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Abstract—The universal secure network coding presented by
Silva et al. realizes secure and reliable transmission of a secret
message over any underlying network code, by using maximum
rank distance codes. Inspired by their result, this paper considers
the secure network coding based on arbitrary linear codes,
and investigates its security performance and error correction
capability that are guaranteed independently of the underlying
network code. The security performance and error correction
capability are said to be universal when they are independent
of underlying network codes. This paper introduces new code
parameters, the relative dimension/intersection profile (RDIP)
and the relative generalized rank weight (RGRW) of linear
codes. We reveal that the universal security performance and
universal error correction capability of secure network coding
are expressed in terms of the RDIP and RGRW of linear codes.
The security and error correction of existing schemes are also
analyzed as applications of the RDIP and RGRW.

I. Introduction

In the scenario ofsecure network codingintroduced by Cai
et al. [2], a source node transmitsn packets fromn outgoing
links to sink nodes through a network that implements network
coding [1,11,13], and each sink node receivesn packets from
n incoming links. In the network, there is a wiretapper who
observesµ(< n) links. The problem is how to encode a secret
message inton transmitted packets at the source node, in such
a way that the wiretapper obtain no information about the
message in the sense of information theoretic security.

As shown in [6], secure network coding can be seen as a
generalization of the wiretap channel II [18] or secret sharing
schemes based on linear codes [3,5] for network coding.
Hence, in secure network coding, the secrecy is realized
by introducing the randomness inton transmitted packets as
follows. Suppose the message is represented byl packets
S1, . . . ,Sl (1 ≤ l ≤ n). Then, the source node encodes
(S1, . . . ,Sl) together withn−l random packets by linear codes,
and generatesn transmitted packets [6,17,21].

Silva et al. [21] proposed theuniversal secure network
coding that is based on maximum rank distance (MRD)
codes [8]. Their scheme was universal in the sense that their
scheme guarantees that overany underlying network code,
no information aboutS leaks out even if anyn − l links are
observed by a wiretapper. As shown in [21], their scheme with
MRD codes is optimal in terms of security and communication
rate. However, there exists some restrictions in universalsecure

network coding with MRD codes. In their scheme, the network
must transport packets of sizem≥ n. The MRD code used in
the scheme is defined over anFn

qm, whereFqm is anm-degree
field extension of a fieldFq with orderq. Thus, the size of the
field Fqm increases exponentially withm, and the restriction of
MRD codes withm≥ n invokes the large computational cost
for encoding and decoding of MRD codes ifn is large. It is
undesirable especially in resource constraint environments.

Considering secure network coding without such a restric-
tion, Ngai et al. [17], and later Zhang et al. [25], investigated
the security performance of secure network coding based on
general linear codes. They introduced a new parameter of
linear codes, called therelative network generalized Hamming
weight(RNGHW), and revealed that the security performance
is expressed in terms of the RNGHW. The RNGHW depends
on the set of coding vectors of the underlying network code.
Hence, the RNGHW is not universal.

The aim of this paper is to investigate the security perfor-
mance of universal secure network coding based on general
linear codes, which is always guaranteed overany underlying
network code, even over random network code. This paper
defines the universal security performance by the following
two criteria. One is called theuniversal equivocationΘµ that
is the minimum uncertainty of the message under observation
of µ(< n) links, guaranteed independently of the underlying
network code. The other is called theuniversal Ω-strong
security, whereΩ is a performance measure such that no
part of the secret message is deterministically revealed even
if at mostΩ links are observed. The paper [12] proposed a
specific construction of the secure network coding that attains
the universal (n − 1)-strong security, and such a scheme is
called universal strongly secure network coding [20]. Namely,
the definition of universalΩ-strong security given in this paper
is a generalization of universal strongly secure network coding
considered in [12,20] for the number of tapped links.

In order to expressΘµ andΩ in terms of code parameters,
this paper introduces two parameters of linear codes, called
the relative dimension/intersection profile (RDIP) and the
relative generalized rank weight(RGRW). The RGRW is a
generalization of the minimum rank distance [8] of a code. We
reveal thatΘµ andΩ can be expressed in terms of the RDIP
and the RGRW of the codes. Duursma et al. [5] first observed
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that the relative generalized Hamming weight[14] exactly
expresses the security performance and the error correction
capability of secret sharing. Our definitions of RGRW and
RDIP are motivated by their result [5].

Assume that the attacker is able not only to eavesdrop but
also to inject erroneous packets anywhere in the network.
Also assume that the network may suffer from the rank
deficiency of the transfer matrix at a sink node. Silva et
al.’s scheme based on MRD codes [21] enables to correct
such errors and rank deficiency at each sink node, where its
error correction capability is guaranteed over any underlying
network code, i.e., universal. This paper also generalizestheir
result and reveals that the universal error correction capability
of secure network coding based on arbitrary linear codes can
be expressed in terms of the RGRW of the codes.

The remainder of this paper is organized as follows. Sect. II
presents basic notations, and introduces linear network cod-
ing. Sect. III defines the universal security performance and
universal error correction capability of secure network coding
over wiretap network. Sect. IV defines the RDIP and RGRW of
linear codes, and introduces their basic properties. In Sect. V,
the universal security performance is expressed in terms ofthe
RDIP and RGRW. The security of existing schemes [12,20,21]
is also analyzed as applications of the RDIP and RGRW in
Examples 17 and 21. Sect. VI gives the expression of the
universal error correction capability in terms of the RGRW,
and also analyze the error correction of [21] by the RGRW in
Example 27.

II. Preliminary

A. Basic Notations

Let H(X) be the Shannon entropy for a random variableX,
H(X|Y) be the conditional entropy ofX given Y, and I (X; Y)
be the mutual information betweenX and Y [4]. We write
|X| as the cardinality of a setX. The entropy and the mutual
information are always computed by using logqm.

Let Fq stand for a finite field containingq elements andFqm

be anm-degree field extension ofFq (m ≥ 1). Let Fn
q denote

an n-dimensional row vector space overFq. Similarly, Fn
qm

stands for ann-dimensional row vector space overFqm. Unless
otherwise stated, we consider subspaces, ranks, dimensions,
etc, over the field extensionFqm instead of the base fieldFq.

An [n, k] linear codeC overFn
qm is ak-dimensional subspace

of Fn
qm. Let C⊥ denote adual codeof a codeC. A subspace

of a code is called asubcode[15]. ForC ⊆ Fn
qm, we denote by

C|Fq a subfield subcodeof C overFq [15]. Observe thatdimC
means the dimension ofC as a vector space overFqm whereas
dimC|Fq is the dimension ofC|Fq overFq.

For a vector~v = [v1, . . . , vn] ∈ Fn
qm and a subspaceV ⊆ Fn

qm,
we denote~v q = [vq

1, . . . , v
q
n] and Vq = {~v q : ~v ∈ V}. Define a

family of subspacesV ⊆ Fn
qm satisfyingV = Vq by Γ(Fn

qm) ,
{subspaceV ⊆ Fn

qm : V = Vq}. Also defineΓi(Fn
qm) , {V ∈

Γ(Fn
qm) : dim V = i}. For a subspaceV⊆Fn

qm, the followings are
equivalent: 1)V∈Γ(Fn

qm); 2) dim V=dim V|Fq [22, Lemma 1].

B. Linear Network Coding

As in [2,6,17,21,25], we consider a multicast communica-
tion network represented by a directed multigraph with unit
capacity links, a single source node, and multiple sink nodes.
We assume thatlinear network coding[11,13] is employed
over the network. Elements of a column vector spaceFm×1

q
are calledpackets. Assume that each link in the network can
carry a singleFq-symbol per one time slot, and that each link
transports a single packet overm time slots without delays,
erasures, or errors.

The source node producesn packetsX1, . . . , Xn ∈ F
m×1
q and

transmitsX1, . . . , Xn on n outgoing links overm consecutive
time slots. Define them×n matrix X = [X1, . . . ,Xn]. The data
flow on any link can be represented as anFq-linear combi-
nation of packetsX1, . . . ,Xn ∈ F

m×1
q . Namely, the information

transmitted on a linke can be denoted asbeXT ∈ F1×m
q , where

be ∈ F
n
q is called aglobal coding vector(GCV) of e. Suppose

that a sink node hasN incoming links. Then, the information
received at a sink node can be represented as anN×m matrix
AXT ∈ FN×m

q , whereA ∈ FN×n
q is the transfer matrix constructed

by gathering the GCV’s ofN incoming links. The network
code is calledfeasibleif every transfer matrix to a sink node
has rankn overFq. The system is calledcoherentif A is known
to each sink node; otherwise, callednoncoherent.

III. Universal Security Performance and Universal Error
Correction Capability of Secure Network Coding

This section introduces the wiretap network model with
packet errors and the nested coset coding scheme in secure
network coding [6,17,21,25]. Then, we define the universal
security performance in terms of theuniversal equivocation
and theuniversalΩ-strong securityon the wiretap network
model. We also define the universal error correction capability
of secure network coding. From now on, only one sink node
is assumed without loss of generality. In addition, we focuson
the fundamental case of coherent systems in this paper due to
the space constraint. But, as in [21], all analysis in this paper
can be easily adapted to the case of noncoherent systems.

A. Wiretap Networks with Errors, and Nested Coset Coding

Following [2,6,17,21,25], assume that in the setup of
Sect. II-B, there is a wiretapper who has access to packets
transmitted on anyµ links. LetW be the set of|W| = µ

links observed by the wiretapper. Then the packets observed
by the wiretapper are given byWT = BWXT, where rows of
BW ∈ F

µ×n
q are the GCV’s associated with the links inW.

In the scenario [6,17,21,25], the source node first regards an
m-dimensional column vector spaceFm×1

q asFqm, and fix l for
1≤ l≤n. Let S= [S1, . . . ,Sl ] ∈Fl

qm be the secret message, and
assume thatS1, . . . ,Sl are uniformly distributed overFl

qm and
mutually independent. Under the wiretapper’s observation, the
source node wants to transmitS without information leakage
to the wiretapper. To protectS from the wiretapper, the source
node encodesS to a transmitted vectorX = [X1, . . . ,Xn] ∈
Fn

qm of n packets by applying thenested coset coding scheme

2



[3,5,23,24] onS. In [3,5], its special case is called asecret
sharing scheme based on linear codes.

Definition 1 (Nested Coset Coding Scheme). Let C1 ⊆ F
n
qm be

a linear code overFqm (m ≥ 1), andC2 $ C1 be its subcode
with dimensiondimC2 = dimC1 − l over Fqm. Let ψ : Fl

qm →

C1/C2 be an arbitrary isomorphism. For a secret messageS ∈
Fl

qm, we chooseX from a cosetψ(S) ∈ C1/C2 uniformly at
random and independently ofS.

Then, the source node finally transmitX over the network
coded network. Def. 1 includes the Ozarow-Wyner coset cod-
ing scheme [18] as a special case withC1 = F

n
qm. Hence, when

we setC1 = F
n
qm, this is the secure network coding based on

Ozarow-Wyner coset coding scheme [6,17,21].
Corresponding toX transmitted from the source node, the

sink node receives a vector ofN packetsY ∈ FN
qm. Here we

extend the basic network model described in Sect. II-B to
incorporate packet errors and rank deficiency of the transfer
matrix A ∈ FN×n

q of the sink node. Suppose that at mostt errors
can occur in any of links, causing the corresponding packets
to become corrupted. Then, as [19],Y can be expressed by

YT = AXT + DZT,

where Z ∈ Ft
qm is the t error packets, andD ∈ FN×t

q is the
transfer matrix ofZ. We defineρ , n − rank A as the rank
deficiency ofA. In this setup, we want to decodeS correctly
from Y. If the network is free of errors and the network code
used is feasible,X can be always reconstructed fromYT = AXT

as described in Sect. II-B. Then, the cosetψ(S), and henceS,
is uniquely determined fromX from Def. 1.

B. Definition of Universal Security Performance

The security performance of secure network coding in the
above model was measured by the following criterion [17,25].

Definition 2 (Equivocation). The minimum uncertaintyθµ of
S given BWXT for all possibleW’s (|W| = µ) in the network
is calledequivocation, defined asθµ, min

W:|W|=µ
H(S|BWXT).

As defined in Def. 2,θµ depends on the underlying network
code. In [17,25],θµ for m = 1 was expressed in terms of the
relative network generalized Hamming weight (RNGHW) of
C1 andC2. The RNGHW is the value determined according to
GCV’s of all links in the network. Hence, the RNGHW cannot
determine the equivocation over random linear network code
[10]. Here, we extend Def. 2 by requiring the independence of
the underlying network code, as follows.

Definition 3 (Universal Equivocation). The universal equivo-
cationΘµ is the minimum uncertainty ofS given BXT for all
B ∈ Fµ×n

q , defined as

Θµ , min
B∈Fµ×n

q

H(S|BXT).

As defined in Def. 3,Θµ does not depend on the set ofW’s
in the network. Silva et al.’s universal secure network coding
scheme based on MRD codes [21] achievesΘn−l = H(S) in
Def. 3 providedm≥ n.

Def. 3 defines the security for the whole components of a
messageS = [S1, . . . ,Sl ]. Here we focus on the security for
every part ofS, and give the following definition.

Definition 4 (UniversalΩ-Strong Security). Let SZ = (Si :
i ∈ Z) be a tuple for a subsetZ ⊆ {1, . . . , l}. We say that a
secure network coding scheme attains theuniversalΩ-strong
security if we have

I (SZ; BXT) = 0, ∀Z,∀B ∈ F(Ω−|Z|+1)×n
q . (1)

As [9,16,20], a scheme with universalΩ-strong security
does not leak any|Z| components ofS even if at most
Ω − |Z| + 1 links are observed by the wiretapper. Moreover,
this guarantee holds over any underlying network code as
Θµ. We note that if a scheme achieves theΩ-strong security,
the universal equivocationΘµ for µ = Ω − l + 1 must be
ΘΩ−l+1 = H(S) as shown in Def. 4. However, the converse
does not always hold.

The scheme in [12] achievesΩ = n−1 providedm≥ l+n by
nested coset coding with MRD codes. The universal strongly
security in [20] is a special case of Def. 4 withΩ = n− 1.

C. Definition of the Universal Error Correction Capability of
Secure Network Coding

In the model described in Sect. III-A, the error correction
capability of secure network coding, guaranteed over any
underlying network code, is defined as follows.

Definition 5 (Universallyt-Error-ρ-Erasure-Correcting Secure
Network Coding). A secure network coding scheme is called
universally t-error-ρ-erasure-correcting, if

H(S|Y) = 0, YT = AXT + DZT,

∀A∈FN×n
q : rank A≥n−ρ,∀X ∈ ψ(S),∀D∈FN×t

q ,∀Z∈Ft
qm,

i.e.,S can be uniquely determined fromY againstt errors over
any underlying network code with at mostρ rank deficiency.

Silva et al.’s scheme [21, Section VI] is universallyt-error-
ρ-erasure-correcting when the minimum rank distance [8] of
C1 is greater than 2t + ρ.

IV. New Parameters of Linear Codes and Their Properties

This section introduce therelative dimension/intersection
profile (RDIP) and the relative generalized rank weight
(RGRW) of linear codes. In the following sections, these
parameters are used to characterize the universal security
performance and the universal error correction capabilityof
secure network coding.

A. Definition

We first define therelative dimension/intersection profile
(RDIP) of linear codes as follows.

Definition 6 (Relative Dimension/Intersection Profile). Let
C1 ⊆ F

n
qm be a linear code andC2 $ C1 be its subcode. Then,

the i-th relative dimension/intersection profile (RDIP) ofC1

3



andC2 is the greatest difference between dimensions overFqm

of intersections, defined as

KR,i(C1,C2) , max
V∈Γi (Fn

qm)
{dim (C1 ∩ V) − dim (C2 ∩ V)} , (2)

for 0 ≤ i ≤ n.

Next, we define therelative generalized rank weight
(RGRW) of linear codes as follows.

Definition 7 (Relative Generalized Rank Weight). Let C1 ⊆

Fn
qm be a linear code andC2 $ C1 be its subcode. Then, the

i-th relative generalized rank weight (RGRW) ofC1 andC2 is
defined by

MR,i(C1,C2)

,min
{

dim V : V∈Γ(Fn
qm), dim (C1∩V)−dim (C2∩V)≥ i

}

, (3)

for 0 ≤ i ≤ dim (C1/C2).

The relative dimension/length profile and the relative gen-
eralized Hamming weight introduced in [14] are equivalent to
Eqs. (2) and (3) withΓi(Fn

qm) andΓ(Fn
qm) replaced by suitable

smaller sets, respectively.

B. Basic Properties of the RDIP and the RGRW, and the
Relation between the Rank Distance and the RGRW

This subsection introduces some basic properties of the
RDIP and the RGRW, and also shows the relation between
the RGRW and the rank distance [8]. These will be used
for expressions of the universal security performance and the
universal error correction capability of secure network coding.

First, we introduce the following theorem and lemma about
the RDIP and the RGRW.

Theorem 8 (Monotonicity of the RDIP). Let C1 ⊆ F
n
qm be

a linear code andC2 $ C1 be its subcode. Then, thei-th
RDIP KR,i(C1,C2) is nondecreasing withi from KR,0(C1,C2) =
0 to KR,n(C1,C2) = dim (C1/C2), and 0 ≤ KR,i+1(C1,C2) −
KR,i(C1,C2) ≤ 1 holds.

Proof: KR,0(C1,C2) = 0 andKR,n(C1,C2) = dim (C1/C2),
are obvious from Def. 6. Recall that

Γi(Fn
qm) =

{

V ⊆ Fn
qm : V = {~uG : ~u ∈ Fi

qm},G ∈ Fi×n
q , rank G = i

}

,

for 1 ≤ i ≤ n from [22, Lemma 1]. This implies that for
any subspaceV1 ∈ Γi+1(Fn

qm), there always exist someV2’s
satisfyingV2 ∈ Γi(Fn

qm) andV2 $ V1. This yieldsKR,i(C1,C2) ≤
KR,i+1(C1,C2).

Next we show that the increment at each step is at most 1.
Consider arbitrary subspacesV,V′ ∈ Γ(Fn

qm) such thatdim V′ =
dim V + 1 andV $ V′. Let f = dim (C1 ∩ V) − dim (C2 ∩ V);
g = dim (C1 ∩ V′) − dim (C2 ∩ V′). Sincedim (C1 ∩ V) + 1≥
dim (C1∩V′)≥dim (C1∩V) andC2 $ C1, we havef+1 ≥ g ≥ f
and henceKR,i(C1,C2) + 1 ≥ KR,i+1(C1,C2) ≥ KR,i(C1,C2).

Lemma 9. Let C1 ⊆ F
n
qm be a linear code andC2 $ C1

be its subcode. Then, thei-th RGRW MR,i(C1,C2) is strictly

increasing withi. Moreover,MR,0(C1,C2) = 0 and

MR,i(C1,C2) = min
{

j : KR, j(C1,C2) = i
}

= min
{

dim V : V ∈ Γ(Fn
qm), dim (C1 ∩ V) − dim (C2 ∩ V) = i

}

,

where 0≤ i ≤ dim (C1/C2).

Proof: First we have

min
{

j : KR, j(C1,C2) ≥ i
}

=min
{

j : ∃V∈Γ j(Fn
qm), such thatdim (C1∩V)−dim (C2∩V)≥ i

}

=min
{

dim V : V ∈ Γ(Fn
qm), dim (C1 ∩ V) − dim (C2 ∩ V) ≥ i

}

=MR,i(C1,C2).

From Theorem 8, we have
{

j : KR, j(C1,C2) = i
}

∩
{

j : KR, j(C1,C2) ≥ i + 1
}

= ∅. We thus have

MR,i(C1,C2) = min
{

j : KR, j(C1,C2) ≥ i
}

= min
{

j : KR, j(C1,C2) = i
}

.

Therefore the RGRW is strictly increasing withi and thus

MR,i(C1,C2)

= min
{

dim V : V ∈ Γ(Fn
qm), dim (C1 ∩ V) − dim (C2 ∩ V) = i

}

,

is established.
Next, we show the relation between the rank distance [8]

and the RGRW. Letφm : Fqm → Fm×1
q be an Fq-linear

isomorphism that expands an element ofFqm as a column
vector overFq with respect to some fixed basis forFqm overFq.
Then, we define therank overFq of a vector~x = [x1, . . . , xn] ∈
Fn

qm, denoted byrankFq(~x), as the rank ofm × n matrix
[

φm(x1), . . . , φm(xn)
]

over Fq. The rank distance [8] between
two vectors~x, ~y ∈ Fn

qm is given bydR(~x, ~y) , rank Fq(~y − ~x).
The minimum rank distance [8] of a codeC is given asdR(C),
min{dR(~x, ~y) : ~x, ~y ∈C, ~x,~y}=min{dR(~x, ~0) : ~x∈C, ~x,~0}. For
a subspaceV ⊆ Fn

qm, we define byV∗ ,
∑m−1

i=0 Vqi
the sum of

subspacesV,Vq, . . . ,Vqm−1
.

Lemma 10. For a subspaceV ⊆ Fn
qm with dim V = 1, we have

dim V∗ = dR(V).

Proof: Let ~b= [b1, . . . , bn] ∈V be a nonzero vector, which
implies rank Fq(~b)=dR(V). Let M,

[

ai, j

]m,n

i, j=1
∈Fm×n

qm , ai, j =bqi−1

j .
Each vector inV∗ is represented by anFqm-linear combination
of ~b, ~bq, . . . , ~bqm−1

, and hencedim V∗= rank M.
Forα1, α2 ∈ Fq, β1, β2 ∈ Fqm, we haveα1φm(β1)+α2φm(β2)=

φm(α1β1 + α2β2). This implies that there always exists some
P∈Fn×n

q with rank P=n satisfying

~bP= [g1, . . . , gdR(V), 0, . . . , 0]∈Fn
qm, g j,0, (4)

where g1, . . . , gdR(V) are linearly independent overFq, and
note thatP represents the elementary column operation on
[φm(b1), . . . , φm(bn)]. Also for α1, α2 ∈ Fq, β1, β2 ∈ Fqm, we
have α1β

qi

1 + α2β
qi

2 = (α1β1 + α2β2)qi
(0 ≤ i ≤ m − 1).

Hence, forP ∈ Fn×n
q satisfying Eq. (4), we also have~bqi

P =

[gqi

1 , . . . , g
qi

dR(V), 0, . . . , 0] ∈ Fn
qm for all 0 ≤ i ≤ m− 1. Thus, by
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the elementary column operation onM over Fq, represented
by P, we get MP. By eliminating zero columns fromMP,

we obtain a matrixM′ =
[

fi, j
]m,dR(V)

i, j=1
, fi, j = g

qi−1

j , where

rank M′ = rank M. Let M′k ∈ F
k×dR(V)
qm (1 ≤ k ≤ dR(V)) be

the submatrix consisting of the firstk rows of M′. Since
dR(V)≤min{m, n} and g1, . . . , gdR(V) are linearly independent,
M′k is the generator matrix of [dR(V), k] Gabidulin code and
rank M′k = k [8]. Thus, M′dR(V) is nonsingular, and hence we
have rank M′dR(V) = rank M′ = dR(V). Therefore,dim V∗ =
rank M= rank M′=dR(V).

Lemma 11. For a codeC1 ⊆ F
n
qm and its subcodeC2 $

C1, the first RGRW can be represented asMR,1(C1,C2) =
min
{

dR(~x, ~0) : ~x ∈ C1\C2

}

.

Proof: MR(C1,C2) can be represented as

MR,1(C1,C2)

= min
{

dim W : W∈Γ(Fn
qm), dim (C1 ∩W)−dim (C2 ∩W)≥1

}

= min
{

dim W : W ∈ Γ(Fn
qm),

∃V⊆Wsuch thatV⊆ (C1 ∩W),V* (C2 ∩W), dim V≥1
}

. (5)

For any subspaceV ⊆ Fn
qm with dim V≥1, there always exists

someW∈Γ(Fn
qm) satisfyingW⊇V, because we haveV∗∈Γ(Fn

qm)
andV∗⊇V. Also, for subspacesW andV⊆W with dim V≥1,
if W is the smallest space inΓ(Fn

qm) includingV, thenW=V∗

[22]. Thus Eq. (5) can be rewritten as

min
{

dim W : V⊆Fn
qm, dim V≥1

∃W⊇V,W∈Γ(Fn
qm), such thatV⊆ (C1 ∩W),V* (C2 ∩W)

}

= min
{

dim V∗ : V⊆Fn
qm,V⊆ (C1∩V∗),V* (C2∩V∗), dim V≥1

}

= min {dim V∗ : V ⊆ C1,V * C2, dim V ≥ 1} , (6)

where the last equality of Eq. (6) is obtained byV ⊆ (C1 ∩

V∗) ⇔ V ⊆ C1, andV * (C2 ∩ V∗) ⇔ V * C1 from V∗ ⊇ V.
For subspacesV and V′ ⊇ V, we havedim V∗ ≤ dim V′∗.
Therefore, Eq. (6) can be rewritten as follows.

min {dim V∗ : V ⊆ C1,V * C2, dim V ≥ 1}

= min {dim V∗ : V ⊆ C1,V * C2, dim V = 1}

= min {dR(V) : V ⊆ C1,V * C2, dim V = 1} (by Lemma 10)

= min
{

dR(~x, ~0) : ~x ∈ C1\C2

}

.

Lemma 11 immediately yields the following corollary.

Corollary 12. For a linear codeC, dR(C) = MR,1(C, {~0}) holds.

This shows thatMR,1(·, {~0}) is a generalization ofdR(·).
Now we present the following proposition that generalizes the
Singleton-type bound of the rank distance [8].

Proposition 13 (Generalization of Singleton-Type Bound).
Let C1 ⊆ F

n
qm be a linear code andC2 $ C1 be its subcode.

Then, the RGRW ofC1 andC2 is upper bounded by

MR,i(C1,C2) ≤ min

{

1,
m

(n− dimC2)

}

(n− dimC1) + i, (7)

for 1 ≤ i ≤ dim (C1/C2).

Proof: We can consider thatC2 is a systematic code
without loss of generality. That is, the firstdimC2 coordinates
of each basis ofC2 is one of canonical bases ofFdimC2

qm . Let
S $ Fn

qm be a linear code such thatC1 is a direct sum ofC2

andS. Then, after suitable permutation of coordinates, a basis
of S can be chosen such that its firstdimC2 coordinates are
zero. Then, the effective length [7] of a codeS is less than or
equal ton− dimC2. Hence we have

dR(S) ≤ min

{

1,
m

n− dimC2

}

(n− dimC2 − dimS) + 1,

= min

{

1,
m

n− dimC2

}

(n− dimC1) + 1, (8)

from the Singleton-type bound for rank metric [8].
Here we writeκ = min {1,m/(n− dimC2)} for the sake of

simplicity. Recall thatdR(S) = MR,1(S, {~0}) from Corol. 12,
and MR,1(S, {~0}) ≤ κ(n− dimC1) + 1 holds from Eq. (8).

We shall use the mathematical induction ont. We see that
Eq. (9) is true fort = 1. Assume that for somet ≥ 1,

MR,t(S, {~0}) ≤ κ(n− dimC1) + t, (9)

is true. Then, by the monotonicity shown in Prop. 9,

MR,t+1(S, {~0}) ≤ MR,t(S, {~0}) + 1 ≤ κ(n− dimC1) + t + 1,

holds. Thus, it is proved by mathematical induction that Eq.(9)
holds for 1≤ t ≤ dim (C1/C2).

Lastly, we prove Eq. (7) by the above discussion about the
RGRW ofS and{~0}. For an arbitrary fixed subspaceV ⊆ Fn

qm,
we havedim (C1∩V) ≥ dim (S∩V)+dim (C2∩V), becauseC1 is
a direct sum ofS andC2. Hence,dim (C1∩V)−dim (C2∩V) ≥
dim (S ∩ V) holds, and we haveMR,i(C1,C2) ≤ MR,i(S, {~0})
for 1 ≤ i ≤ dim (C1/C2) from Def. 7. Therefore, from the
foregoing proof, we have

MR,i(C1,C2) ≤ MR,i(S, {~0}) ≤ κ(n− dimC1) + i,

for 1 ≤ i ≤ dim (C1/C2), and the proposition is proved.
Prop. 13 immediately yields the following corollary.

Corollary 14. For a linear codeC ⊆ Fn
qm, MR,i(C, {~0}) ≤

min{1,m/n}(n − dimC) + i for 1 ≤ i ≤ dimC. The equality
holds for all i if and only if C is an MRD code.

V. Universal Security Performance onWiretap Networks

In this section, we expressΘµ andΩ given in Sect. III-B
in terms of the RDIP and RGRW. From now on, we use the
following definition.

Definition 15. For B∈Fµ×n
q , we defineVB, {~uB : ~u∈Fµqm}⊆F

n
qm.

Recall that if anFqm-linear spaceV ⊆ Fn
qm admits a basis in

Fn
q thenV ∈ Γ(Fn

qm) [22], which implies

VB ∈ Γ(F
n
qm). (10)

First, we give the following theorem for the universal
equivocationΘµ given in Def. 3
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Theorem 16. Consider the nested coset coding in Def. 1.
Then, the universal equivocationΘµ of C1,C2 is given by

Θµ = l − KR,µ(C⊥2 ,C
⊥
1 ).

Proof: Let B ∈ Fµ×n
q be an arbitrary matrix. By the chain

rule [4], we have the following equation for the conditional
entropy ofS given BXT:

H(S|BXT) = H(S,X|BXT) − H(X|S, BXT)

= H(X|BXT) + H(S|X, BXT) − H(X|S, BXT)

= H(X|BXT) − H(X|S, BXT). (11)

Then, from [25, Proof of Lemma 4.2], we have

H(X|BXT) = n− dimC⊥1 − dim VB + dim (C⊥1 ∩ VB),

H(X|S, BXT) = n− dimC⊥2 − dim VB + dim (C⊥2 ∩ VB).

By substituting these equations into Eq. (11), we have

H(S|BXT) = dimC⊥2 −dimC⊥1 −dim (C⊥2 ∩ VB)+dim (C⊥1 ∩ VB)

= l − dim (C⊥2 ∩ VB) + dim (C⊥1 ∩ VB). (12)

By Eq. (10) we have
{

VB : B ∈ Fµ×n
q

}

=
⋃

i≤µ

Γi(Fn
qm). (13)

Thus, by Eq. (12) and Def. 6, the universal equivocationΘµ is
given as follows.

Θµ = min
B∈Fµ×n

q

H(S|BXT)

= l − max
B∈Fµ×n

q

{

dim (C⊥2 ∩ VB) − dim (C⊥1 ∩ VB)
}

= l − max
V∈
⋃

i≤µ Γi (Fn
qm)

{

dim (C⊥2 ∩ V) − dim (C⊥1 ∩ V)
}

(by Eq. (13))

= l − max
V∈Γµ(Fn

qm)

{

dim (C⊥2 ∩ V) − dim (C⊥1 ∩ V)
}

(by Thm. 8)

= l − KR,µ(C⊥2 ,C
⊥
1 ).

Example 17. The existing schemes [12,20,21] used MRD
codes asC⊥1 and C⊥2 , wherem ≥ n. By Corol. 12, we have
dim (V ∩ C⊥2 ) = 0 for any V ∈ ΓdimC2(F

n
qm). This implies

KR,µ(C⊥2 ,C
⊥
1 ) = KR,µ(C⊥2 , {~0}) = 0 for 0≤ µ ≤ dimC2.

On the other hand,KR,dimC1(C
⊥
2 , {

~0}) = dimC1 − dimC2 by
Corol. 14. Sincedim (V ∩ C⊥1 ) = 0 for any V ∈ ΓdimC1(F

n
qm)

by Corol. 12, we haveKR,dimC1(C
⊥
2 ,C

⊥
1 )=dimC1−dimC2. By

Theorem 8,KR,µ(C⊥2 , C⊥1 )=µ−dimC2 for dimC2≤µ≤dimC1.
By Theorem 16, we see thatΘµ = l−max{0, µ−dimC2} for

0≤µ≤dimC1(= l+dimC2) in the schemes [12,20,21].

We then have the following corollary by the RGRW.
Corol. 18 shows that the wiretapper obtain no information of
S from any MR,1(C⊥2 ,C

⊥
1 ) − 1 links.

Corollary 18. Consider the nested coset coding in Def. 1.
Then, the wiretapper must observe at leastMR, j(C⊥2 ,C

⊥
1 ) links

to obtain the mutual informationj (1 ≤ j ≤ l) betweenS and
observed packets.

Proof: From Eq. (12), the smallest numberµ of tapped
links satisfyingI (S; BXT) = j (1 ≤ j ≤ l) is

min
{

µ : ∃B ∈ Fµ×n
q , I (S; BXT) = j

}

= min
{

µ : ∃B ∈ Fµ×n
q , l − H(S|BXT) = j

}

= min
{

µ : ∃B ∈ Fµ×n
q , dim (C⊥2 ∩ VB) − dim (C⊥1 ∩ VB) = j

}

.

From [22, Lemma 1] and Lemma 9, this equation can be
rewritten as follows.

min
{

µ : ∃B ∈ Fµ×n
q , dim (C⊥2 ∩ VB) − dim (C⊥1 ∩ VB) = j

}

= min
{

dim V : V ∈ Γ(Fn
qm), dim (C⊥2 ∩ V) − dim (C⊥1 ∩ V) = j

}

= MR, j(C⊥2 ,C
⊥
1 ).

Although the messageS has been assumed to be uniformly
distributed overFl

qm in Sect. III-A, the following proposition
reveals that the wiretapper still obtain no information ofS
from any MR,1(C⊥2 ,C

⊥
1 ) − 1 links even if S is arbitrarily

distributed.

Proposition 19. Fix the transfer matrixB to the wiretapper.
Suppose that the wiretapper obtain no information ofS from
BXT whenS is uniformly distributed overFl

qm as described in
Sect. III-A. Then, even ifS is chosen according to an arbitrary
distribution overFl

qm, the wiretapper still obtain no information
of S from BXT, that is, I (S; BXT) = 0.

Proof: When we assume thatS is arbitrarily distributed
overFl

qm, H(X|S, BXT) is upper bounded as follows from [21,
Proof of Lemma 6] and [25, Proof of Lemma 4.2].

H(X|S, BXT) ≤ n− dimC⊥2 − dim VB + dim (C⊥2 ∩ VB).

Also, sinceX is uniformly distributed over a cosetψ(S) ∈
C1/C2 for fixed S, we haveH(X|S) = dimC2 = n − dimC⊥2 .
For the dimension of a subspace{BXT : X ∈ C1}, we have

dim {BXT : X ∈ C1} = rank BGT = rank GBT

= dim {G~vT : ~v ∈ VB} = dim VB − dim (C⊥1 ∩ VB),

whereG ∈ FdimC1×n
qm is a generator matrix ofC1. Hence we

haveH(BXT) ≤ dim VB − dim (C⊥1 ∩ VB). We thus have

I (S; BXT) = I (S,X; BXT) − I (X; BXT|S)

= H(BXT) − H(X|S) + H(X|S, BXT)

≤ dim (C⊥2 ∩ VB) − dim (C⊥1 ∩ VB) (14)

for any distribution ofS. By I (S; BXT) = H(S)−H(S|BXT) and
Eq. (12) we can see that the equality holds ifS is uniformly
distributed. Therefore, for fixedB, if I (S; BXT) = 0 holds for
uniformly distributedS, then the right hand side of Eq. (14)
is zero, which implies thatI (S; BXT) = 0 also holds for
arbitrarily distributedS from the nonnegativity of mutual
information [4].

Lastly, we expressΩ in Def. 4 in terms of the RGRW. For
a subsetJ ⊆ {1, . . . ,N} and a vector~c = [c1, . . . , cN] ∈
FN

qm, let PJ (~c) be a vector of length|J| over Fqm, ob-
tained by removing thet-th componentsct for t < J. For
example forJ = {1, 3} and ~c = [1, 1, 0, 1] (N = 4),
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we have PJ (~c) = [1, 0]. The punctured code PJ (C) of
a code C ∈ FN

qn is given by PJ (C) ,
{

PJ (~c) : ~c ∈ C
}

.
The shortened codeCJ of a code C ⊆ FN

qm is defined
by CJ ,

{

PJ (~c) : ~c = [c1, . . . , cN] ∈ C, ci = 0 for i < J
}

. For
example forC = {[0, 0, 0], [1, 1, 0], [1,0,1], [0, 1, 1]} (N = 3)
andJ = {2, 3}, we haveCJ = {[0, 0], [1, 1]}. We then have the
following theorem for the universalΩ-strong security defined
in Def. 4.

Theorem 20. Let {i} , {1, . . . , l + n}\{i}. Fix C1, C2 and ψ
in Def. 1 and consider the corresponding nested coset coding
scheme in Def. 1. By usingC1, C2 andψ, define

C′1 ,
{

[S,X] : S ∈ Fl
qm and X ∈ ψ(S)

}

⊆ Fl+n
qm .

For each index 1≤ i ≤ l, we define a punctured codeD1,i of
C′1 asD1,i , P

{i}(C
′
1) ⊆ F

l+n−1
qm , and a shortened codeD2,i of

C′1 asD2,i , (C′1)
{i} ⊆ F

l+n−1
qm . Then, the valueΩ in Def. 4 is

given by

Ω = min
{

MR,1(D⊥2,i,D
⊥
1,i) : 1 ≤ i ≤ l

}

− 1. (15)

Proof: Define C′2 , {[~0, ~c2] : ~c2 ∈ C2} ⊆ F
l+n
qm . Since

C2 $ C1, C′2 is also a subcode ofC′1. Thus, in terms ofC′1 and
C′2, we can see that the vector [S,X] ∈ Fl+n

qm is generated by a
nested coset coding scheme ofC′1 andC′2 from S. Then, from
the definition ofC′1 andC′2, we can see thatD2,i is a subcode
of D1,i with dimensiondimD2,i = dimD1,i − 1 = dimC1 − 1
overFqm for eachi ∈ {1, . . . , l}.

Let L , {1, . . . , l} and SL\{i} , [S1, . . . ,Si−1,Si+1, . . . ,Sl ]
for each 1≤ i ≤ l. For Si ∈ Fqm define a coset

φ(Si) ,
{

[SL\{i},X] : SL\{i} ∈ F
l−1
qm and X ∈ ψ(S)

}

∈ D1,i/D2,i .

Here we defineZ
{i} , P

{i}([S,X]) = [SL\{i},X] ∈ D1,i .
Recall thatS1, . . . ,Sl are mutually independent and uniformly
distributed overFqm. Thus, considering a nested coset coding
scheme that generatesZ

{i} from a secret messageSi ∈ Fqm

with D1,D2, we can see thatZ
{i} ∈ φ(Si) ∈ D1,i/D2,i

is chosen uniformly at random fromφ(Si). Therefore, we
have I (Si ; DZT

{i}
) = 0 for any D ∈ F

µ×(n+l−1)
q whenever

µ < MR,1(D⊥2,i ,D
⊥
1,i) from Corol. 18.

For an arbitrary subsetR ⊆ L\{i}, define a matrixFR that
consists of|R| rows of an (l − 1) × (l − 1) identity matrix,
satisfying [S j : j ∈ R]T = FRST

L\{i}. For an arbitrary matrix

B∈Fk×n
q (0≤ k≤n), set D=

[

FR O
O B

]

. Then, from the foregoing
proof, we have

0 = I (Si ; DZT
{i}

) = I (Si ; SR, BXT) = H(Si |SR) − H(Si |BXT,SR)

= H(Si) − H(Si |BXT,SR) = I (Si ; BXT|SR),

whenever|R|+k < M1(D⊥2,i ,D
⊥
1,i). Since I (Si ; BXT|SR) = 0 is

equivalent to Eq. (1) from [20, Prop. 5], we have Eq. (15) by
selecting the minimum value ofMR,1(D⊥2,i ,D

⊥
1,i)−1 for 1≤ i≤ l.

Example 21. The scheme proposed in [12] used a systematic
MRD code asC′1 (not C1), where m ≥ l + n. We proved
min
{

MR,1(D⊥2,i ,D
⊥
1,i) : 1 ≤ i ≤ l

}

= n in [12, Proof of Theorem

4]. By Theorem 20, we see that the scheme [12] attains the
universal (n− 1)-strong security in the sense of Def. 4, while
[12] proved it by adapting the proof argument in [20].

As shown in Prop. 19, no information ofS is leaked from
less thanMR,1(C⊥2 ,C

⊥
1 ) tapped links even ifS is arbitrarily

distributed. In contrast,S must be uniformly distributed over
Fl

qm to establish Theorem 20. This is because elements ofS
need to be treated as extra random packets, as in strongly
secure network coding schemes [9,16,20].

VI. Universal Error Correction Capability of Secure
Network Coding

This section derives the universal error correction capability
by the approach of [19, Section III]. Recall that the received
packetsY is given by YT = AXT + DZT in the setup of
Sect. III-A, and thatX is chosen from the cosetψ(S) ∈ C1/C2

corresponding toS by the nested coset coding in Def. 1. From
now on, we writeX , ψ(S) for the sake of simplicity.

First, we define thediscrepancy[19] betweenX andY by

∆A(X,Y),min{r ∈N : D∈FN×r
q ,Z∈Fr

qm,X∈X,YT=AXT+DZT}

=min
{

dR(XAT,Y) : X ∈ X
}

, (16)

where the second equality is derived from [19, Lemma 4].
This definition of∆A(X,Y) represents the minimum numberr
of error packetsZ required to be injected in order to transform
at least one element ofX into Y, as [20, Eq. (9)].

Next, we define the∆-distance[19] betweenX and X′,
induced by∆A(X,Y), as

δA(X,X′) , min
{

∆A(X,Y) + ∆A(X′,Y) : Y ∈ FN
qm

}

, (17)

for X,X′ ∈ C1/C2.

Lemma 22. For X,X′ ∈ C1/C2, we have

δA(X,X′) = min
{

dR(XAT,X′AT) : X ∈ X,X′ ∈ X′
}

. (18)

Proof: First we have

δA(X,X′) = min
{

∆A(X,Y) + ∆A(X′,Y) : Y ∈ FN
qm

}

=min
{

min
{

dR(XAT,Y) : X ∈ X
}

+min
{

dR(X′AT,Y) : X′ ∈ X′
}

: Y ∈ FN
qm

}

=min
{

dR(XAT,Y)+dR(X′AT,Y) : X∈X,X′∈X′,Y∈FN
qm

}

. (19)

The rank distance satisfies the triangle inequality
dR(XAT,XAT) ≤ dR(XAT,Y) + dR(X′AT,Y) for ∀Y ∈ FN

qm

[8]. This lower bound can be achieved by choosing,
e.g.,Y = XAT. Therefore, from Eq. (19), we have Eq. (18).

The next lemma shows that∆A(X,Y) is normal [19, Defi-
nition 1].

Lemma 23. For all X,X′ ∈ C1/C2 and all 0≤ i ≤ δA(X,X′),
there exists someY ∈ Fn

qm such that∆A(X,Y) = i and
∆A(X′,Y) = δA(X,X′) − i.

Proof: Let X,X′ ∈ C1/C2 and let 0 ≤ i ≤ d =
δA(X,X′). Then, d = min

{

dR(XAT,X′AT) : X ∈ X,X′ ∈ X′
}

from Lemma 22. LetX̄ ∈ X and X̄′ ∈ X′ be vectors

7



satisfyingd = dR(X̄AT, X̄′AT). From the proof of [19, Theorem
6], we can always find two vectorsW,W′ ∈ Fn

qm such that
W+W′ = (X̄′ − X̄)AT, rank Fq(W) = i and rank Fq(W

′) = d− i.
Taking Ȳ = X̄AT +W = X̄′AT −W′, we havedR(X̄AT, Ȳ) = i
and dR(X̄′AT, Ȳ) = d − i. We thus obtain∆A(X, Ȳ) ≤ i and
∆A(X′, Ȳ) ≤ d − i from Eq. (16). On the other hand, since
δA(X,X′) = d, we have∆A(X,Y) + ∆A(X′,Y) ≥ d for any
Y ∈ Fn

qm from from Eq. (17). Therefore,∆A(X, Ȳ) = i and
∆A(X′, Ȳ) = d − i hold.

Let δA(C1/C2) be the minimum∆-distance given by

δA(C1/C2) , min
{

δA(X,X′) : X,X′ ∈ C1/C2,X , X
′} .

As [19, Theorem 7], from Lemma 23 and [19, Theorem 3],
we have the following proposition.

Proposition 24. A nested coset coding scheme withC1,C2

is guaranteed to determine the unique cosetX against anyt
packet errors for any fixedA if and only if δA(C1/C2)>2t.

Here we note that ifX is uniquely determined,S is also
uniquely determined from Def. 1.

Lemma 25. δA(C1/C2) = min{dR(XAT,X′AT) : X,X′∈ C1,X′−
X<C2}.

Proof:

δA(C1/C2) = min
{

δA(X,X′) : X,X′ ∈ C1/C2,X , X
′}

=min
{

min
{

dR(XAT,X′AT) :X∈X,X′∈X′
}

:X,X′∈C1/C2,X,X
′
}

=min
{

dR(XAT,X′AT) : X∈X∈C1/C2,X
′∈X′ ∈C1/C2,X,X

′
}

=min
{

dR(XAT,X′AT) : X,X′ ∈ C1,X
′ − X < C2

}

.

Theorem 26. Consider the nested coset coding in Def. 1.
Then, the scheme is a universally (i.e., simultaneously forall
A ∈ FN×n

q with rank deficiency at mostρ) t-error-ρ-erasure-
correcting secure network coding if and only ifMR,1(C1,C2) >
2t + ρ.

Proof: For the rank deficiencyρ = n− rank A, we have
dR(X,X′)−ρ≤dR(XAT,X′AT), and there always existsA ∈ FN×n

q
depending on (X,X′) such that the equality holds. Thus, from
Lemma 25, we have

min
A∈FN×n

q :
rank A=n−ρ

δA(C1/C2)=min
{

dR(X,X′) : X,X′∈C1,X
′−X<C2

}

−ρ

=min
{

dR(X, ~0) : X ∈ C1,X < C2

}

− ρ

=MR,1(C1,C2) − ρ. (by Lemma 11)

Therefore, we have min
A:rank A=n−ρ

δA(C1/C2)< min
A:rank A=n−ρ′

δA(C1/C2)

for ρ > ρ′, and hence we obtain min
A:rank A≥n−ρ

δA(C1/C2) =

min
A:rank A=n−ρ

δA(C1/C2) = MR,1(C1,C2)−ρ.

Example 27. The existing scheme [21] used MRD codes
as C1,C2, where m ≥ n. Then, by Corol. 14, we have
MR,1(C1, {~0}) = n − dimC1 + 1. Sincedim (V ∩ C2) = 0 for
any V ∈ ΓdimC⊥2

(Fn
qm) by Corol. 12 anddimC⊥2 > n − dimC1,

we haveMR,1(C1,C2) = MR,1(C1, {~0}). Thus, by Theorem 26

and Corol. 12, the scheme is universallyt-error-ρ-erasure-
correcting whenMR(C1, {~0}) = dR(C1) > 2t + ρ, as shown
in [21, Theorem 11].
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