9. For

example fory = {1,3} and ¢ = [1,1,0,1] (N = 4),



we have P4(€) = [1,0]. The punctured code R(C) of 4]. By Theorem 20, we see that the scheme [12] attains the
a codeC € ]1-“i'q“n is given by P4+(C) = {P4(C):CeC}. universal i— 1)-strong security in the sense of Def. 4, while
The shortened codeCs of a codeC C ]Fym is defined [12] proved it by adapting the proof argument in [20].

by Cy 2 {P#(6):€=[c....,cn] €C.G =0 fori ¢ J). For
example forC = {[0,0,0],[1,1,0],[1,0,1],[0,1,1]} (N = 3)
andJ = {2,3}, we haveCs = {[0, 0], [1, 1]}. We then have the
following theorem for the universa®-strong security defined
in Def. 4.

As shown in Prop. 19, no information & is leaked from
less thanMr1(C5.Cy) tapped links even ifS is arbitrarily
distributed. In contrastS must be uniformly distributed over
]F'qm to establish Theorem 20. This is because elementS of
need to be treated as extra random packets, as in strongly
Theorem 20. Let {i} £ {1,...,1 + n}\{i}. Fix C1, C» andy  secure network coding schemes [9,16,20].
in Def.1 and consider the corresponding nested coset codingvI

. . . UNIVERSAL ERROR CORRECTION CAPABILITY OF SECURE
scheme in Def. 1. By usingi, C2 andy, define

NErwork CobING
1= {[S, X]: S €Fy andX € W(S)} C Fyn. This section derives the universal error correction cdjtgbi

For each index k i < I, we define a punctured codey; of by the app_roa<_:h of [19, Section IlI]. Reca_ll that the recdive
C; as Dy = Pr(Ch) © F*nL and a shortened cod@zyi of PacketsY is given by YT = AX"T + DZ' in the setup of
3 i = ! 3

qn i .
C as Dy £ (Ci)m c ]Fh}”*l. Then. the value in Def. 4 is Sect. llI-A, gnd thatX is chosen from the C(_)sezt_(S) € C1/C2
iven by corresponding _t(S by the nested coset codlr!g |n.D.ef. 1. From
g now on, we writeX = (S) for the sake of simplicity.
Q= min{MRl(z)ii, Dil<is< |} -1 (15) First, we define theliscrepancy[19] betweenX andY by

T

Proof: Define C, 2 {[0,¢;] : & € Cp} € F¥N. Since Aa(X.Y)=minfreN: DeFy™, ZeFn, XeX, YT =AXT+DZ'}
C2 G C1, C) is also a subcode a. Thus, in terms o€’ and =min{dR(XAT,Y) X e X}, (16)
Cj, we can see that the vectd, [X] € F.i" is generated by a

nested coset coding scheme@jfandCy, from S. Then, from where the second equality is derived from [19, Lemma 4].
the definition ofC’ andC’, we can see thaD,; is a subcode This definition of Aa(X, Y) represents the minimum number
of Dy, with dimelnsiondiin Dyi = dim Dy — 1= dimCy — 1 of error packet& required to be injected in order to transform
overF;m for eachi € {1 Iy ! ! at least one element of into Y, as [20, Eq. (9)].
N e s Next, we define theA-distance[19] betweenX and X',
Let £L £ {1,...,1} andS,\i, = [S1,...,Si-1,Si+1, ..+, .
L=l } 2y = 151 e I induced byAa(X,Y), as

7\ A H ’ . N
#(Si) = {[SL\(i)v X]: Spyi € Fyi andX € lﬁ(S)} € D1/ Da;. Oa(X, X) = mm{AA(X’ M)+ AL Y)Y e qu}’ (7

Here we definez; = P(SX]) = [Sp,X] € Dy O N €C/C2
Recall thatS;,, .. ., S are mutually independent and uniformlyLemma 22. For X, X’ € C1/C2, we have
distributed ovefFqn. Thus, considering a nested coset coding N T wr AT . , ,
scheme that generates; from a secret messag® € Fygn (X, X') = mm{dR(XA XA XeX, X eX } (18)
with D1, D, we can see thaTZ“—l € ¢(Si) € Di1i/Dyj Proof: First we have
is chosen uniformly at random fromi(S;). Therefore, we N o N
have I(S;; DZ{TT) = 0 for any D € F;éx(mlfl) whenever da(X, X’) = min {AA(X,W + Aa(X',Y) 1Y € qu}
# < Mra(D3;, Dy;) from Corol. 18. =min{min{ds(XA",Y) : X € X}
Fo_r an arbitrary subseR C £\{i}, define a mat_rleR th_at + min{dR(X’AT,Y) X e X'} Y e ]Fg'm}

consists of|R| rows of an [ - 1) x (I — 1) identity matrix,
satisfying B; : j € R]" = FxS}, ;. For an arbitrary matrix =min{dR(XAT,Y)+dR(X3°~T,\O L XeX, X'GX’,YGFQm}- (19)
BeFg™ (0O<k<n), setD=|g (E);]' Then, from the foregoing The rank distance satisfies the triangle inequality
proof, we have dr(XAT, XAT) < dr(XAT,Y) + dr(X'AT,Y) for VY € Fy,
0=1(Si; DZL) = I(Si; Sg, BXT) = H(SiIS) - H(SiIIBX, Sg) [8]. This lower bound can be achieved by choosing,

i} . . e.g.,Y = XA'. Therefore, from Eq. (19), we have Eq. (18

= H(Si) - H(SiIBX', Sg) = I(Si; BX'|Sg), The next lemma shows thaia(X, Y) is normal [19, Defi-
wheneveriR|+k < My(Dj3;, Dy). Sincel(S;;BX|Sg) =0 is hition 1].
equivalent to Eq. (1) from [20, Prop. 5], we have Eq.(15) byemma 23. For all X, X’ € C1/C> and all 0< i < 6a(X, X),
selecting the minimum value dflr 1(D;;, Dy;)-1 for 1<i<l. there exists some¥ e Fgn such thatAa(X,Y) = i and
B AAX,Y) = 6a(X, X)) — .

Example 21. The scheme proposed in [12] used a systematic Proof: Let X,X’ € C1/C> and let 0 < i < d =
MRD code asC; (not C1), wherem > | + n. We proved g§a(X,X’). Then,d = @in{dR(XAT,X’LAT) “XeX, X eX’}
min{Mr1(D3;, Df;) : 1<i <1} = nin [12, Proof of Theorem from Lemma 22. LetX € X and X' € X’ be vectors

for each 1<i <. For S; € Fqn define a coset

7



satisfyingd = dR()zAT,)z’AT). From the proof of [19, Theorem and Corol. 12, the scheme is universatherrorp-erasure-
6], we can always find two vectord/W’ € Fg. such that correcting whenMg(C1, {0}) = dr(C1) > 2t + p, as shown

W+ W = (X"~ X)AT, rank g (W) = i andranks, (W) =d-i.
Taking Y = XAT + W = X’AT - W, we havedg(XAT,Y) = i
and dRQ(’AT,\O = d - i. We thus obtainAa(X,Y) < i and

OA(X,X’) = d, we haveAa(X,Y) + Aa(X’,Y) > d for any

Y € Fg from from Eq.(17). ThereforeAa(X,Y) = i and

AA(X’,Y) =d - hold. [ |
Let 6a(C1/C2) be the minimumA-distance given by

(1]

SA(C1/C2) £ min{oa(X, X') : X, X € C1/C2, X # X'}. (2]

As [19, Theorem 7], from Lemma 23 and [19, Theorem 3],[3]
we have the following proposition.

Proposition 24. A nested coset coding scheme with, C»
is guaranteed to determine the unique cosedgainst anyt
packet errors for any fixed if and only if 54(C1/C2)>2t. ®

[4]
5]
Here we note that ifX is uniquely determinedS is also (6]
uniquely determined from Def. 1.

Lemma 25. 5o(C1/C2) = min{dr(XA, X'AT) : X, X'€ C1, X'~
X¢Ca}.

Proof:

(7]

(8]
El

(5A(C'1/C2) = min{6A(X, X') X, X €C1/Co, X # X/} [10]

=min{min{dr(XA', XA'): Xe X, X' € X'}: X, X'€C1/Co, X X'}
=min{dr(XAT, X'AT) : XeX€C1/Ca. X' €X' €C1/Co, X X'}
=min{dr(XA", X'AT) : X, X' € C1,X' = X & Ca}.

[11]

12
- [12]
Theorem 26. Consider the nested coset coding in Def. Iz3
Then, the scheme is a universally (i.e., simultaneouslhafor
Ae ]FqNX” with rank deficiency at mosp) t-errorp-erasure-
correcting secure network coding if and onlyMiz 1(C1, C2) >

2t +p. [15]

Proof: For the rank deficiency = n—rank A, we have [16]
dr(X, X")-p<dr(XAT, X’'AT), and there always exisfs e Fy*" [17]
depending onX, X’) such that the equality holds. Thus, from

Lemma 25, we have
[18]

AI’ELH OA(C1/C2)=min{dr(X, X") : X, X" €C1, X' =X¢&C2}—p
S el

rank A=n—p

(19]
=min{dr(X.0) : X € C1. X ¢ Co} - p
=Mgr1(C1,C2) —p. (by Lemma 11)

Therefore, we have  minda(C1/C2)<  min  6a(C1/C2)
Arrank A=n—p ~ ArankA=n—p’
for p > p’, and hence we obtain min 6a(C1/C2) =
Arrank A>n—p

0A(C1/C2) = MR1(C1,C2)—p. ]

[20]
[21]
[22]

min (23]
Arank A=n—p

Example 27. The existing scheme [21] used MRD codegy)
as C1,C2, wherem > n. Then, by Corol.14, we have
Mr1(C1,{0}) = n—dimCy + 1. Sincedim(V N Cy) = 0 for
any V € Tgimc; (Fgn) by Corol. 12 anddimC; > n—dimCy,

we haveMg1(C1,C2) = Mr1(C1, {0}). Thus, by Theorem 26

[25]

in [21, Theorem 11].
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