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Abstract— We consider a generalization of the multiple
measurement vector (MMV) problem, where the measurement
matrices are allowed to differ across measurements. This
problem arises naturally when multiple measurements are
taken over time, e.g., and the measurement modality (matrix)
is time-varying. We derive probabilistic recovery guarantees
showing that—under certain (mild) conditions on the mea-
surement matrices—ℓ2/ℓ1-norm minimization and a variant of
orthogonal matching pursuit fail with a probability that de cays
exponentially in the number of measurements. This allows us
to conclude that, perhaps surprisingly, recovery performance
does not suffer from the individual measurements being taken
through different measurement matrices. What is more, recov-
ery performance typically benefits (significantly) from diversity
in the measurement matrices; we specify conditions under
which such improvements are obtained. These results continue
to hold when the measurements are subject to (bounded) noise.

I. I NTRODUCTION

An interesting generalization of the sparse signal recovery
problem as studied, e.g., in [1], [2], [3], is the so-called
multiple measurement vector (MMV) problem [4], [5], [6],
[7]. Application areas of the MMV problem include neu-
romagnetic imaging, array processing, and nonparametric
spectral analysis of time series [4]. The MMV problem is
formalized as follows: Given the vectorsx(0), ...,x(d−1), that
share the sparsity patternS, i.e., the entries ofx(0), ...,x(d−1)

are equal to zero on̄S, we want to recover thex(i) from
the noisy measurementsy(i) = Ax(i)+e(i), i = 0, ..., d−1,
where thee(i) are noise vectors and the measurement matrix
A ∈ R

m×n is assumed known. For the noiseless case, i.e.,
e(i) = 0, for all i, it was shown in [5], [8] that the program

(P0-MMV)

{

minimize |S|
subject to y(i)=Ax(i), i = 0, .., d− 1

recovers allx(0), ...,x(d−1) with rank[x(0)... x(d−1)] = K if
and only if

|S| < spark(A)− 1 +K

2
(1)

where spark(A) is the cardinality of the smallest set of
linearly dependent columns ofA [2]. The threshold (1) con-
stitutes a potentially significant improvement over the well-
known spark(A)/2-threshold [2] for the single measurement
vector (SMV) case, i.e., ford = 1. Necessity of the threshold
(1) shows that when asking for recovery ofall sets of vec-
torsx(0), ...,x(d−1), including linearly dependent collections,
multiple measurements do not result in an improvement in
the recovery threshold over the SMV case. It is therefore
sensible to ask whether performance improvements can be

expected for “typical”x(0), ...,x(d−1). Since (P0-MMV) is
NP-hard [9], this question is usually posed with the proviso
that computationally efficient algorithms such asℓ2/ℓ1-norm
minimization or a variant of orthogonal matching pursuit
(OMP) [5], [6], [7] should be used for recovery. Indeed,
a corresponding probabilistic performance analysis carried
out in [10], [11] shows that multiple measurements yield
significant improvements in recovery performance over the
SMV case.

In practical applications the measurement matrix (modal-
ity) often changes across measurements, e.g., when measure-
ments are taken over time and the underlying measurement
modality exhibits characteristics that vary over time. It is
therefore natural to ask whether improvements thanks to mul-
tiple measurements depend critically on the measurements all
being taken through the same measurement matrixA. We an-
swer this question by considering the following modification
of the MMV problem, termed generalized MMV (GMMV)
problem henceforth: Given the vectorsx(0), ...,x(d−1), that
share the sparsity patternS, recover thex(i) from the
(possibly noisy) measurements

y(i) = A(i)x(i) + e(i), i = 0, ..., d− 1 (2)

assuming knowledge of the measurement matricesA(i) ∈
R

m×n. Here, thee(i) are noise vectors.
The GMMV problem also occurs in the recovery of sparse

signals that lie in the union of shift-invariant subspaces [12],
[13], as detailed in an extended version of this paper [14].

As the MMV problem is a special case of the GMMV
problem, obtained by settingA(i) = A, for all i, it follows
immediately that, for generalA(i), a worst-case (with respect
to thex(i)) analysis reveals no improvements resulting from
multiple measurements.

Contributions: The main theme of this paper is a
probabilistic (with respect to thex(i)) performance analysis
of an ℓ2/ℓ1-norm based recovery algorithm, called LOPT,
and a variant of OMP, called MOMP, for deterministic
measurement matricesA(i). For the noiseless case, under
very general conditions on theA(i), we find that the failure
probability of LOPT and MOMP decays exponentially in
the number of measurementsd. We show that, perhaps
surprisingly, having different measurement matricesA(i)

can lead to (substantial) performance improvements over
the MMV case A(0) = ... = A(d−1). What is more,
these improvements are obtained under very mild “isometry”
conditions on theA(i). Furthermore, we show that our results
continue to hold when the measurements are subject to
bounded noise.
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The probabilistic model on thex(i) we use is more
general than that employed in [10], [11] for the MMV case.
Particularizing our results to the MMV case therefore yields
generalizations of the main results in [10], [11]. For the noisy
case our result for LOPT is new, even in the MMV case.

We note that the GMMV problem can be cast as a block-
sparse problem [15], which in turn is contained in the
model-based [16] setting. However, formulating the GMMV
problem as a block-sparse (or model-based) problem, and
applying the corresponding recovery results available in the
literature yields worst-case recovery conditions only.

In terms of mathematical tools, we note that the proofs of
our main results, provided in [14], consist of two steps. First,
we derive conditions for LOPT and MOMP to succeed and
then we use concentration of measure results to show that
these conditions are satisfied with high probability, provided
that mild conditions on theA(i) are satisfied. While the
proofs in [10], [11] follow these two general steps as well,
the technical specifics are quite different. Concretely, the
more general probabilistic model for thex(i) requires the
use of concentration of measure results that are more general
than those employed in [10], [11]. In addition, our recovery
conditions are new, and, in particular in the noisy case, non-
trivial to derive.

Notation: We use lowercase boldface letters to denote
column vectors, e.g.,x, and uppercase boldface letters to
designate matrices, e.g.,A. For a vectorx, [x]q and xq

denote theqth entry. For the matrixA, A† is its pseudo-
inverse and‖A‖2→2 := max‖v‖

2
=1 ‖Av‖2 its spectral

norm. The superscriptH stands for Hermitian transposition.
For the setS, |S| is its cardinality andS̄ stands for its
complement in{0, ..., n−1}. We say that a random variablex
is standard Gaussian, if it is of zero-mean and unit variance;
x is standard complex Gaussian ifx = xR + jxI , where
xR, xI are i.i.d. Gaussian with mean zero and variance1/2.

II. PROBLEM FORMULATION

The formal statement of the problem we consider is as
follows. Suppose we observe them-dimensional vectors

y(i) = A(i)x(i) + e(i), i = 0, ..., d− 1 (3)

where thee(i) ∈ R
m account for (unknown) noise, thex(i) ∈

R
n, n > m, share the sparsity patternS ⊆ {0, ..., n−1}, i.e.,

for eachx(i) the entries with index inS̄ are equal to zero,
and the measurement matricesA(0), ...,A(d−1) ∈ R

m×n

are known. We want to recoverx(0), ...,x(d−1) from the
y(0), ...,y(d−1).

We first consider the noiseless case, i.e.,e(i) = 0, for all
i. Recovery can be accomplished by solving

(P0-GMMV)

{

minimize |S|
subject to y(i) = A(i)x(i), i = 0, ..., d− 1

which is, however, NP-hard [9]. Computationally efficient
alternative recovery algorithms, with, however, weaker re-
covery guarantees, are specified next. A convex relaxation

of P0-GMMV is given by

(LOPT)











minimize
∑n−1

l=0

(

∑d−1
i=0

∣

∣

∣
x
(i)
l

∣

∣

∣

2
)1/2

subject toy(i) = A(i)x(i), i = 0, ..., d− 1.

Another alternative, which is an adaptation of OMP, and will
be called MOMP, is defined as follows. MOMP iteratively
builds up the joint support set ofx(0), ...,x(d−1). The algo-
rithm is initialized by choosing the residuals in iteration0 as
r
(i)
0 = y(i), i = 0, ..., d − 1, and the set of selected indices

asS0 = ∅. In thepth iteration (p ≥ 1) we find the index

lp = argmax
l

d−1
∑

i=0

∣

∣

∣

∣

(a
(i)
l )

H
r
(i)
p−1

∣

∣

∣

∣

2

and update the set of selected indices by settingSp = Sp−1∪
{lp}. The residuals are updated according to

r(i)p = y(i) −A
(i)
Sp
x
(i)
Sp

= (I−P
(i)
Sp
)y(i), i = 0, ..., d− 1

whereA
(i)
Sp

is the matrix obtained fromA(i) by selecting

the columns with indices inSp and P
(i)
Sp

:= A
(i)
Sp
(A

(i)
Sp
)
†

is the orthogonal projector onto the span of the columns in
A

(i)
Sp

. Both LOPT and MOMP are trivial generalizations of
corresponding algorithms for the MMV case [4], [5], [6],
[7].

Proceeding to the noisy case, we assume that noise is
bounded in the sense of

d−1
∑

i=0

∥

∥

∥
e(i)
∥

∥

∥

2

2
≤ ǫ2. (4)

As exact recovery of thex(i) will, in general, no longer
be possible, we will be content with ensuring that the
estimates of thex(i) are “close” to the truex(i). The recovery
algorithms we analyze in the noisy case are MOMP and a
convex program closely related to LOPT, namely

(POPT) minimize
1

2

d−1
∑

i=0

∥

∥

∥
y(i) −A(i)x(i)

∥

∥

∥

2

2

+ γ

n−1
∑

l=0

(

d−1
∑

i=0

∣

∣

∣
x
(i)
l

∣

∣

∣

2
)1/2

which, for d = 1, is known asthe lasso[17] in the statistics
literature, and ford > 1, is a particular variant ofthe group
lasso [18]. The first term in the cost function of POPT
accounts for the recovery error and the second term enforces
sparsity; the parameterγ > 0 controls the tradeoff between
these two terms.

III. R EVIEW OF WORST-CASE RECOVERY RESULTS

We briefly discuss worst-case recovery results for the
GMMV problem. Formulating the GMMV problem as a
block-sparse recovery problem and evaluating the corre-
sponding recovery conditions in [15] yields the following
proposition.



Proposition 1: Let S be the sparsity pattern of
x(0), ...,x(d−1) and assume that

max
l/∈S

∑

q

max
i=0,...,d−1

∣

∣

∣

∣

[(A
(i)
S )

†
a
(i)
l ]q

∣

∣

∣

∣

< 1. (5)

Then, LOPT and MOMP recoverx(0), ...,x(d−1) exactly
from y(i) = A(i)x(i), i = 0, ..., d− 1.

For the MMV case, Proposition 1 reduces to [5, Th. 3.1].
Condition (5) can be viewed as the GMMV-equivalent of the
SMV-exact recovery condition, a standard recovery condition
for ℓ1-minimization and OMP [19].

An alternative recovery condition can be obtained by
viewing the GMMV problem as separate SMV problems
and requiring exact recovery for each of the resulting SMV
problems. Following this route, based on the SMV exact
recovery condition [19, Th. A], we get thatℓ1-minimization
and OMP applied individually toy(i) = A(i)x(i) recover
x(0), ...,x(d−1) correctly if

max
l/∈S

max
i=0,...,d−1

∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

1

< 1. (6)

This is a slightly weaker condition than (5). Hence Propo-
sition 1 does not predict any improvement of using LOPT
or MOMP over treating the recovery problem as individ-
ual SMV problems (solved throughℓ1-minimization and/or
OMP).

IV. M AIN RESULTS

We discuss the noiseless and the noisy case separately.

A. Recovery in the noiseless case

For the noiseless case the probabilistic model on thex(i) is
as follows: For a given support setS ⊆ {0, ..., n−1}, we take
the entries of the vectorsx(0)

S , ...,x
(d−1)
S to be independent

sub-Gaussian [20].
Definition 1: A zero-mean random variable isρ-sub-

Gaussian1, with ρ > 0, if its moment generating function
satisfies

E
[

etx
]

≤ eρt
2

. (7)
Sub-Gaussian random variables contain Gaussian and all

bounded2 random variables as special cases. We start with
our main result for LOPT in the noiseless case.

Theorem 1:Fix S ⊆ {0, ..., n− 1} with cardinalitys :=

|S|, and take the entries ofx(0)
S , ...,x

(d−1)
S ∈ R

s to be
i.i.d. zero-meanρ-sub-Gaussian with unit variance3. Assume
that the measurement matricesA(0), ...,A(d−1) ∈ R

m×n

satisfy
(

1

d

d−1
∑

i=0

∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

2

2

)1/2

≤ α < 1, for all l /∈ S (8)

1Sub-Gaussian random variables are often equivalently defined through
tail bounds or through moment bounds, see e.g. [20]. The definition we
chose is the most convenient for our purposes.

2The random variablex is bounded if there exists anM ≥ 0 such that
P[|x| ≤ M ] = 1.

3This is w.l.o.g. as the entries of thex(i) can be scaled to account for
non-unit variance.

and

max
i

∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

2

≤ γ, for all l /∈ S (9)

for someγ > 0, wherea(i)l denotes thelth column ofA(i).
Then, for everyξ > 0 satisfyingmax{1−32eρ, α2} < ξ2 ≤
α2(1 + 32eρ), with probability at least

1− (n−s) exp

(

−d
(ξ2 − α2)2

211e2ρ2γ2α2

)

−s exp

(

−d
(1− ξ2)2

211e2ρ2

)

(10)
LOPT applied toy(i) = A(i)x(i), i = 0, ..., d − 1, recovers
the correct solutionx(0), ...,x(d−1).

The main implication of Theorem 1 is that, provided (8)
(and (9)) is satisfied, the probability that LOPT fails decays
exponentially in the number of measurementsd. This has
been shown before for the MMV case under the assumption
of i.i.d. Gaussianx(i)

S [10, Th. 4.4].
The constants in the exponents of (10) can be improved

(significantly) for certain distributions. For example, when
the entries of thex(i)

S are i.i.d. standard Gaussian (note that
a standard Gaussian is sub-Gaussian withρ = 1/2), the
recovery probability is at least [14]

1− (n− s) exp

(

−d
(ξ − α)2

2γ2

)

− s exp

(

−d
(1− ξ2)2

4

)

.

(11)
Improvements over worst-case results:First note thatγ

in (9) can be chosen arbitrarily, hence (9) is not restrictive. To
see that the recovery condition (8) is weaker than the worst-
case recovery condition (6) (recall that (6) implies (5)), we
simply note that
(

1

d

d−1
∑

i=0

∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

2

2

)1/2

≤
(

1

d

d−1
∑

i=0

∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

2

1

)1/2

≤ max
i=0,...,d−1

∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

1

.

Improvements due to different measurement matrices:
Evaluating (8) for the MMV case yields

∥

∥

∥
(AS)

†
al

∥

∥

∥

2
≤ α < 1, for all l /∈ S. (12)

Note that (12) is the recovery condition stated in [10, Th.
4.4] and applying to the case where the entries of thex

(i)
S

are i.i.d. Gaussian. Comparing (12) to (8), we see that in
the GMMV case the measurement matrices have to satisfy
∥

∥

∥

∥

(A
(i)
S )

†
a
(i)
l

∥

∥

∥

∥

2

2

≤ α2 only on average (i.e., acrossi). This

essentially says that having different measurement matrices
allows for some of them to be “bad” as long as the collection
{A(0), ...,A(d−1)} is good enough on average. In contrast,
in the MMV case, the single measurement matrixA has to
be “good” in the sense of (12).

This can be nicely illustrated by way of an example.
Suppose we are given a measurement matrixA which does
not satisfy (12) for allS ⊆ {0, ..., n− 1} with |S| ≤ k, for
a givenk, but does so on average over thoseS. Now, take
the matricesA(0), ...,A(d−1) to be obtained independently



by permuting the columns ofA. Then, if d is sufficiently
large, with high probability (8) will be satisfied for allS
with |S| ≤ k.

We next state our recovery results for MOMP and start
by defining the following quantities, which are used to for-
mulate “local” (i.e., pertaining to the (given) setS) isometry
conditions. These quantities were also used in [10], [11] in
the performance analysis of MOMP for the MMV case.

For a given setS ⊆ {0, ..., n− 1}, let

δi(S) =
∥

∥

∥

∥

(A
(i)
S )

H
A

(i)
S − I

∥

∥

∥

∥

2→2

.

Observe that

(1− δi(S))‖xS‖22 ≤
∥

∥

∥
A

(i)
S xS

∥

∥

∥

2

2
≤ (1 + δi(S))‖xS‖22

for all xS ∈ R
s. Define

µi(S) = max

{

max
l/∈S

∥

∥

∥

∥

(A
(i)
S )

H
a
(i)
l

∥

∥

∥

∥

2

,max
l∈S

∥

∥

∥

∥

(A
(i)
S\l)

H
a
(i)
l

∥

∥

∥

∥

2

}

and letδmax(S) = maxi δi(S) andµmax(S) = maxi µi(S).
Theorem 2:Fix S ⊆ {0, ..., n− 1} with cardinalitys :=

|S|, let the measurement matricesA(0), ...,A(d−1) ∈ R
m×n

have unit norm columns withµmax(S) < 1 andδmax(S) <
1, and let the entries ofx(0)

S , ...,x
(d−1)
S ∈ R

s be i.i.d. zero-
meanρ-sub-Gaussian with unit variance. If

∑d−1
i=0

(

µi(S)
1−δi(S)

)2

∑d−1
i=0

(

1− µ2

i
(S)

1−δi(S)

)2 ≤ (1 − β)

(1 + β)
(13)

for β with 0 < β ≤ 32eρ, then MOMP applied to
y(i) = A(i)x(i), i = 0, ..., d−1, recovers the correct solution
x(0), ...,x(d−1) with probability at least

1− 2s(n+ 1− s) exp

(

−dβ2 c(S,A)

211e2ρ2

)

(14)

wherec(S,A) is a constant that depends on theA(i), but is
independent ofd.

Remark: The constantc(S,A) can be lower-bounded
in terms of theµi(S) andδi(S), see [14].

The main implication of Theorem 2 is that, provided
(13) is satisfied, the probability that MOMP fails decays
exponentially in the number of measurementsd. This has
been shown before in [10], [11] for the MMV case, under
the assumption of i.i.d. Gaussianx(i)

S . The implications of
Theorem 2 concerning improvements over the worst-case
results and over the MMV case are as discussed above, for
LOPT. Furthermore, as in the case of LOPT, Theorem 2 can
be strengthened for certain distributions. For example, when
the entries ofx(0)

S , ...,x
(d−1)
S are i.i.d. standard Gaussian,

Theorem 2 holds with Condition (13) replaced by

∑d−1
i=0

(

µi(S)
1−δi(S)

)2

∑d−1
i=0

(

1− µ2

i
(S)

1−δi(S)

)2 ≤ (1− β)2 ς2

(1 + β)2
(15)

for β > 0, whereς > 1 is a constant that tends to1 as d
grows, and (14) replaced by

1−2s
(

(n− s) exp
(

−dβ2c(S,A)
)

+ exp
(

−dβ2ς2c(S,A)
))

.
(16)

We finally note that condition (13) is slightly stronger than
condition (8) pertaining to LOPT [14].

B. The noisy GMMV problem

We next present our results for the noisy GMMV problem
and start with the probabilistic analysis of POPT. For the
following result, we assume that the entries ofx

(0)
S , ...,x

(d−1)
S

are i.i.d. Rademacher random variables, i.e., they take on
the values+1 and −1 with equal probability. We chose
this model for convenience and note that similar results can
be obtained for the sub-Gaussian case. The corresponding
analysis is, however, much more cumbersome and does not
yield additional insights.

Theorem 3:Fix S ⊆ {0, ..., n − 1}, with cardinality
s := |S|, and take the entries ofx(0)

S , ...,x
(d−1)
S ∈ R

s to
be i.i.d. Rademacher. Suppose the measurement matrices
A(0), ...,A(d−1) ∈ R

m×n satisfy conditions (8) and (9) for
α < 1 and someγ > 0. Suppose the noise levelǫ in (4) and
γ satisfy

(

c3ǫ+ γc4
√

|S|
)

(

2c2 + 1− ǫ

γ
c1 − β

)

<
√
d

(

1− ǫ

γ
c1 − ξ

)

(17)

wherec1, c2, c3, andc4 are constants depending onδmax(S)
and µmax(S) only. Then, for ξ > 0 such thatmax{1 −
16e, α2} < ξ2 ≤ α2(1 + 16e), with probability at least

1− exp

(

−d
(ξ2 − α2)2

512e2γ2α2

)

(18)

the solution to POPT applied toy(i) = A(i)x(i), i =
0, ..., d− 1, and denoted bỹx(0), ..., x̃(d−1), is supported on
S and satisfies

(

d−1
∑

i=0

∥

∥

∥
x̃(i) − x(i)

∥

∥

∥

2

2

)1/2

≤ c3ǫ+ γ c4
√

|S|. (19)

The main implication of Theorem 3 is that, under certain
conditions on theA(i) and for the noise levelǫ sufficiently
small, the probability that POPT produces a solution with
correct support set that is “close” inℓ2-norm to the truex(i),
tends to1 exponentially fast ind. This result is also new for
the MMV case. Condition (17) ensures that the noise levelǫ
is sufficiently small. Note that (17) depends on the “worst”
measurement matrix throughδmax(S) andµmax(S). This is
sensible as noise has the largest effect on the measurement
y(i) taken through the “worst” measurement matrix.

We finally turn to the performance of MOMP. This result
will be stated for i.i.d. sub-Gaussianx(i)

S .
Theorem 4:Fix S ⊆ {0, ..., n− 1} with cardinalitys :=

|S|, and let the measurement matricesA(0), ...,A(d−1) ∈
R

m×n have unit norm columns withµmax(S) < 1 and



δmax(S) < 1. Let the entries ofx(0)
S , ...,x

(d−1)
S ∈ R

s be
i.i.d. zero-meanρ-sub-Gaussian with unit variance. Suppose
that

ǫ ≤ 1− δmax(S)
1− δmax(S) + (1 − δmax(S))µmax(S)

κ (20)

for someκ ≥ 0. If

√

1− β

(

1

d

d−1
∑

i=0

(

1− µ2
i (S)

1− δi(S)

)2
)1/2

−
√

1 + β

(

1

d

d−1
∑

i=0

(

µi(S)
1− δi(S)

)2
)1/2

≥ κ (21)

for β satisfying 0 < β ≤ 32eρ, then with probability at
least (14), MOMP applied toy(i) = A(i)x(i), i = 0, ..., d−
1, yields an estimate of thex(i), denoted byx̃(i), that is
supported onS and satisfies

(

d−1
∑

i=0

∥

∥

∥
x̃(i) − x(i)

∥

∥

∥

2

2

)1/2

≤ 1 + δmax(S)
1− δmax(S)

ǫ. (22)

Again, the main implication of Theorem 4 is that, under
certain mild conditions on theA(i) and for the noise level
ǫ sufficiently small, the probability that MOMP produces a
solution with correct support set that is “close” to the true
x(i), tends to1 exponentially fast ind. This was shown in
[11] for the MMV case and for i.i.d. Gaussianx(i)

S . Note
that for ǫ = 0, i.e., in the noiseless case, (21) reduces to
(13) and Theorem 4 reduces to Theorem 2. Forǫ > 0, and
henceκ > 0, (21) is more restrictive than Condition (13).
Condition (20) depends on the “worst” measurement matrix,
and ensures that the noise levelǫ is sufficiently small. The
constants in Theorem (4) can be improved for i.i.d. Gaussian
x
(i)
S [14].
We conclude by noting that the results in this paper extend

straightforwardly to the case of complexA(i) andx(i).
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