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Abstract—Polar codes are a new class of codes introduced byto (test) channels can converge to several asymptotic cases
Arikan capable of achieving the symmetric capacity of discrete each corresponding to a subgroiip of the reconstruction
memoryless channels. It was later shown that polar codes can alphabetG. We employ a modified randomized rounding

achieve the symmetric rate-distortion bound for the lossy source di let hi th i te-distorti
coding problem when the size of the reconstruction alphabet encoding rule to achieve the symmetric rate-distortionriobu

is a prime. In this paper, we show that polar codes achieve
the symmetric rate-distortion bound for finite-alphabet sources This paper is organized as follows: In Section Il, some
regardless of the size of the reconstruction alphabet. definitions and basic facts are stated which are used in
the paper. In Section Ill we show that polar codes achive
the symmetric rate-distortion bound when the size of te
Polar codes were originally proposed by Arikan in [1] foreconstruction alphabet is of the form= p" wherep is
discrete memoryless channels with a binary input alphab@tprime and- is a positive integer. This result is generalized
Polar codes over binary input channels are coset codasSection IV to the case where the reconstruction alphabet i
capable of achieving the symmetric capacity of channeRome arbitrary Abelian group (of arbitrary size and arbjtra
These codes are constructed based on the Kronecker po@/@up operation). We conclude in Section V.

of the 2 x 2 matrix 1 (1) and are the first known class 1. PRELIMINARIES

of capacity achieving codes with an explicit construction. 1) Source and Channel Model3he source is modeled as
a discrete-time random process with each sample taking
It was subsequently shown by Korada and Urbanke [ghiues in a fixed finite set’ with probability distributionpx .
that polar codes employed with a successive cancelatipRe reconstruction alphabet is denotedzbyand the quality

encoder are also optimal for the lossy source coding problep reconstruction is measured by a single-letter distortio
when the size of the reconstruction alphabet is two. Karzafghction d : X x 4 — RT. We denote the source by

and Telatar extended this result to the case where the sjag i/, d).

of the reconstruction alphabet is a prime [3]. A (test) channel is specified by a tuglé, X', W) wherel/ is
the channel input alphabet; is the channel output alphabet
In an earlier work [4], we have shown that polar codegsnd ¥ is the channel transition kernel.
can achieve the symmetric capacity of arbitrary discrete2) Achievability and the Rate-Distortion FunctionA
memoryless channels regardless of the size of the chanfighsmission system with parametdrs ©, A, 7) for com-
input alphabet. It is shown in [4] that in general, whepressing a given sourder,i{, px, d) consists of an encoding

the channel input alphabet is an Abelian gra@p channel mapping and a decoding mapping
polarization occurs in several levels. For each subgr&up

of G, there exists a corresponding asymptotic case in which e: X" —{1,2,---,0},
the channel output can determine the coset of the subgroup g:{1,2,---,0} = U"
to which the channel input belongs. Then a modification ) o

is made to the encoding and decoding rules to achieve fch that the following condition is met:

|. INTRODUCTION

symmetric capacity of the channel. As mentioned in [4], P(d(X", g(e(X™) > A) < 7
polar codes employed with the modified encoding rule fall ’ -
into a class of codes called nested group codes. where X" is the random vector of length generated by

the source. In this transmission systemdenotes the block
In this paper, motivated by the results of [2]-[4], wdength,log © denotes the number of channel usAsjenotes
show that polar codes achieve the symmetric rate-distortithe distortion level and denotes the probability of exceeding
bound for the lossy source coding problem when the size thie distortion levelA.
the reconstruction alphabet is finite. We show that simitar Given a source, a pair of non-negative real numkiétsD)
the channel coding problem, polar transformations appliésisaid to be achievable if there exists for every 0, and for



all sufficiently large numbers a transmission system with Z, since it is closed under motladdition. {0} andZ, are

parametergn, ©, A, 7) for compressing the source such thathe two other subgroups &f,. The groupZs is neither a
1 field nor a ring. Subgroups dfs are: {0}, {0, 3}, {0,2,4}

Elog@SR-Fe, A<D +e, T<e and Z.

The optimal rate distortion functio®* (D) of the source is

given by the infimum of the rate® such that(R, D) is 5) Polar Codes Over Abelian Groupg=or any discrete

memoryless channel, there always exists an Abelian group of

achievable. . .
It is known that the optimal rate-distortion function is giv the same slze as that of the channel mput_alphabet.l In. ge.”era
by: for an_Abehap group, there may not exist a mult!pllcat|on
operation. Since polar encoders are characterized by a
R(D) = Zglin I(X;0U) matrix multiplication, before using these codes for chdsine
prpU‘x{lil‘&U)}SD of arbitrary input alphabet sizes, a generator matrix for

. . . ) codes over Abelian groups needs to be properly defined. In
wherepy|x is the conditional probability o/ given X and - aAppendix A of [5] a convention is introduced to generate

pxpu|x is the joint distribution ofX andU. _ codes over groups using, 1}-valued generator matrices.
The symmetric rate-distortiorfunction R(D) is defined as
follows: 6) Channel ParametersFor a test channe(l/, X, W)
R(D) = min I(X;U) assumé/ is equipped with the structure of a groyé, +).
prpU‘Xp{Ud‘();f Uy <D The symmetric capacity of the test channel is defined as
pu=1 I°(W) = I(U; X) where the channel input is uniformly

) . o ) distributed over/ and X is the output of the channel; i.e.
wherepy is the marginal distribution o/ given bypy (u) = for q=ul

> wex Px(x)py x (u|r) andq is the size of the reconstruc-

tion alphabet/. (x|u)
3) Binary Polar Codes:For any N = 2", a polar code Z Z W (zlu)log ———

of length N designed for the channé,, Y, W) is a linear wezex ! Z *W(fc|“)

code characterized by a generator matily, and a set of ucu

indicesA € {1,---, N} of perfect channelsThe generator The Bhattacharyya distance between two distinct input sym-
matrix for polar codes is defined &y = ByF®" where polsy andi is defined as

0
Z(Wiu,ay) Z VW (z|u)W (x|a)

By is a permutation of rowsl' = and® denotes

11
the Kronecker product. The sdtis a function of the channel.

The decoding algorithm for polar codes is a specific form of ved

successive cancellation [1]. and the average Bhattacharyya distance is defined as
For the source coding problem, when the size of the recon-

struction alphabet is binary, the encoding rule is a form of Z(W) = Z 1 Z(Wiaay)

soft decicion successive encoding and the decoding rule is a wel qlq—1) ’

matrix multiplication [2]. uta

4) Groups, Rings and FieldsAll groups referred to in
this paper areAbelian groups Given a group(G,+), a
subsetH of G is called asubgroupof G if it is closed

We use the following two quantities in the paper extensively

under the group operation. In this caséf, +) is a group Da(W Z > W (alu) = W(z|u+ d)]
on its own right. This is denoted bjf < G. A coset(C ©uctvex

of a subgroupH is a shift of H by an arbitrary element Z Z (z|u) — (33|u+d))2
ac G (i.e.C =a+ H for somea € G). For any subgroup By

H of G, its cosets partition the groug. A transversalT

of a subgroupH of G is a subset ofG containing one and Whered is some element o& and+ is the group operation.
only one element from each coset (shift) it 7) Notation: We denote byO(e) any function ofe which
We give some examples in the following: The simplest notis right-continuous aroun@ and thatO(e) — 0 ase | 0.
trivial example of groups i¥, with addition mod2 which We denote by ~. b to meana = b + O(e).

is aring and afield with multiplication mod2. The group For positive integersV and r, let {Ag, Ay, -+, A} be a

Zs x Zs is also a ring and a field under component-wispartition of the index se{1,2,--- , N}. Given setsT; for
mod-2 addition and a carefully defined multiplication. The = 0,--- ,r, the direct sumd;,_, T is defined as the
group Z4 with mod4 addition and multiplication is a ring set of all tuplesu = (uj,---,uy) such thatu; € T;

but not a field since the elemeftc Z, does not have a whenever; € A;.
multiplicative inverse. The subsdl,2} is a subgroup of



[1l. POLAR CODES FORSOURCES WITH The conditional probability distribution induced from the
RECONSTRUCTION ALPHABETZ,, above equation is consistent with (3). We use this proligbili

In this section, we consider sources whose reconstructigiftribution extensively throughout the paper.
alphabet sizg is of the formg = p” for some prime number ¢, Encoding and Decoding
p and a positive mtege_f-. In this case, the _reconstlrgctlon Let n be a positive integer and &ty be the generator
alphabet can be considered as a ring with addition and_, . n
multiplication modulop”. We prove the achievability of the matrix for polar codes wheréy = 2%. Let {40 <t <}
symrgetric rate distorfi)oh bouFr)ld for these sources L)J/Siﬂ@pobe a partition of the index sdff, 2,-- - N'}. Let byY be an

- . T Ay

codes and later in Section IV we will generalize this resuﬂrbltrary element from the S€9,_, f; *. Assume that the

; ; - . partition {A;]0 < ¢ < r} and the vectob)¥ are known to
to sources with arbitrary finite reconstruction alphabets. both the encoder and the decoder. The encoder maps a source

A. Z, Rings sequencer)Y to a vectorv)Y € G by the following rule:
Let G = Z,, = {0,1,2,---,p" — 1} with addition Fori=1,---,N, if i € A, letv; be a random elemernt

and multiplication modulgy” be the input alphabet of thefrom the set; + T picked with probability

channel, Whercceipfis ah prim: andr isf an int(;ger. For Plo; = 9) Py vi-1 xn (glvi=t,zN)
t=0,1,---,r, define the subgrou of G as the set: i =9)= -
5 Ly , T g th P\/H\/f*l’)({\f(bi_‘_Tt‘Ui 171‘{\7)
it _ t (3 r—t t
Hy=p'G={0,p,2p"-, (0"~ 1p'} This encoding rule is a generalization of the randomized
and fort = 0,1, -- ,r, define the subset&; of G asK; = rounding encoding rule used for the binary case in [2].

H\H,+1; i.e. K, is defined as the set of elements Gf NGiven a sequence’ € GV, the decoder decodes it to
which are a multiple ofp* but are not a multiple opt+1. v1 Gn. .
Note thatK,, is the set of all invertible elements @ and For the sake of analysis we assume that the vedfor
K, = {0}. One can sort the set&) > K; > --- > K, in IS uniformly randomly distributed over the sép,_, H;*
a decreasing order of “invertibility” of its elements. L& (Although it's common information between the encoder
be a transversal off, in G; i.e. a subset ofG containing alnd the Ndec]sf)der). The average distortion is given by
one and only one element from each coseffofin G. One ~E{d(X1",U;")} and the rate of the code is given by
valid choice forT; is {0,1,--- ,p* —1}. Note that givenH, r r

: 1 | Ae|
andT;, each elemeny of G can be represented uniquely as R= i Z |A¢|log |T:| = Z Ttlogp
asumg =g+ g whereg € T, and g € H;. t=0 t=0

D. Test Channel Polarization

The following result has been proved in [5]: For afi> 0,
there exists a numbeN = N(¢) = 279 and a partition
{A§, AS,--- JASY of {1,--- N} such that fort =0,--- ,r
andi € A, Zd(WJ(\;)) < Oe)if d e Hfor0 < s < t
W~ (21, z2|uy) = Z 1W(aq|u1 +ub)W(zalul) (1) and ZgW{) > 1-0(e) if d € H, fort < s < r. For

a4 t=0,---,r andi € A5, we havel (W) = tlog(p) + O(e)
and Zt(WZ(\})) = O(¢) where

7HW) = ﬁ S Zu(w)

B. Recursive Channel Transformation

1) The Basic Channel Transformdor a test channel
(U = G, X, W) where|G| = ¢, the channel transformations
are given by:

1
W+(Z1,$2,’U1|UQ) = QW(11|U1 + UQ)W(ZQ"LLQ) (2)

for z;,20 € X and u;,us € G. Repeating these oper-

deH,
ations n times recursively, we obtailV = 2" channels "
w ... . w™. Fori = 1,---,N, these channels areMoreover, ase — 0, % — p, for some probabilities
given by: DPos s Pre
WP @V i ) = > WY@V |[ulGy)  In the next section, we show that for any < ; and
uN e@N-i fOFtZO,"',T,
i+1
@ P ((Zf)<”> >1- 2—2ﬁ") >p ((Zf)<°°> - 1) )

whereGy is the generator matrix for polar codes. -
Let VN be a random vector uniformly distributed ov&r¥ =1-Y p,
and assume the random vectobs", U} and XV are prt

- N N N .
distributed overG™ x G x ™" according to Remark I[II.1. This observation implies the following
1 N stronger result: For alle > 0, there exists a number
pyvunxn (of uy,af) = Tv]l{uf:v{VGN}HW(lﬂUi) N = N(e) = 279 and a partition {A§, AS,---, A%}
4 i=1 of {1,---,N} such that fort = 0,---,r and i € A,



2/571(6)

I(W](Vi)) = tlog(p) + O(e) and Zt(W](\,i)) >1-2" Similarly, for the second summation we can show that

Moreover, ase — 0, 4 — p: for some probabilities

N
Pos s D Z > 5 (W(alur +uz)W (walus + d)
o Gaymen ¢
E. Rate of Polarization T e TS
In this sectio_n we derive a rat_e of polarization result for —W (21 |u1 + ug + d)W (x2|us + d))Q
the source coding problem. In this proof, we do not assume 9 .
¢ is a power of a prime and hence the rate of polarization < ng(W) 9)

result derived in this section is valid for the general case.
It is shown in [6] (with a slight generalization) that if aTherefore, it follows from (7), (8) and (9) that condition) (5
random proces¥,, satisfies the following two properties is satisfied fork = 1

1 ~ 2
Zn41 < kZn WP, 2 ®) Next we show thatD; (W) < (Dd(W)) . Note that

Zp1 < Z2 Wp. % (6) ﬁd(W_) _
for some constant, then for anys < % lim,, oo P(Z,, < 1

2:2%') = P(Z, = 0). We prove that the random process Z Z Kq Z W(z1|vr + U2)W($2|U2)>
D satisfied these properties. First note that by definition 1 0icGormex v2€G

2q Z Z { (z1|u1 + u2)W(z2|us) - (; Z W (1|1 +d+v2)W(ac2|v2)>]

us€G x1,L2€X v2€G
u1€G
2
1 Z Z [Z W $2|1)2 ( ($1|U1 -‘rvg)
_5W(£C1|u1 —|— u —+ d)W(LCQ|U2 + d):| v1€G . zQGX g
2

If we add an_d s_ubtract the tel’%’{W(m1|u1+ju2)W(lj2‘UQ+d) —W(ar|or +d + U2)>}
to the term inside brackets and use the inequality- b)?

2(a? + b?) with
a = W(zy|ug +u) W(za|ug) — Wizt |ur 4+ ug) W(xs|us+d) 1
b=W(z1|us + us)W (w2]us + d) 2 D> W(aa|va) W (w2lvh) (W(w1|vr + v2)—

— W(xy|uy + us + )W (22|us + d) V2,05 EG / |
W (z1|vr + d + va)) (W (2z1|v1 + vg) — W(zy|vr + d + v5))

The squared term in the brackets can be expanded as

we obtain
Dy(W) < - Z Z % Therefpre,Dﬁ(W*) can b(i writtgn as a summation of four
9 eG e mrexuea termst(W )=D; + D2 + D5 + D, where
(W[ +ug) W(wa|us) = Wias [ur +ug) Wiws|us +d))* Dy = Z Yo S Y Wiaalw)
+ (W(1'1|U1 + UQ)W(:L'Q"UQ + d) U1€G w1,$2€X U2,'U2€G
—W (x1|uy + ug 4 d)W (z2|us + d))z} W(5E2|1’2) (551\01 +v2)W (21]vr +v3)
D Dy Y Y Wk
This summation can be expanded into two separate summa- 1 e e mex U27“2€G
tions For the first summation, we have W(m2|v2) (:cl\vl + vy + d)W (z1|v1 + v5 + d)
2
DD Dy X Y LY Wil
ugeG z1,22€X ,u1 €G vleG ml,wzeX u2,112€G
(W (1 us +u2) W (2] uz) =W (21 [ug +uz) W (22 |uz +d))? W(IE2|’02) (xl\vl + vo)W (21 |v1 + vh + d)
2 1
<@ 2 Di=pe X Y 5 Y Wil
uZEG z1,22€X,u1 €G vleG wl,xQEX U27U2€G
W (1 |ur + u)? (W (xa|us) — W(wa|us + d))? W (z2|v)W (x1|v1 + vo + d)W (21|01 + v5)
2q 1 2
< 22 Y Y (Wiaafug) = W(aslus + d)) Ford € G define
U €EG r2€X
— 2Dy ®) Z 2w (z]v +d)
q UEG rzeX



Note thatS,(W) =

= 22 Z W (z2[v2)

z2€X va,05€G

DI

’U1€G r1E€X

el Z Z W (@2|v2)

z2€X va,05€G

S_qa(W). We have

W (x2]vy)
(1]v1 + v2) W (21|v1 + v5)

(x2|U/2)szfv§ (W)

=5 Z Z Z W(xa|vg)W(2|ve — a)Sa (W)
z2€X 126G IGGG
U2_U2 a
,Z Z Z W (x2|ve)W (x2|ve — a)
a€G ’UQGG ToEX
z Z Sa( W)
aEG
_Z Z Sa(
aEG

With similar arguments we can show that

D;:—ZS

aEG
Dy =~ Z Sal W)
aEG
Dy == Z Sa( W)
aeG
Therefore
- B 4
Da(W™) == (Sa(W)? = Sa(W)Sa_a(W))
q acG
2 2
= Z (Sa(W) - Safd(W))
q acG
Note that
Z > (W(zlv) = W(zlv + d))?
vEG reX
= 2S50(W) — 254(W)
Therefore

(Dd(W))2 = 4(So(W) — Sa(W))?

~ ~ 2
To show thatD;(W~) < (Dd(W)>
that SQ(W) — Sa,d(W) < S()(W) — Sd(W
use of the rearrangement inequality:

Lemma lll.1. Letw be an arbitrary permutation of the set

{1,---,n. Ifa; <---<a,andb; <---<b, then

z": aib; > z": ;b (i)
i=1 i=1

it suffices to show
). We will make

The rearrangement inequality implies th&gh (W) —
Sa(W) > So(W) — Se_q(W). Therefore it follows that
condition (6) is also satisfied and henkim,, . P(Dg <
2-2"") = P(D° = 0). It has been shown in Appendix D of
[5] that Dy (W) < e implies Z4(W) > 1 —e. This completes
the rate of polarization result.

F. Polar Codes Achieve the Rate-Distortion Bound

The average distortion for the encoding and decoding rules
described in Section III-C is given by

> e Y Z

oy €XN DN e@r_o H' vl ebN +@r_, T;

ﬁ H Py vi-t xpy (9|U1 v${v)
t=0ic A, PVI-|V“1 XN(bi + Tt|Ulila${V)
(H [ H, 1A |) (a1, 07’ )
> oNEY) Y >

yean bY ey, H' vl ebl + @, T
Py it xn 9|”§;1 ay)
(H)qgt Py, i XN(b + Tyloi " ad) - |Ht|>
d(xl » U1 GN)

Davg =

This can be written as

Davg = Bo{d(X{, Vi¥Gn)}
where the distributiort) is defined by
Pv,,|vl'“l7xf\’ (Ui|vi_1a 33{\[)

Quilvi ™ =) = —
’ Py it xv (b + Ty~ ) - [ H|
and
Q(x) = pX(a7)
and hence
QY. ay) HQ vilvi™
i —1
_ H I Py yi-1 xn (vilvr ™, 277)
— —
i—oiea, Dvivit x (b + Tiloy a1’) - [Hyl
Recall that
N
P(U{V,JZ{V HPVilvli—17X{\r(Ui|Ui_1,$iV)
=1

The total variation distance between the distributidghand
Q is given by

1P=Qllt.v. = >

vNeGN gNexN

= > RG@) Y QW

zVexN v eGN

|Q(U{Va xf[) - P<U{V7:C]1V)|

j27) = P(v1a))]



We have We have

1
E{\ P(LIVi, X1 \}
H,
S QM al) — PN ) =l

vV eGN = > P(v !, zy") ‘|Ht — P(Tijo; " 27)
i—1 i— N
Z H H 'Uz"Ul ,z}) v eET et
EGN t=0i€ A, b +Tt|’U {V) ) |Ht|

1
= P s
(H 11 ;; il geZT i)
- P(’U”Ui_l,m{v))‘ aNexN

t=04ic A,

1 i—1
Z Z = N Z Z [GW(% ;21 |g)

leGifl,m{VGXN g€eT:

(a) Z

N eGN [t=01i€A,
P(v; vt~ 2N ) vitl N
(Gt ) Plafol o)) AR ‘
P(b; + Tyl @y) - [Hy deH
o > et
[T IT Ploitei ) iteaTapen 19idt
=0 L i-1 N
! g —Zﬁw(% ;@ |g +d)
N deH "t
H H vz|v1 , ) - 1 1 Z
~ < — 7
t=0j erl b +Tt|v 1 ) |Ht| ‘G‘ geT} |Ht‘ deH 71€G1*1,93{V€XN
JEA: .

. - . _ 2q(2¢—¢)
where in(a) we used the telescopic inequality introduced in< T

2]. It is straightforward to show that
[2] 9 Therefore for if for alld € Hy, Z4 > 1 — ¢ then foré =

2q(2e—e?)
= we have

= Q||tv<ZZ {’ b+Tt|fU1 {V>~Ht|_1‘} EP{

t=0ic Ay

— P(b; + T,|Vi7t XN ‘} <6
|Ht| ( t| 1 1)

A similar argument as in [2] implies that

1
It has been shown in Append|x D of [5] thatZTd( ) > 1—e Davg = N]EQ{d(X{V, VNGN)}
then D,(W) < 2¢ — €2. Therefore |de(W](v ) >1—¢€for

all d e H we have < %Ep{d(xfﬁleGN)} + % ; | At|dimaxd
whered,,.« 1S the maximum value of the distortion function.
Dd(W](Vi)) _ % Z Z Note that
vi€Gyi~le@i-1aNexN EP{d(X{Va VlNGN)} =ND
Wi 2 o)~ W i o o +d)| Therefore,
< 26— €2

-
Davg S D + %Z IAt|dmax6
t=0
Note that from the rate of polarization derived in Section
II-E we can choose to bee = 22", This implies that
asn — 0o, D+ %+ 37 _, |At|dmaxd — D. Also note that
the rate of the codeR = >, , |’?\;‘tlogp converges to
> i_o pitlog p and this last quantity is equal to the symmetric

Therefore for allv; € G

‘Wj(vi) (it @ o) = W (o 2 o + d)

365&71 capacity of the test channel since the mutual informatice is
e ) martingale. This means the raféX; U) is achievable with
< 2¢(2¢ =€) distortion D.



IV. ARBITRARY RECONSTRUCTIONALPHABETS V. CONCLUSION

We have shown that polar codes achieve the symmetric
rate-distortion bound for finite-alphabet sources regeslbf
the size of the reconstruction alphabet.

For an arbitrary Abelian grougx, The following polar-
ization result has been provided in [5]: For all > 0,
there exists a numbeN = N(e) = 2™ and a partition
{A5%|H < G} of {1,---,N} such that forH < G and REFERENCES

. %) ; (1)
i € Ay, Zd(WN) < 0(6) if d e H_and Zd(WN) > [1] E. Arikan, “Channel Polarization: A Method for Constting Capacity-
1—-0(e)if d ¢ H For H < G andi € A%, we have Achieving Codes for Symmetric Binary-Input Memoryless Chdsilje

i)y _ G Hy i)y IEEE Transactions on Information Theoryol. 55, no. 7, pp. 3051—
(W) = log {3 + O(e) and 2 (W) = O(e) where s oo ory PP
1 [2] S. B. Korada and R. Urbanke, “Polar Codes are Optimal fossyo
" - Source Coding,IEEE Transactions on Information Theoryol. 56,
(W) = T > Zy(W) no. 4, pp. 1751-1768, Apr. 2010.
deH [3] M. Karzand and E. Telatar, “Polar Codes for Q-ary Soureslifg,”

Proceedings of IEEE International Symposium on Informmafitveory
[ A% . 2010, austin, TX.
Moreover, ase — 0, N T PH for some pl’ObabI|ItIes [4] A. G. Sahebi and S. S. Pradhan, “Multilevel PolarizatadriPolar Codes
pu, H < G. Over Arbitrary Discrete Memoryless Channel&foc. 49th Allerton
Conference on Communication, Control and Compuytidgpt. 2011.

As mentioned earlier the rate of polarization result detivd® ——— Multilevel Polarization of ~Polar  Codes over Arbi-
trary Discrete Memoryless Channels,” July 2011, online:

in Section IlI-E is valid for the general case. Therefore it hitp:/nttp://arxiv.org/abs/1107.1535.

follows that for anys < % and forH < G, [6] E. Arikan and E. Telatar, “On the rate of channel poldiiza” Proceed-
ings of IEEE International Symposium on Information The&§09,
Seoul, Korea.

lim P ((ZH)<"> >1- 2*2””) >p ((ZH)<°°> - 1)

n—oo

(10)

=1—ZPH

S<H

Remark [V.1. This observation implies the following
stronger result: For alle > 0, there exists a humbel =
N(e) = 2™ and a partition{A$;|H < G} of {1,--- , N}

such that forH < G andi € A5, I(W](\f)) = log %4‘0(6)

and ZH#(W) > 1 — 272" Moreover, ase — 0,
—I’L}\?" — pp for some probabilitie;, H < G.

The encoding and decoding rules for the general case
is as follows: Letn be a positive integer and lety be
the generator matrix for polar codes wheke = 2". Let
{Ag|H < G} be a partition of the index s€tl,2,--- , N}.
Let bY¥ be an arbitrary element from the s@,, .o H*".
Assume that the partitiof Ay |H < G} and the vectobl
are known to both the encoder and the decoder. The encoder
maps a source sequeng¢ to a vectorvl¥ € G¥ by the
following rule:
For a subgroupd of G, let Ty be a transversal off in G.
Fori=1,--- N, if i € Ay, letv; be a random element
from the set, + Ty picked with probability

Py it xp (glvi ™", 2)

Py yi-t xy (bi + Trlvi™ 2)

Given a sequence € G, the decoder decodes it to
e

v N-
It follows from the analysis of th&.,,- case in a straightfor-
ward fashion that this encoding/decoding scheme achieves
the symmetric rate-distortion bound when the gr@ps an
arbitrary Abelian group.



