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Abstract—We consider a generalization of the multiple expected for “typical’x(?, ..., x(4=1_ Since (PO-MMV) is
measurement vector (MMV) problem, where the measurement NP-hard [9], this question is usually posed with the proviso
matrices are allowed to differ across measurements. This that computationally efficient algorithms such/ag/;-norm

problem arises naturally when multiple measurements are C . . .
taken over time, e.g., and the measurement modality (matrix minimization or a variant of orthogonal matching pursuit

is time-varying. We derive probabilistic recovery guaranees (OMP) [5], [6], [7] should be used for recovery. Indeed,
showing that—under certain (mild) conditions on the mea- a corresponding probabilistic performance analysis edrri

surement matrices—> /¢;-norm minimization and a variant of  out in [10], [11] shows that multiple measurements yield

orthogonal matching pursuit fail with a probability that de cays — gjgnificant improvements in recovery performance over the
exponentially in the number of measurements. This allows us SMV case

to conclude that, perhaps surprisingly, recovery performance . o .
does not suffer from the individual measurements being take In practical applications the measurement matrix (modal-
through different measurement matrices. What is more, rece-  ity) often changes across measurements, e.g., when measure
ery performance typically benefits (significantly) from diversity  ments are taken over time and the underlying measurement
in the measurement matrices; we specify conditions under ,q4gjity exhibits characteristics that vary over time. dt i
which such improvements are obtained. These results contire .
to hold when the measurements are subject to (bounded) noise t_herefore natural to ask Whethgr_ improvements thanks te mul
tiple measurements depend critically on the measuremints a
being taken through the same measurement matriwe an-
|. INTRODUCTION swer this question by considering the following modificatio
An interesting generalization of the sparse signal regovePf the MMV problem, termed generalized MMV (GMMV)
problem as studied, e.g., in [1], [2], [3]. is the so-calledProblem henceforth: Given the vectax§”, ..., x(?~1, that
multiple measurement vector (MMV) problem [4], [5], [6], Share the sparsity patterS, recover thex(® from the
[7]. Application areas of the MMV problem include neu-(possibly noisy) measurements
romagnetic ima_lging, array processing, and nonparame_tric vy = ADxD L@ 0 g-1 )
spectral analysis of time series [4]. The MMV problem is

formalized as follows: Given the vectaxs”), ..., x(4~1) that
share the sparsity patte i.e., the entries ag(©), ..., x(@—1
are equal to zero o, we want to recover th&( from
the noisy measuremengs?) = Ax( +e() ;=0,...,d—1,

assuming knowledge of the measurement matriaés <
R™*", Here, thee") are noise vectors.

The GMMYV problem also occurs in the recovery of sparse
signals that lie in the union of shift-invariant subspacks]|

where thee") are noise vectors and the measurement matrf43], as detailed in an extended version of this paper [14].
A € R™*" is assumed known. For the noiseless case, i.e.,As the MMV problem is a special case of the GMMV

e = 0, for all 4, it was shown in [5], [8] that the program Problem, obtained by settind.(") = A, for all 4, it follows
o immediately that, for general(Y), a worst-case (with respect
(PO-MMV) minimize |3|_ _ to thex(?)) analysis reveals no improvements resulting from
subject to y(W=Ax®  i=0,.,d—1 multiple measurements.
Contributions: The main theme of this paper is a
recovers alix(®), ..., x4~ with rankx®... x(*~V] = K if probabilistic (with respect to the(?)) performance analysis

and only if of an ¢,/¢;-norm based recovery algorithm, called LOPT,
18] < sparkA) —1+ K (1) and a variant of OMP, called MOMP, for deterministic
2 measurement matriceA (. For the noiseless case, under

where sparkA) is the cardinality of the smallest set of very general conditions on th& (), we find that the failure
linearly dependent columns & [2]. The threshold[{1) con- probability of LOPT and MOMP decays exponentially in
stitutes a potentially significant improvement over thelwel the number of measurements We show that, perhaps
known sparkA ) /2-threshold [2] for the single measurementsurprisingly, having different measurement matricks’)
vector (SMV) case, i.e., faf = 1. Necessity of the threshold can lead to (substantial) performance improvements over
(@ shows that when asking for recovery aif sets of vec- the MMV case A(® = ... = A(-1  What is more,
torsx(® ... x(?=1 'including linearly dependent collections, these improvements are obtained under very mild “isometry”
multiple measurements do not result in an improvement ioonditions on theA (9). Furthermore, we show that our results
the recovery threshold over the SMV case. It is thereforeontinue to hold when the measurements are subject to
sensible to ask whether performance improvements can beunded noise.
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The probabilistic model on thex” we use is more of PO-GMMV is given by
general than that employed in [10], [11] for the MMV case.

; o , 1/2
Paruculgnzyng our results_ to the MMV case thereforg yseld minimize 27;01 Ztii;ol ’xl(z) 2)
generalizations of the main results in [10], [11]. For thésgo ~ (LOPT) _ =0
case our result for LOPT is new, even in the MMV case. subject toy® = AWx(® =0,...,d—1

We note that the GMMV_ pro_blem can be Cas'.{ as a bIOCkAnother alternative, which is an adaptation of OMP, and will
sparse problem [15], which in turn is contained in th

model-based [16] setting. However, formulating the GMM € called MO.M.P’ is defined as I(?)”OWS'(M%MP iteratively
byilds up the joint support set of\”’| ..., x . The algo-

problem as a block-sparse (or model-based) problem, an Lo ; . L .
rithm is initialized by choosing the residuals in iteratioas

applying the corresponding recovery results availablehan t rff) —y®) i —0,..d—1, and the set of selected indices

literature yields worst-case recovery conditions only. . ; i )

In terms of mathematical tools, we note that the proofs O?SSO = 0. In thepth iteration § > 1) we find the index
our main results, provided in [14], consist of two stepsstir d-1
we derive conditions for LOPT and MOMP to succeed and lp = arg ml‘&XZ
then we use concentration of measure results to show that i=0
these conditions are satisfied v_vith high probability, pded and update the set of selected indices by setfipg: S, 1 U
that mild conditions on theA(® are satisfied. While the {lp}_ The residuals are updated according to
proofs in [10], [11] follow these two general steps as well, _ o , _
the technical specifics are quite different. Concretelg th r') = y® — Af;jxfgg =I- Pféj)y@, i=0,.,d-1
more general probabilistic model for the€? requires the _ .
use of concentration of measure results that are more denéfhere AY is the matrix obtained fromA() by selecting

P

than those employed in [10], [11]. In addition, our recoveryha columns with indices inS, and Pf;) — Ag) (Ag))T
P

C(_)r_lditions are new, and, in particular in the noisy case; nory, the orthogonal projector onto the sppan of thet colns in
trivial to derive. A{). Both LOPT and MOMP are trivial generalizations of

Notation: We use lowercase boldface letters to deno"@orresponding algorithms for the MMV case [4], [5], [6],
column vectors, e.gx, and uppercase boldface letters t 7].

designate matrices, e.gA. For a vectorx, [x], and z, Proceeding to the noisy case, we assume that noise is
denote thegth entry. For the matrixA, A is its pseudo- bounded in the sense of

2
NG
() xl,

inverse and||All,_,, := max)y,-1[Av], its spectral 1
norm. The supersc_ridf stands_ for Hermitian transposit_ion. Z He(i) 2 <2 @
For the setS, |S] is its cardinality andS stands for its e 2~

i=

complementin{0, ..., n—1}. We say that a random variahle

is standard Gaussian, if it is of zero-mean and unit variancAs exact recovery of thec® will, in general, no longer

x is standard complex Gaussianaif= zr + jz;, where be possible, we will be content with ensuring that the

xR,z are i.i.d. Gaussian with mean zero and variah¢2  estimates of the(® are “close” to the tru&(® . The recovery
algorithms we analyze in the noisy case are MOMP and a

[l. PROBLEM FORMULATION convex program closely related to LOPT, namely
The formal statement of the problem we consider is as 1= o2
follows. Suppose we observe the-dimensional vectors (POPT) minimize 7 Z Hy(z) — AOx® ,
yO =AOxD L e i =0,.,d-1 (3) - S1gamr o\ V2
where thee(¥ € R™ account for (unknown) noise, thé?) ¢ T ; (; ‘xl(l) )

R™, n > m, share the sparsity pattethC {0, ...,n—1}, i.e., ) ) ) o
for eachx(?) the entries with index ir§ are equal to zero, which, ford = 1, is known agthe lasso[17] in the statistics
and the measurement matricas® ... A(d-1) ¢ pmxn literature, and fod > 1, is a particular variant ofhe group

are known. We want to recover® . x(@1 from the !asso[18]. The first term in the cost function of POPT
(d—1) T accounts for the recovery error and the second term enforces

(0)
Yy, enYy - .
We first consider the noiseless case, i&), = 0, for all ~ SParsity; the parametey > 0 controls the tradeoff between
these two terms.

i. Recovery can be accomplished by solving

o [1l. REVIEW OF WORSFCASE RECOVERY RESULTS
minimize |S]

PO-GMMV : N
( ) {subject to y® — ADx® 0

d—1 We briefly discuss worst-case recovery results for the

GMMV problem. Formulating the GMMV problem as a
which is, however, NP-hard [9]. Computationally efficientblock-sparse recovery problem and evaluating the corre-
alternative recovery algorithms, with, however, weaker responding recovery conditions in [15] yields the following
covery guarantees, are specified next. A convex relaxatigmoposition.

el



Proposition 1:Let S be
x(© ... x=1) and assume that

Nt @G
[(AS)) af”],| < 1.

()

Then, LOPT and MOMP recovex(®, ... x(@=1) exactly
fromy® = AWDx® ;=0,.. d—1.

the sparsity pattern of and

<~, foral 1 ¢S
2

N G
(AY) af” ©)

max
A

for somey > 0, wherea!” denotes théth column of A (%),
Then, for every > 0 satisfyingmax{1 —32ep, a?} < &2 <
a?(1 + 32ep), with probability at least

(€ a2

" (1-¢)?
For the MMV case, Propositidd 1 reduces to [5, Th. 3.1]; — (n—s) eXp(_dW) —sexp <_dm

Condition [3) can be viewed as the GMMV-equivalent of the

SMV-exact recovery condition, a standard recovery cooditi
for £;-minimization and OMP [19].

An alternative recovery condition can be obtained by
viewing the GMMV problem as separate SMV problem
and requiring exact recovery for each of the resulting SM
problems. Following this route, based on the SMV exa

recovery condition [19, Th. A], we get thé&t-minimization
and OMP applied individually toy() = A®@x(® recover
x(@ . x(4=1 correctly if

T
<1.

1

(ag)) a”

(6)

(10)
LOPT applied toy? = A®Wx( j =0,....d — 1, recovers
the correct solutiox(© ..., x(4=1).

The main implication of Theoref 1 is that, providéd (8)
nd [9)) is satisfied, the probability that LOPT fails dexzay
(?xponentially in the number of measuremedtsThis has

Qoeen shown before for the MMV case under the assumption

of i.i.d. Gaussianx) [10, Th. 4.4].

The constants in the exponents bfl(10) can be improved
(significantly) for certain distributions. For example, evh
the entries of thecf,;) are i.i.d. standard Gaussian (note that
a standard Gaussian is sub-Gaussian wite= 1/2), the

This is a slightly weaker condition thafll (5). Hence Propol€COVery probability is at least [14]
sition[d does not predict any improvement of using LOPT (€ — a)? (1—¢2)2
or MOMP over treating the recovery problem as individ- 1 — (n— S)GXP<—dT2) - SGXP(—dT> .

ual SMV problems (solved through -minimization and/or
OMP).

IV. MAIN RESULTS

(11)

Improvements over worst-case resulEsrst note thaty

in @) can be chosen arbitrarily, hengé (9) is not restrictio
see that the recovery conditidd (8) is weaker than the worst-

We discuss the noiseless and the noisy case separately:ase recovery conditiofi](6) (recall that (6) impligs (5)p w

A. Recovery in the noiseless case

For the noiseless case the probabilistic model orxtheis
as follows: For a given support s&tC {0, ...,n—1}, we take
the entries of the vectorxfgo), ...,xgd_l) to be independent
sub-Gaussian [20].

Definition 1: A zero-mean random variable ig-sub-

Gaussidf, with p > 0, if its moment generating function

satisfies )
E[em] <Pt @)

Sub-Gaussian random variables contain Gaussian and all
boundeB random variables as special cases. We start with

our main result for LOPT in the noiseless case.

Theorem 1:Fix S C {0, ...,n — 1} with cardinality s :
|S|, and take the entries oﬁff%...,xgd‘” € R® to be
i.i.d. zero-meam-sub-Gaussian with unit variafteAssume
that the measurement matricge®, ..., A(d-1) ¢ Rmxn
satisfy

1d71
(i

1Sub-Gaussian random variables are often equivalently atbfinrough
tail bounds or through moment bounds, see e.g. [20]. The itiefinrwe
chose is the most convenient for our purposes.

2The random variable: is bounded if there exists ah/ > 0 such that
Pllz| < M]=1.

o\ 1/2
(Ag))Tal(Z) ) <a<l, forall 1¢S (8)
2

3This is w.l.o.g. as the entries of thel®) can be scaled to account for

non-unit variance.

simply note that

DNIRG NG
(AY)) af” (AY)) af”

o\ 1/2 o\ /2

1 d—1 1 d—1
(ix <(ix
=0 1=0
ONING)
< .
= izg}}f%_l (As) &

1

Improvements due to different measurement matrices:
Evaluating [[B) for the MMV case yields

H(A‘S)TazH2 <a<l,forall I ¢8. (12)

Note that [(1P) is the recovery condition stated in [10, Th.

4.4] and applying to the case where the entries ofxﬁé

are i.i.d. Gaussian. Comparing{12) fd (8), we see that in
the GMMV case the measurement matrices have to satisfy

2
(Ag))Tal(’) < o? only on average (i.e., across This

essentially sgys that having different measurement nestric
allows for some of them to be “bad” as long as the collection
{A© . A=D1 is good enough on average. In contrast,
in the MMV case, the single measurement matkixhas to

be “good” in the sense of(12).

This can be nicely illustrated by way of an example.
Suppose we are given a measurement matriwhich does
not satisfy [(IR) for allS C {0,...,n — 1} with |S| < k, for
a givenk, but does so on average over th@seNow, take
the matricesA(¥), ..., A(?=1 to be obtained independently



by permuting the columns oA. Then, if d is sufficiently for 8 > 0, wherec > 1 is a constant that tends tbasd
large, with high probability[(8) will be satisfied for af  grows, and[(I4) replaced by

with |S] < k. s 9 9 9
We next state our recovery results for MOMP and start 2 ((n = ) exp(=dB*e(S, A)) + exp(—dB*¢ C(S’A()l)b))'

by defining the following quantities, which are used to for- ' " L
myulate “Iogal” (e pertgir?ing to the (given) s&) isometry We finally note that conditiori . (13) is slightly stronger than
o ﬁondition (8) pertaining to LOPT [14].

conditions. These quantities were also used in [10], [11] i
the performance analysis of MOMP for the MMV case.  B. The noisy GMMV problem

For a given setS C {0,...,n — 1}, let We next present our results for the noisy GMMYV problem

and start with the probabilistic analysis of POPT. For the

(d-1)

— (A TA® . :
6i(S) = H(As ) As -1 following result, we assume that the entnes:é?), i Xg

22 are i.i.d. Rademacher random variables, i.e., they take on
Observe that the values+1 and —1 with equal probability. We chose
) @ |I? 9 this model for convenience and note that similar results can
(1=6:(8))|xsll5 < HAS X8H2 < (14 6:(9)lIxsll3 be obtained for the sub-Gaussian case. The corresponding
, analysis is, however, much more cumbersome and does not
for all xs € R*. Define yield additional insights.
@ H () 0 \H (@) Theorem 3:Fix S C {0,..,n — 1}, with cardinality
pi(S) = max {I};f}gx (As) & s (Asy) a } s := |S], and take the entries ot ...x""" € R to

be i.i.d. Rademacher. Suppose the measurement matrices
and letdmax(S) = max; 6;(S) and pimax(S) = max; p;(S).  A©) . A1) ¢ Rm*n gatisfy conditions[{8) and{9) for

Theorem 2:Fix § C {0,...,n — 1} with cardinalitys := 4 < 1 and somey > 0. Suppose the noise levelin (@) and
S|, let the measurement matricés®, ..., Al4=1) e R™*" . gatisfy
have unit norm columns withe,,.«(S) < 1 and dax(S) <
1, and let the entries ot ... x"") ¢ R* be i.i.d. zero- (636 +7C4\/ﬁ) <202 41— S¢ = ﬁ)
meanp-sub-Gaussian with unit variance. If v

<Vd <1 - %cl —g) (17)

d—1 1 (S 2
2izo (155(1»(33)) < (1-7)
1 228 \2 = (1+ ) wherecy, ¢z, ¢3, andey are constants depending 65, (S)
2io (1 - ) and fmax(S) only. Then, foré > 0 such thatmax{1l —
16e, 0} < €2 < a?(1 + 16¢), with probability at least

(13)

1-6,(5)

for g with 0 < S < 32ep, then MOMP applied to
y® = AOx® ; =0,.. d—1, recovers the correct solution ) d(§2 — a?)? 19)
x© . x@=1 with probability at least TP\ TY12e2202

i i @ = AOxO® ; =
1—2S(n+1—s)exp(—dﬂQc(s’A)) (14) the solution to POPT applied ty AWxW) 4

211e2)2 0,...,d — 1, and denoted bg(® ..., %4~V is supported on

) } ~ S and satisfies
wherec(S, A) is a constant that depends on tA&), but is

independent off. - () (i)
Remark: The constant(S, A) can be lower-bounded Z HX X

in terms of thew;(S) andd;(S), see [14]. =0

The main implication of Theoreriil 2 is that, providedThe main implication of Theoref 3 is that, under certain
(I3) is satisfied, the probability that MOMP fails decaysonditions on theA () and for the noise level sufficiently
exponentially in the number of measuremedtsThis has small, the probability that POPT produces a solution with
been shown before in [10], [11] for the MMV case, undekorrect support set that is “close” ia-norm to the truex(,
the assumption of i.i.d. Gaussiad;’. The implications of tends tol exponentially fast inl. This result is also new for
Theorem[2 concerning improvements over the worst-cagge MMV case. Conditioi{17) ensures that the noise level
results and over the MMV case are as discussed above, fgrsufficiently small. Note thaf{17) depends on the “worst”
LOPT. Furthermore, as in the case of LOPT, Thedrém 2 cafeasurement matrix through,.« (S) and pimax (S). This is
be strengthened for certain distributions. For exampleerwh sensible as noise has the largest effect on the measurement

1/2
2
2) < cze + v/ |S]. (19)

the entries ofxfso),...,xfg‘i’l) are i.i.d. standard Gaussian,y(" taken through the “worst” measurement matrix.
Theoreni2 holds with Conditiof (IL3) replaced by We finally turn to the performance of MOMP. This result
) will be stated for i.i.d. sub-Gaussiat,’.
Zf;ol (1ﬁ3§f;)) (1—B)%¢2 Theorem 4:Fix S C {0, ...,n — 1} with cardinality s :=
< (15) |s|, and let the measurement matricas®, ..., A1 ¢

1-6,(5) R™>™ have unit norm columns withu,ax(S) < 1 and

R



dmax(S) < 1. Let the entries okst),...,xgd‘” € R?® be

i.i.d. zero-mearp-sub-Gaussian with unit variance. Suppose
that

(2]

(3]

1 — dmax(S)
< » 20 [4]
= T = Omax(S) + (I — Omax(S)) tmax (S) (20)
for somesr > 0. If [5]
d—1 2\ 1/2
1 13 (S) (6]
A P (-5
d—1 2\ /2 (7]
1 1i(S)
_ 2 >
(g2 (P50) ) =7 e

=0

[8l
for g satisfying0 < 8 < 32ep, then with probability at
least [I#), MOMP applied tg¥ = AWx® 5 =0,...d -

1, yields an estimate of th&(”, denoted byx(, that is

El

supported onS and satisfies [10]
-1 o\ 12 11
e ; 1+ Omax(S) [11]
(1) _ (@ < 2T Omax\9)
; HX X ’2 T L

Again, the main implication of Theoref 4 is that, unde|[12]
certain mild conditions on the\() and for the noise level
e sufficiently small, the probability that MOMP produces a3l
solution with correct support set that is “close” to the true
x(¥, tends tol exponentially fast ind. This was shown in [14]
[11] for the MMV case and for i.i.d. Gaussianf;). Note
that fore = 0, i.e., in the noiseless casé,{21) reduces to
(I3) and Theorerh]4 reduces to Theorem 2. Eor 0, and
hencesc > 0, (21) is more restrictive than Conditioh_(13).
Condition [20) depends on the “worst” measurement matrix,
and ensures that the noise levels sufficiently small. The [17]
constants in Theorerhl(4) can be improved for i.i.d. Gaussian
x¢ [14]. [16]

We conclude by noting that the results in this paper extend
straightforwardly to the case of complex() andx(®. [19]

[16]
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