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Abstract—Polar codes are a new class of codes introduced by
Arikan capable of achieving the symmetric capacity of discrete
memoryless channels. It was later shown that polar codes can
achieve the symmetric rate-distortion bound for the lossy source
coding problem when the size of the reconstruction alphabet
is a prime. In this paper, we show that polar codes achieve
the symmetric rate-distortion bound for finite-alphabet sources
regardless of the size of the reconstruction alphabet.

I. I NTRODUCTION

Polar codes were originally proposed by Arikan in [1] for
discrete memoryless channels with a binary input alphabet.
Polar codes over binary input channels are coset codes
capable of achieving the symmetric capacity of channels.
These codes are constructed based on the Kronecker power

of the 2 × 2 matrix

[

1 0
1 1

]

and are the first known class

of capacity achieving codes with an explicit construction.

It was subsequently shown by Korada and Urbanke [2]
that polar codes employed with a successive cancelation
encoder are also optimal for the lossy source coding problem
when the size of the reconstruction alphabet is two. Karzand
and Telatar extended this result to the case where the size
of the reconstruction alphabet is a prime [3].

In an earlier work [4], we have shown that polar codes
can achieve the symmetric capacity of arbitrary discrete
memoryless channels regardless of the size of the channel
input alphabet. It is shown in [4] that in general, when
the channel input alphabet is an Abelian groupG, channel
polarization occurs in several levels. For each subgroupH
of G, there exists a corresponding asymptotic case in which
the channel output can determine the coset of the subgroup
to which the channel input belongs. Then a modification
is made to the encoding and decoding rules to achieve the
symmetric capacity of the channel. As mentioned in [4],
polar codes employed with the modified encoding rule fall
into a class of codes called nested group codes.

In this paper, motivated by the results of [2]–[4], we
show that polar codes achieve the symmetric rate-distortion
bound for the lossy source coding problem when the size of
the reconstruction alphabet is finite. We show that similar to
the channel coding problem, polar transformations applied

to (test) channels can converge to several asymptotic cases
each corresponding to a subgroupH of the reconstruction
alphabetG. We employ a modified randomized rounding
encoding rule to achieve the symmetric rate-distortion bound.

This paper is organized as follows: In Section II, some
definitions and basic facts are stated which are used in
the paper. In Section III we show that polar codes achive
the symmetric rate-distortion bound when the size of te
reconstruction alphabet is of the formq = pr where p is
a prime andr is a positive integer. This result is generalized
in Section IV to the case where the reconstruction alphabet is
some arbitrary Abelian group (of arbitrary size and arbitrary
group operation). We conclude in Section V.

II. PRELIMINARIES

1) Source and Channel Models:The source is modeled as
a discrete-time random processX with each sample taking
values in a fixed finite setX with probability distributionpX .
The reconstruction alphabet is denoted byU and the quality
of reconstruction is measured by a single-letter distortion
function d : X × U → R

+. We denote the source by
(X ,U , pX , d).
A (test) channel is specified by a tuple(U ,X ,W ) whereU is
the channel input alphabet,X is the channel output alphabet
andW is the channel transition kernel.

2) Achievability and the Rate-Distortion Function:A
transmission system with parameters(n,Θ,∆, τ) for com-
pressing a given source(X ,U , pX , d) consists of an encoding
mapping and a decoding mapping

e : Xn → {1, 2, · · · ,Θ},

g : {1, 2, · · · ,Θ} → Un

such that the following condition is met:

P (d(Xn, g(e(Xn))) > ∆) ≤ τ

where Xn is the random vector of lengthn generated by
the source. In this transmission system,n denotes the block
length,log Θ denotes the number of channel uses,∆ denotes
the distortion level andτ denotes the probability of exceeding
the distortion level∆.
Given a source, a pair of non-negative real numbers(R,D)
is said to be achievable if there exists for everyǫ > 0, and for



all sufficiently large numbersn a transmission system with
parameters(n,Θ,∆, τ) for compressing the source such that

1

n
log Θ ≤ R + ǫ, ∆ ≤ D + ǫ, τ ≤ ǫ

The optimal rate distortion functionR∗(D) of the source is
given by the infimum of the ratesR such that(R,D) is
achievable.
It is known that the optimal rate-distortion function is given
by:

R(D) = min
pU|X

EpX pU|X
{d(X,U)}≤D

I(X;U)

wherepU |X is the conditional probability ofU givenX and
pXpU |X is the joint distribution ofX andU .
The symmetric rate-distortionfunction R̄(D) is defined as
follows:

R̄(D) = min
pU|X

EpX pU|X
{d(X,U)}≤D

pU= 1
q

I(X;U)

wherepU is the marginal distribution ofU given bypU (u) =
∑

x∈X pX(x)pU |X(u|x) and q is the size of the reconstruc-
tion alphabetU .

3) Binary Polar Codes:For anyN = 2n, a polar code
of lengthN designed for the channel(Z2,Y,W ) is a linear
code characterized by a generator matrixGN and a set of
indicesA ⊆ {1, · · · , N} of perfect channels. The generator
matrix for polar codes is defined asGN = BNF⊗n where

BN is a permutation of rows,F =

[

1 0
1 1

]

and⊗ denotes

the Kronecker product. The setA is a function of the channel.
The decoding algorithm for polar codes is a specific form of
successive cancellation [1].
For the source coding problem, when the size of the recon-
struction alphabet is binary, the encoding rule is a form of
soft decicion successive encoding and the decoding rule is a
matrix multiplication [2].

4) Groups, Rings and Fields:All groups referred to in
this paper areAbelian groups. Given a group(G,+), a
subsetH of G is called asubgroupof G if it is closed
under the group operation. In this case,(H,+) is a group
on its own right. This is denoted byH ≤ G. A cosetC
of a subgroupH is a shift of H by an arbitrary element
a ∈ G (i.e. C = a + H for somea ∈ G). For any subgroup
H of G, its cosets partition the groupG. A transversalT
of a subgroupH of G is a subset ofG containing one and
only one element from each coset (shift) ofH.
We give some examples in the following: The simplest non-
trivial example of groups isZ2 with addition mod-2 which
is a ring and afield with multiplication mod-2. The group
Z2 × Z2 is also a ring and a field under component-wise
mod-2 addition and a carefully defined multiplication. The
groupZ4 with mod-4 addition and multiplication is a ring
but not a field since the element2 ∈ Z4 does not have a
multiplicative inverse. The subset{0, 2} is a subgroup of

Z4 since it is closed under mod-4 addition.{0} andZ4 are
the two other subgroups ofZ4. The groupZ6 is neither a
field nor a ring. Subgroups ofZ6 are:{0}, {0, 3}, {0, 2, 4}
andZ6.

5) Polar Codes Over Abelian Groups:For any discrete
memoryless channel, there always exists an Abelian group of
the same size as that of the channel input alphabet. In general,
for an Abelian group, there may not exist a multiplication
operation. Since polar encoders are characterized by a
matrix multiplication, before using these codes for channels
of arbitrary input alphabet sizes, a generator matrix for
codes over Abelian groups needs to be properly defined. In
Appendix A of [5] a convention is introduced to generate
codes over groups using{0, 1}-valued generator matrices.

6) Channel Parameters:For a test channel(U ,X ,W )
assumeU is equipped with the structure of a group(G,+).
The symmetric capacity of the test channel is defined as
I0(W ) = I(U ;X) where the channel inputU is uniformly
distributed overU and X is the output of the channel; i.e.
for q = |U|,

I0(W ) =
∑

u∈U

∑

x∈X

1

q
W (x|u) log

W (x|u)
∑

ũ∈U

1

q
W (x|ũ)

The Bhattacharyya distance between two distinct input sym-
bols u and ũ is defined as

Z(W{u,ũ}) =
∑

x∈X

√

W (x|u)W (x|ũ)

and the average Bhattacharyya distance is defined as

Z(W ) =
∑

u,ũ∈U
u6=ũ

1

q(q − 1)
Z(W{u,ũ})

We use the following two quantities in the paper extensively:

Dd(W ) =
1

2q

∑

u∈U

∑

x∈X

|W (x|u) − W (x|u + d)|

D̃d(W ) =
1

2q

∑

u∈U

∑

x∈X

(W (x|u) − W (x|u + d))
2

whered is some element ofG and+ is the group operation.
7) Notation: We denote byO(ǫ) any function ofǫ which

is right-continuous around0 and thatO(ǫ) → 0 as ǫ ↓ 0.
We denote bya ≈ǫ b to meana = b + O(ǫ).
For positive integersN and r, let {A0, A1, · · · , Ar} be a
partition of the index set{1, 2, · · · , N}. Given setsTt for
t = 0, · · · , r, the direct sum

⊕r

t=0 TAt

t is defined as the
set of all tuplesuN

1 = (u1, · · · , uN ) such thatui ∈ Tt

wheneveri ∈ At.



III. POLAR CODES FORSOURCES WITH

RECONSTRUCTION ALPHABETZpr

In this section, we consider sources whose reconstruction
alphabet sizeq is of the formq = pr for some prime number
p and a positive integerr. In this case, the reconstruction
alphabet can be considered as a ring with addition and
multiplication modulopr. We prove the achievability of the
symmetric rate-distortion bound for these sources using polar
codes and later in Section IV we will generalize this result
to sources with arbitrary finite reconstruction alphabets.

A. Zpr Rings

Let G = Zpr = {0, 1, 2, · · · , pr − 1} with addition
and multiplication modulopr be the input alphabet of the
channel, wherep is a prime andr is an integer. For
t = 0, 1, · · · , r, define the subgroupsHt of G as the set:

Ht = pt
G = {0, pt, 2pt, · · · , (pr−t − 1)pt}

and fort = 0, 1, · · · , r, define the subsetsKt of G asKt =
Ht\Ht+1; i.e. Kt is defined as the set of elements ofG

which are a multiple ofpt but are not a multiple ofpt+1.
Note thatK0 is the set of all invertible elements ofG and
Kr = {0}. One can sort the setsK0 > K1 > · · · > Kr in
a decreasing order of “invertibility” of its elements. LetTt

be a transversal ofHt in G; i.e. a subset ofG containing
one and only one element from each coset ofHt in G. One
valid choice forTt is {0, 1, · · · , pt − 1}. Note that givenHt

andTt, each elementg of G can be represented uniquely as
a sumg = ĝ + g̃ whereĝ ∈ Tt and g̃ ∈ Ht.

B. Recursive Channel Transformation

1) The Basic Channel Transforms:For a test channel
(U = G,X ,W ) where|G| = q, the channel transformations
are given by:

W−(x1, x2|u1) =
∑

u′
2∈G

1

q
W (x1|u1 + u′

2)W (x2|u
′
2) (1)

W+(x1, x2, u1|u2) =
1

q
W (x1|u1 + u2)W (x2|u2) (2)

for x1, x2 ∈ X and u1, u2 ∈ G. Repeating these oper-
ations n times recursively, we obtainN = 2n channels
W

(1)
N , · · · ,W

(N)
N . For i = 1, · · · , N , these channels are

given by:

W
(i)
N (xN

1 , ui−1
1 |ui) =

∑

uN
i+1∈GN−i

1

qN−1
WN (xN

1 |uN
1 GN )

(3)

whereGN is the generator matrix for polar codes.
Let V N

1 be a random vector uniformly distributed overG
N

and assume the random vectorsV N
1 , UN

1 and XN
1 are

distributed overGN × G
N ×XN according to

pV N
1 UN

1 XN
1

(vN
1 , uN

1 , xn
1 ) =

1

qN
1{uN

1 =vN
1 GN}

N
∏

i=1

W (xi|ui)

The conditional probability distribution induced from the
above equation is consistent with (3). We use this probability
distribution extensively throughout the paper.

C. Encoding and Decoding

Let n be a positive integer and letGN be the generator
matrix for polar codes whereN = 2n. Let {At|0 ≤ t ≤ r}
be a partition of the index set{1, 2, · · · , N}. Let bN

1 be an
arbitrary element from the set

⊕r

t=0 HAt

t . Assume that the
partition {At|0 ≤ t ≤ r} and the vectorbN

1 are known to
both the encoder and the decoder. The encoder maps a source
sequencexN

1 to a vectorvN
1 ∈ G

N by the following rule:
For i = 1, · · · , N , if i ∈ At, let vi be a random elementg
from the setbi + Tt picked with probability

P (vi = g) =
PVi|V

i−1
1 ,XN

1
(g|vi−1

1 , xN
1 )

PVi|V
i−1
1 ,XN

1
(bi + Tt|v

i−1
1 , xN

1 )

This encoding rule is a generalization of the randomized
rounding encoding rule used for the binary case in [2].

Given a sequencevN
1 ∈ G

N , the decoder decodes it to
vN
1 GN .

For the sake of analysis we assume that the vectorbN
1

is uniformly randomly distributed over the set
⊕r

t=0 HAt

t

(Although it’s common information between the encoder
and the decoder). The average distortion is given by
1
N
E{d(XN

1 , UN
1 )} and the rate of the code is given by

R =
1

N

r
∑

t=0

|At| log |Tt| =
r

∑

t=0

|At|

N
t log p

D. Test Channel Polarization

The following result has been proved in [5]: For allǫ > 0,
there exists a numberN = N(ǫ) = 2n(ǫ) and a partition
{Aǫ

0, A
ǫ
1, · · · , Aǫ

r} of {1, · · · , N} such that fort = 0, · · · , r

and i ∈ Aǫ
t, Zd(W

(i)
N ) < O(ǫ) if d ∈ Hs for 0 ≤ s < t

and Zd(W
(i)
N ) > 1 − O(ǫ) if d ∈ Hs for t ≤ s < r. For

t = 0, · · · , r andi ∈ Aǫ
t, we haveI(W

(i)
N ) = t log(p)+O(ǫ)

andZt(W
(i)
N ) = O(ǫ) where

Zt(W ) =
1

|Ht|

∑

d∈Ht

Zd(W )

Moreover, asǫ → 0, |Aǫ
t |

N
→ pt for some probabilities

p0, · · · , pr.

In the next section, we show that for anyβ < 1
2 and

for t = 0, · · · , r,

lim
n→∞

P
(

(Zt)(n) > 1 − 2−2βn
)

≥ P
(

(Zt)(∞) = 1
)

(4)

= 1 −

r
∑

s=t

ps

Remark III.1. This observation implies the following
stronger result: For all ǫ > 0, there exists a number
N = N(ǫ) = 2n(ǫ) and a partition {Aǫ

0, A
ǫ
1, · · · , Aǫ

r}
of {1, · · · , N} such that for t = 0, · · · , r and i ∈ Aǫ

t,



I(W
(i)
N ) = t log(p) + O(ǫ) and Zt(W

(i)
N ) > 1 − 2−2βn(ǫ)

.
Moreover, asǫ → 0, |Aǫ

t |
N

→ pt for some probabilities
p0, · · · , pr.

E. Rate of Polarization

In this section we derive a rate of polarization result for
the source coding problem. In this proof, we do not assume
q is a power of a prime and hence the rate of polarization
result derived in this section is valid for the general case.
It is shown in [6] (with a slight generalization) that if a
random processZn satisfies the following two properties

Zn+1 ≤ kZn w.p.
1

2
(5)

Zn+1 ≤ Z2
n w.p.

1

2
(6)

for some constantk, then for anyβ < 1
2 , limn→∞ P (Zn <

2−2βn

) = P (Z∞ = 0). We prove that the random process
D̃n

d satisfied these properties. First note that by definition

D̃d(W
+) =

1

2q

∑

u2∈G

∑

x1,x2∈X
u1∈G

[

1

q
W (x1|u1 + u2)W (x2|u2)

−
1

q
W (x1|u1 + u2 + d)W (x2|u2 + d)

]2

If we add and subtract the term1
q
W (x1|u1+u2)W (x2|u2+d)

to the term inside brackets and use the inequality(a+ b)2 ≤
2(a2 + b2) with

a = W(x1|u1+u2)W(x2|u2)−W(x1|u1 + u2)W(x2|u2+d)

b = W (x1|u1 + u2)W (x2|u2 + d)

− W (x1|u1 + u2 + d)W (x2|u2 + d)

we obtain

D̃d(W
+) ≤

1

2q

∑

u2∈G

∑

x1,x2∈X ,u1∈G

2

q2

[

(W(x1|u1+u2)W(x2|u2)−W(x1|u1+u2)W(x2|u2+d))
2

+ (W (x1|u1 + u2)W (x2|u2 + d)

−W (x1|u1 + u2 + d)W (x2|u2 + d))
2
]

(7)

This summation can be expanded into two separate summa-
tions. For the first summation, we have
1

2q

∑

u2∈G

∑

x1,x2∈X ,u1∈G

2

q2

(W (x1|u1+u2)W (x2|u2)−W (x1|u1+u2)W (x2|u2+d))
2

≤
2

q2

1

2q

∑

u2∈G

∑

x1,x2∈X ,u1∈G

W (x1|u1 + u2)
2 (W (x2|u2) − W (x2|u2 + d))

2

≤
2q

q2

1

2q

∑

u2∈G

∑

x2∈X

(W (x2|u2) − W (x2|u2 + d))
2

=
2

q
D̃d(W ) (8)

Similarly, for the second summation we can show that

1

2q

∑

u2∈G

∑

x1,x2∈X
u1∈G

2

q2
(W (x1|u1 + u2)W (x2|u2 + d)

−W (x1|u1 + u2 + d)W (x2|u2 + d))
2

≤
2

q
D̃d(W ) (9)

Therefore, it follows from (7), (8) and (9) that condition (5)
is satisfied fork = 4

q
.

Next we show thatD̃d(W
−) ≤

(

D̃d(W )
)2

. Note that

D̃d(W
−) =

1

2q

∑

v1∈G

∑

x1,x2∈X

[(

1

q

∑

v2∈G

W (x1|v1 + v2)W (x2|v2)

)

−

(

1

q

∑

v2∈G

W (x1|v1 + d + v2)W (x2|v2)

)]2

=
1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

[

∑

v2∈G

W (x2|v2)

(

W (x1|v1 + v2)
1

2

1

2
− W (x1|v1 + d + v2)

)]2

The squared term in the brackets can be expanded as

1

q2

∑

v2,v′
2∈G

W (x2|v2)W (x2|v
′
2) (W (x1|v1 + v2)−

W (x1|v1 + d + v2)) (W (x1|v1 + v′
2) − W (x1|v1 + d + v′

2))

Therefore,D̃d(W
−) can be written as a summation of four

termsD̃d(W
−) = D−

1 + D−
2 + D−

3 + D−
4 where

D−
1 =

1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′
2∈G

W (x2|v2)

W (x2|v
′
2)W (x1|v1 + v2)W (x1|v1 + v′

2)

D−
2 =

1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′
2∈G

W (x2|v2)

W (x2|v
′
2)W (x1|v1 + v2 + d)W (x1|v1 + v′

2 + d)

D−
3 =

1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′
2∈G

W (x2|v2)

W (x2|v
′
2)W (x1|v1 + v2)W (x1|v1 + v′

2 + d)

D−
4 =

1

2q

∑

v1∈G

∑

x1,x2∈X

1

q2

∑

v2,v′
2∈G

W (x2|v2)

W (x2|v
′
2)W (x1|v1 + v2 + d)W (x1|v1 + v′

2)

For d ∈ G define

Sd(W ) =
1

2q

∑

v∈G

∑

x∈X

W (x|v)W (x|v + d)



Note thatSd(W ) = S−d(W ). We have

D−
1 =

1

q2

∑

x2∈X

∑

v2,v′
2∈G

W (x2|v2)W (x2|v
′
2)

1

2q

∑

v1∈G

∑

x1∈X

W (x1|v1 + v2)W (x1|v1 + v′
2)

=
1

q2

∑

x2∈X

∑

v2,v′
2∈G

W (x2|v2)W (x2|v
′
2)Sv2−v′

2
(W )

=
1

q2

∑

x2∈X

∑

v2∈G

∑

a∈G

v′
2=v2−a

W(x2|v2)W(x2|v2 − a)Sa(W )

=
2

q

∑

a∈G

Sa(W )
1

2q

∑

v2∈G

∑

x2∈X

W (x2|v2)W (x2|v2 − a)

=
2

q

∑

a∈G

Sa(W )S−a(W )

=
2

q

∑

a∈G

Sa(W )2

With similar arguments we can show that

D−
2 =

2

q

∑

a∈G

Sa(W )2

D−
3 =

2

q

∑

a∈G

Sa(W )Sa−d(W )

D−
4 =

2

q

∑

a∈G

Sa(W )Sa−d(W )

Therefore

D̃d(W
−) =

4

q

∑

a∈G

(

Sa(W )2 − Sa(W )Sa−d(W )
)

=
2

q

∑

a∈G

(Sa(W ) − Sa−d(W ))
2

Note that

D̃d(W ) =
1

2q

∑

v∈G

∑

x∈X

(W (x|v) − W (x|v + d))
2

= 2S0(W ) − 2Sd(W )

Therefore
(

D̃d(W )
)2

= 4(S0(W ) − Sd(W ))2

To show thatD̃d(W
−) ≤

(

D̃d(W )
)2

it suffices to show

that Sa(W ) − Sa−d(W ) ≤ S0(W ) − Sd(W ). We will make
use of the rearrangement inequality:

Lemma III.1. Let π be an arbitrary permutation of the set
{1, · · · , n. If a1 ≤ · · · ≤ an and b1 ≤ · · · ≤ bn then

n
∑

i=1

aibi ≥

n
∑

i=1

aibπ(i)

The rearrangement inequality implies thatS0(W ) −
Sd(W ) ≥ Sa(W ) − Sa−d(W ). Therefore it follows that
condition (6) is also satisfied and hencelimn→∞ P (D̃n

d <

2−2βn

) = P (D̃∞
d = 0). It has been shown in Appendix D of

[5] that D̃d(W ) < ǫ impliesZd(W ) > 1− ǫ. This completes
the rate of polarization result.

F. Polar Codes Achieve the Rate-Distortion Bound

The average distortion for the encoding and decoding rules
described in Section III-C is given by

Davg =
∑

xN
1 ∈XN

pN
X(xN

1 )
∑

bN
1 ∈

L

r
t=0 H

At
t

∑

vN
1 ∈bN

1 +
L

r
t=0 T

At
t

(

r
∏

t=0

∏

i∈At

PVi|V
i−1
1 ,XN

1
(g|vi−1

1 , xN
1 )

PVi|V
i−1
1 ,XN

1
(bi + Tt|v

i−1
1 , xN

1 )

)

(

r
∏

t=0
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This can be written as

Davg = EQ{d(XN
1 , V N

1 GN )}

where the distributionQ is defined by
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and hence
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Recall that
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1
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The total variation distance between the distributionsP and
Q is given by

‖P−Q‖t.v. =
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∣
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We have
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where in(a) we used the telescopic inequality introduced in
[2]. It is straightforward to show that
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It has been shown in Appendix D of [5] that ifZd(W ) > 1−ǫ

thenDd(W ) ≤ 2ǫ − ǫ2. Therefore ifZd(W
(i)
N ) > 1 − ǫ for

all d ∈ H we have
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Therefore for if for alld ∈ Ht, Zd > 1 − ǫ then for δ =
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A similar argument as in [2] implies that

Davg =
1

N
EQ{d(XN

1 , V N
1 GN )}

≤
1

N
EP {d(XN

1 , V N
1 GN )} +

1

N

r
∑
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|At|dmaxδ

wheredmax is the maximum value of the distortion function.
Note that

EP {d(XN
1 , V N

1 GN )} = ND

Therefore,

Davg ≤ D +
1

N

r
∑

t=0

|At|dmaxδ

Note that from the rate of polarization derived in Section
III-E we can chooseǫ to be ǫ = 2−2βn

. This implies that
as n → ∞, D + 1

N

∑r
t=0 |At|dmaxδ → D. Also note that

the rate of the codeR =
∑r

t=0
|At|
N

t log p converges to
∑r

t=0 ptt log p and this last quantity is equal to the symmetric
capacity of the test channel since the mutual information isa
martingale. This means the rateI(X;U) is achievable with
distortionD.



IV. A RBITRARY RECONSTRUCTIONALPHABETS

For an arbitrary Abelian groupG, The following polar-
ization result has been provided in [5]: For allǫ > 0,
there exists a numberN = N(ǫ) = 2n(ǫ) and a partition
{Aǫ

H |H ≤ G} of {1, · · · , N} such that forH ≤ G and
i ∈ Aǫ

H , Zd(W
(i)
N ) < O(ǫ) if d ∈ H and Zd(W

(i)
N ) >

1 − O(ǫ) if d /∈ H. For H ≤ G and i ∈ Aǫ
H , we have

I(W
(i)
N ) = log |G|

|H| + O(ǫ) andZH(W
(i)
N ) = O(ǫ) where

ZH(W ) =
1

|H|

∑

d∈H

Zd(W )

Moreover, asǫ → 0, |Aǫ
H |

N
→ pH for some probabilities

pH ,H ≤ G.

As mentioned earlier the rate of polarization result derived
in Section III-E is valid for the general case. Therefore it
follows that for anyβ < 1

2 and forH ≤ G,

lim
n→∞

P
(

(ZH)(n) > 1 − 2−2βn
)

≥ P
(

(ZH)(∞) = 1
)

(10)

= 1 −
∑

S≤H

pH

Remark IV.1. This observation implies the following
stronger result: For allǫ > 0, there exists a numberN =
N(ǫ) = 2n(ǫ) and a partition{Aǫ

H |H ≤ G} of {1, · · · , N}

such that forH ≤ G and i ∈ Aǫ
H , I(W

(i)
N ) = log |G|

|H| +O(ǫ)

and ZH(W
(i)
N ) > 1 − 2−2βn(ǫ)

. Moreover, asǫ → 0,
|Aǫ

H |
N

→ pH for some probabilitiespH ,H ≤ G.

The encoding and decoding rules for the general case
is as follows: Letn be a positive integer and letGN be
the generator matrix for polar codes whereN = 2n. Let
{AH |H ≤ G} be a partition of the index set{1, 2, · · · , N}.
Let bN

1 be an arbitrary element from the set
⊕

H≤G
HAH .

Assume that the partition{AH |H ≤ G} and the vectorbN
1

are known to both the encoder and the decoder. The encoder
maps a source sequencexN

1 to a vectorvN
1 ∈ G

N by the
following rule:
For a subgroupH of G, let TH be a transversal ofH in G.
For i = 1, · · · , N , if i ∈ AH , let vi be a random elementg
from the setbi + TH picked with probability

P (vi = g) =
PVi|V

i−1
1 ,XN

1
(g|vi−1

1 , xN
1 )

PVi|V
i−1
1 ,XN

1
(bi + TH |vi−1

1 , xN
1 )

Given a sequencevN
1 ∈ G

N , the decoder decodes it to
vN
1 GN .

It follows from the analysis of theZpr case in a straightfor-
ward fashion that this encoding/decoding scheme achieves
the symmetric rate-distortion bound when the groupG is an
arbitrary Abelian group.

V. CONCLUSION

We have shown that polar codes achieve the symmetric
rate-distortion bound for finite-alphabet sources regardless of
the size of the reconstruction alphabet.
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