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Abstract— In the context of the compressed sensing problem, signal recovery problem is formulated as one of statistical
we propose a new ensemble of sparse random matrices which jnference from the posterior distribution,
allow one (i) to acquire and compress apo-sparse signal
of length N in a time linear in N and (ii) to perfectly P(z|F,y) = §(Fz —y)P(x) 3)
recover the original signal, compressed at a ratex, by using ’ Z(F,y) ’
a message passing algorithm (Expectation Maximization Bielf . . . .
Propagation) that runs in a time linear in N. In the large WhereZ(F',y) is a normalization factor imposing the con-
N limit, the scheme proposed here closely approaches the dition [dxP(z|F,y) = 1 and a component-wise prior

theoretical bound po = «, and so it is both optimal and distributionP(z) = Hil[(1—0)5($i)+0¢(%)] is assumed.

efficient (linear time complexity). More generally, we showthat and ¢(z) represent the density of the non-zero signal
several ensembles of dense random matrices can be converted”

into ensembles of sparse random matrices, having the same elements and a Gaussian distribution, respectively. Bxact

thresholds, but much lower computational complexity. inferring s from (3) is NP-hard, similarly to[{1). However,
by employing the belief propagation (BP) in conjunction
|. INTRODUCTION with the expectation-maximization (EM) algorithm for es-

timating p and the parameters af(x), they developed an

Compressed sensing is a framework that enableVan approximation algorithm, termed EM-BP, which has better
dimensional sparse signal = (s;) to be recovered from recovery performance thahl (2) with a computational cost of
M(< N) linear measurements of its elements,= F's,  only O(N2). Furthermore, they showed that, by employing a
by exploiting the prior knowledge tha¢ contains many peculiar type of “seeded” matrik, the threshold of the com-
zero elements [1]. A simple consideration guarantees thgtession rate = M/ /N of EM-BP, above which the original
o-recovery, signal is typically recovered successfully, can approaaty v
close to that ofy-recoveryas_gysp = po, Wherepg is the
actual signal density of ands— EM BP stands for ‘seeded
EM-BP’. The seeded matrix is composed of blocks along the
where||z||o denotes the number of non-zero elementsin diagonal densely filled with Gaussian random variables It i
is theoretically optimal in terms of minimizing the numberimportant to remember that this result is achieved for the
of measurementa/ necessary for perfectly recovering anyfirst time with an approach different frofy-recovery, being
original signal s. However, carrying out/s-recovery for the threshold for/;-recovery that is much higher than the
a general measurement matrik is NP-hard. To avoid optimal one:ay, > po. The optimality of the/,-recovery
such computational difficulties, an alternative approdgh, is guaranteed for EM-BP, which means that this scheme
recovery can practically achieve the theoretically optimal thrddho
of signal recovery with af©O(N?) computational cost. This
remarkable property was recently proved in a mathemaicall
rigorous manner in the case that the matrix entries satisfy
where ||z|]; = Zfil |¢;|, is widely employed, as[{2) is certain conditions concerning their statistics [8]. Hoagv
generally converted into a linear programming problem, anidl is still unclear whether their scheme is optimal in terms
therefore, signal recovery is mathematically guarantaexhi of the computational complexity; there might be a certain
O(N?) computational time through the use of the interiodesign of the measurement mati#x that makes it possible
point method. Nevertheless, tlig N?) cost of computation to further reduce the computational cost while keeping the
can still be unacceptably high in many practical situationssame signal recovery threshold.
and much effort is being put into finding more computation- The purpose of the present study is to explore such a
ally feasible and accurate recovery schemes [2]-{[7]. possibility. For this, we focus on a class of matrices that

Among such efforts, the recovery scheme recently pr@re characterized by the following properties:
posed by Krzakala et al. [7] is worth special attention. Thei « sparsity: The matrix F has only O(1) non-zero el-
scheme basically follows the Bayesian approach. Namady, th  ements per row and column. This implies that the

§ = argmin ||x|[p subj. to y = Fzx, (1)
xT

§ = argmin ||x|[; subj. to y= Fx, 2
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measurements can be performed in a time linear ithe variablesr; are constructed in the following way:
the signal length. _Thi; sitqation is highly preferred f_or 1
the sake of practicality, given that such an operation,—i(z;) = = /dejmj—nt(xi)é(yu - ZFM%)
typically needs to be done in real time, during data J#i k
acquisition. 1

. intggervalues:The matrix elements are not real valued,mi_’“(xi) T Zion {(1 —P)olw) + pqﬁ(xi)} H i)
but take on small integer values. This means that an ‘ ‘ 7
optimized code for the measurements can work witwhereZ*~* and Z*~* are normalization factors. This EM-
bitwise operations, thus achieving much better perfoBP equations are very complicated because the messages are
mance without any loss of precision. distribution functions. In order to make them simpler, the

« no block structure: The block structure used in [7] messages can be approximated by assuming that they are
may not be necessary for reaching the optimal thresi$aussian, thus obtaining the equations for the mear),
old. As an alternative possibility, we study a structurénd the variancey; ., of m;_,,(z;). This approximation
made of a square matrix in the upper left corner (th#as introduced for sparse matrices in Refs. [16]-[19], and
seed) plus a stripe along the diagonal. This structure isbecomes asymptotically exact K is dense. In fact, it is
much more amenable for analytic computations, since @erived from an expansion in smal,;, and in the dense
corresponds to a one-dimensional model homogeneog@seF,; = O(1/v/N). Supposing that the elements of the
in space. original signal follow a Bernoulli-Gaussian distributi@ith

parametergg, To andoy, the update rules for the messages
The use of sparse matrices for compressed sensing hasak the following:

ready been suggested in several earlier studies [9]-[18]. O

approach is particularly similar to that of [13] in the sense

that both sides are based on the Bayesian framework and use i = fa Z Ay—iy Z By—i
integer-valued sparse measurement matrices. Nevertheles G ey
these two approaches differ considerably in the following

two points. Firstly, we adopt EM-BP, which updates only a;i = fa (Z AV*“ZBV%)
a few variables per node for the signal recovery, while K 7

the recovery algorithm of [13] involves functional updates

and needs significantly more computational time than ours. Visp = Je Z Ay Z BW*)
Secondly, we thoroughly explored a simple desigrFothat Rkl Rkl
achieves nearly optimal recovery performance. In contrast

the problem of the matrix design is not fully examined in vi = fe (Z AW“?ZBW%J
[13]. By carrying out extensive numerical experiments in v v
conjunction with an analysis based on density evolution,[15 A - Fii

we show that a threshold close to the theoretical limit po N i FRvi

can be achieved by using matrices with the above properties
with an almostinear computational cost in the measurement
and recovery stages.

B Flui (yu — 2 Fujajﬁu) @)

o 2 i Figvion

This paper is organized as follows. In Sectioh Il, theyheref, andf, are some analytical functions depending on
EM-BP algorithm is briefly explained and the results fokhe parameters, 7 ando. For details, see Ref. [7].
dense matrices are summarized. The algorithm is applied|n general, the originaby, To and o, are not known, but
to homogeneously sparse matrices in Secfioh Ill and fgne can use EM to derive the update rules for them, using
structured sparse block matrices in Secfioh IV. A new typge property that the partition function
of “striped” sparse matrix without blocks is introduced in

Section Y. The last Section summarizes our work, focusing Z(p, T, 0) = /dwp(w)g(y — Fzx)
on its importance for practical use, and touches on future
issues. is the likelihood of the parametefs, T, o) and is maximized

by the true parameteys), Ty, andoy. Thus, after the update
of all the messages, the inferred parameters of the original
distribution are updated following these rules:

Il. EXPECTATION MAXIMIZATION BELIEF PROPAGATION

1 1
f<_p_N¥ai7 UQ%p—N;(’Ui—FGJ?)—EQ,
The new algorithm based on BP in conjunction with the pOP %ai
EM proposed in Ref. [7] starts from Ed.](3). A similar idea p < - PP E——
was also proposed in Ref. [14]. In order to solve it with 3. {1 —p %ew—b]
BP, O(M N) messages for the probability distributions of ‘ o(1/o?+Ui)2



with U; = ZV A, andV; = 27 B, _,;. If the algorithm 1

N=2000 —+—

converges to the correct solutios, = s; andv; = 0. N=5000 ——

To reduce the number of messages framiNM) to 081 ND20000 |
O(N), one can see that in the largé limit, the messages 06 NE0000 =]
ai—, and v;,_,, are nearly independent gi. Thus, we
can derive the equations involving only a variable per each 04
measurement node and a variable per signal node, if we are
careful to keep the correcting Onsager reaction term as in 021
the TAP equations of statistical physics [20]. This method 0 . . .
was introduced in the context of compressed sensing in Ref. 03 0305 031 0315 032 0325 03
[6] and is called approximated message passing (AMP). Po

In general, the correct distribution of the original signal

is unknown. However, in Ref. [7], it is demonstrated that if §z§888 e
a > po, the most probable configuration ofwith respect to 08 | N=10000 >
P(x) = Hfil[(l —p)o(x;) + po(z;)] with p < 1, restricted N=50000 —=—
to the subspacg = Fz, is the original signak, even if the 06 ¢ 1
signal is not distributed according tB(x). So our choice 04l
of a Gaussian distribution fas(x) should be perfectly fine
even if the original signal has a different distribution. 02t

The free entropy®(D) at a fixed mean square error
D = (1/N)Y, (w; — s)* can be computed if a dense %03 0305 031 0315 032 0325 033
matrix is used. Forx > pg, the global maximum of the Po

function ®(D) is at D = 0, that corresponds to the correct

solution. Howeve_r, b_eloyv a certain thresheld< app that Fig. 1. Top: Probability of perfect recovery versus the algsparsitypo
depends on the distributiafi(s), the free entropy develops a using sparse matrices with = 0.5 and K’ = 20. The threshold is the same
secondary, local maximum d +# 0. As a consequence, the as with dense matrices. Bottom: Probability of perfect vecp computed
EM-BP algorithm can not converge to the correct SO|utiOIﬁ$2 density evolution has the same threshold. HéYejs the population
for po < a < app, because a dynamical transition occurs.

Nonetheless, the thresholds » is lower thancay, .

I1l. EM-BP WITH A SPARSE MATRIX with K = 20. The threshold for perfect recovery in the

. I . thermodynamic limit  — o0) is pgp ~ 0.315, which
First of all, we want to verify if the use of a sparse MaltriXs the same as the one obtained in Ref. [7] with a dense

can reach the same_results as the use of a dense one. F dtrix. We can not analytically compute the free entropy
sparse random matrix, the AMP equations can not be useg;

) . >~®(D) as in [7], because we use sparse matrices and cannot
thus, we can use the update rules in Eqg. (4) for mferrmgse methods such as the saddle point one. However, we
the original signals. In particular, we choose the matrik

o h NE — O1) el s diff Cf . performed a numerical density evolution analysis, as shown
0 have onlyX = O(1) elements di erent from z€ro n 5, Fig.[ (bottom), and found that the threshold is almost the
each row andd = aK = O(1) elements in each column

) AR ' same as the one computed with the matrifes
extracting them from the distribution, . . Lo
Next, we will verify that the correct solution is always the
P(F) = 15(Fm‘ i 15(Fm‘ ) (5) 9lobal maximum of(D) and it is locally stable up tex ~
2 2 po When using EM-BP with a sparse matrix. Since we can
with J = 1. The use of the messages_,, and v;_,, notanalytically compute the free entropy, we must resoa to
instead of the AMP equations does not involve an extra costimerical method. We start EM-BP with an initial condition
in memory, because the number of the message3(i§) very close to the correct solutiony_,, = s; + d;,, with
from the sparsity of the matrix. In principle, the message&i—, @ random number uniformly distributed jr-A, A]. In
mi_,(x) are not Gaussian if the matrix is sparse, so th#his way, we have verified (see Fig. 2) that\fis sufficiently
use of only the two parameteas ., andviﬁ‘u is not exact. small, the correct solution can be found updta~ pg, as in
However, the convolution of¢ messages (with = 20 in  the case of a dense matrix.
a typical matrix we use) is not far from a Gaussian, and For the algorithms based on thle minimization, it is
indeed, we can verify a posteriori that this approximat®n iknown that the threshold with a sparse matrix is lower than
valid, because it gives good results. that with a dense one. However, these algorithms are not
In all our numerical simulations, we use a Bernoulli-optimal, because the correct solution disappears below the
Gaussian distributed signal and a compressionaate0.5.  thresholday, . In this sense, the EM-BP algorithm is optimal,
Figure[l (top) shows the probability of perfect recovery abecause the global maximum of the free entropy is always
a function of the sparsity of the signa} for different sizes, on the correct solution. Thus, one can expect that, if thi ran
by applying the EM-BP algorithm using a sparse matrixf the sparse matrix is the same as that of the dense one, a



to the whole signal. This idea is similar to the so-called
spatial coupling that is very useful for solving many diéet

08 problems [21]. With this trick, the authors of Ref. [7] reach
perfect recovery for almost any > p, in the largeN limit
06 while Ref. [22] reports that the gain is quite small when
N=2000 Azloj different recovery algorithms are used. Here, we try to use a
04 00 A 104 matrix with the same block structure, but sparsely filled. We

N=5000 A=107

N=3000 A=10 divide the N variables intoL groups of sizeN/L and M
0.2 37 =

N=5000 A=1077 measurements intd groups of sizeM,, = a;,,N/L in such
NZ20008=106 : a way thatM = Z}f:l M, =aN and1/L Z}f:l ap = a.
00.4 041 042 043 044 045 0‘46' 0:17 0.48 OV49' 05 In this way, the matrix¥ is divided into>2 b|OCkS, labeled

Po with indices(p, ¢). Each block is a sparse binary matrix with
k elements different from zero for each row ahgl= o,k

Fig. 2. Stability check of the solution determined by the BR-message el_ements for each (?Olumn’ distributed accordlng to Eh (5)'
passing algorithm. Starting the recovery process with asspaatrix from  With J = JIp.q- AS in Ref. [7], we ChOOSG]p,pfl = Ji,
an initial condition differing less thark from the correct solution, the latter Jpp = 1, Jppt1 = Jo, and Jpg = 0 otherwise. The
is recovered as long a& < agiqp(A). In the limit A — 0, the stability . -~ Lo ' s
limit g5 (A) tends 1o the theoretical bourd (which is 0.5). |mpqrtant ingredient to nucleate the correct squt.|on qi _th
the first blocka; = (M1 /N)L > app holds. For simplicity,
we can choosey; = 1 anda, = (La — 1)/(L — 1) for

0.55 p # 1. The recovery strongly depends on the paramefers
05 = and.J,, and the best results far = 0.5 are obtained around
o ey ] J1 =4 and.J; = 1. Moreover, we used these two values in
S e o the experiments described below because we wanted to work
041 N with matrices with elements having small integer values.
g 035¢ 1 Similarly to the dense case, the use of a sparse structured
03 } ] matrix with blocks allows to overcome the dynamical tran-
sition atagp and to nucleate the correct solution untilis
025 1 block structured S_EMB% ..... ot | very close top,. Figure[3 shows the mean critical threshold
02 EMBP l pe(IN) for different signal lengths at a fixed compression
0.15 . . . o P— ratea = 0.5. Thez axis uses the same scaling variable as in
0 0.05 0.1 0.15 0.2 0.25 Fig.[[3, and the best parametepbtained from the fit of data
N2 in Fig.[3 also interpolates the data in Hig. 3 quite well. Ia th

thermodynamic limit,p. extrapolates to a value compatible
Fig. 3. pc(NV) with a sparse, structured matrix with blocks, for different with the optimal oneg, and it is certainly much hlghel’ than
sizesN and values ofL, (see text). The thresholds for tife-recovery and the thresholds fo¥;-recovery and fO!’ EM'BP.W”hOUt any
for EM-BP without any structure are also drawn. For comperiwith the  structure. We have also done a density evolution analyats th
data in Fig[®, we used the exponent- 0.18 best fitting those data. confirms this result.
For each value ofV and L, the mean critical threshold
o . is computed as follows. We randomly generate a block
similar threshold can be reached (as we have demonstraéﬂjctured matrixF with the given N and L. We start
numerically). _ with a sufficiently sparse original signal which has been
In summary, we can say that the EM-BP algorithm ofgcqyered by the algorithm; we then add non-zero entries to
Ref. [7] seems to reach the same threshalgp, either he signal and check whether the new signal can be recovered
using a dense Gaussian matrix or a sparse binary OBg the algorithm; we go on adding non-zero elements to
if the numbers of non-zero elements per row/column argle signal until a failure in a perfect recovery occurs. The
O(1) but sufficiently large. However, the use of a spars@ye\ious to the last value for, is the critical threshold for
matrix is computationally much faster than the use of g,¢ matrix F. The mean critical threshold is obtained by

dense one. Moreover, the use of binary elements, instegge aging over many different random matrices and signals,
of Gaussian real values, allows for better code optimiratio, i, the same values o and . The number of such

and eventually for hard-wired encoding of the compressiof,,qom extractions goes froi® for the largestV value
process. up to 10* for the smallestV value.

The values of(NV, L, k) used for the simulations shown
in Fig. 3 are the following:(2250, 10,9), (19000, 20, 19),

To avoid the secondary maximum of the free entropy, 131200, 40, 39), and (49000, 50,49). We need to increase
Ref. [7], the authors use a structured block matrix thatdielgooth N and L if we want to obtain good results in the
to nucleate the correct solution. The idea is that the correthermodynamic limit. However, if we changk, we must
solution is found for the first variables, and then it progaga changek too. Indeed, in order to have the same number of

IV. BLOCK-STRUCTURED SPARSE MATRICES
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Fig. 4. A nearly one-dimensional sparse matrix with a sqbéwek of size  Fig. 5. p.(N) with a sparse, striped matrix, as described in Sedfidn V

L x L at the top left and non-zero elements in the stripes arounditigonal
can achieve compression and perfect recovery close to ¢oedtical bound
in linear time.

for different sizes (fromN = 2000 to N = 40000). The thresholds for
¢1-recovery and for EM-BP without structure are drawn for camigon.
The best fitting parameter is ~ 0.18, and it leads to an extrapolation of
pc(N) in the thermodynamic limit compatible witt.

elements per row and column for each of thé blocks,

we must satisfy the condition§N/L)/M, = k/h, with diagonal and/ = J, above the diagonal. In this way, the

k and h, integer valued. Here, we have used the smallerumber of elements per column is constant, while the number

possible value folk, that isk = L — 1. The fact that it is of elements per row is a truncated Poisson random variable

impossible to keep: constant while increasing, implies with mean2K: indeed, there are no empty rows, thanks to

that these kinds of block-structured matrices always beconthe rule of placing the first element of each column closest to

dense in the thermodynamic limit. This is a limitation of thethe diagonal. When constructing the matrix, we apply eyactl

block structure that we want to eliminate with the matrixhe same rule to each column, but in the lastolumns it

proposed in the following Section. may happen that a non-zero element has a row index larger

than)/: these elements are then moved below the first square

V. AND WITHOUT BLOCKS? matrix by changing the row and column indices as follows:

The matrix proposed in Ref. [7] is not the only one” <~ 7 — (M — L) andc < c— (N - L).
that allows the optimal threshold to be reached. Reference!n this way, we have some kind of continuous one-
[23] analyzes the use of other good dense, block-structur€inensional version of the block-structured matrix diseas
matrices. However, the block-structure is not so simple tt the previous Section. Within this striped matrix ensesnbl
handle if one wants to do analytical calculations in théhe thermodynamic limit at a fixed matrix sparsity can be
continuum limit. Moreover, in making these block-struemir calculated without any problem, by sendifg L — oo at a
matrices sparse, one has to be careful to find the right valuéed L/N and fixed K = O(1). In Fig.[3, we show the
of L, M, N, M,, a,, k. For these reasons, we want to know ifmean critical threshold reached by using striped matrices
the block structure is crucial, and, if not, we want to eliatim  With a fixed ratioL/N = 1/50 (the same used in the plot
it. of Fig.[d) and different signal lengths. Perfect decoding up

We tried a different structured sparse matrix (see [Fig. 430 P iS again achieved by using the EM-BP algorithm. We
that we called a striped matrix. It has one sparse squaftrapolated the.(N) data to the thermodynamic limit by
block of size L on the top left of the matrix withk = assuming the following behavior in the largé limit:
O.(l) eIements_ for each row apd column extracted frEIn_(S) pe(N) = pe(oc) — BN~ (6)
with J = 1. This arrangement is fundamental for nucleating
the correct solution. Apart from this first block, the resitiu The data in Figl15 are plotted with the best fitting parameter
compression rate i8/ = %:5 Then, we construct a one- a ~ 0.18, and the extrapolated value.(co) is perfectly
dimensional structure around the diagonal of the remainingpmpatible with the theoretical bound
matrix. For each columm > L, we randomly plac€K o’ Hence, we can conclude that the important ingredient to
non-zero elements, again extracted frdt (5), in the intervaeach optimality is not the block structure, but the nearly
of the width 2L’ around the diagonal. One element withone-dimensional structure, associated with the initiaickl
J = 1 is always placed on the diagonal (actually on thevith oy > app to nucleate the correct solution.
position closest to the diagonal). For the remaining eldmen It is worth noticing that the corresponding statistical
we use the following rules. If the element is at a distancemechanics model for these striped random matrices is a
d < La’/3 from the diagonal, we usd = 1. Otherwise, one-dimensional disordered model with an interaction eang
if its distance isd > La’/3, we useJ = J; below the growing with the signal length, as in a Kac construction.




1000 ‘ . In (_1ata streami_ng computing, one _is typically interested
sparse @ in doing very quick measurements in constant time. For
example, if the task is to measure the number of packets
with destinationi passing through a network router, it is not
possible to keep a vectarbecause it is generally too long.
Instead, a much shorter sketch of4t,= F's, is measured
in such a way that a very sparse vectocan be recovered
from y. The matrix F must be sparse in order to be able to
update the sketcly in a constant time for each new packet
passing through the router.
‘ ‘ ‘ Another interesting application is the problem of group
1000 2000 5000 10000 testing, where a very sparse vectoe {0, 1}" is given and
N one is interested in performing the fewest linear measure-
Fig. 6. Actual time (in seconds) for recovery of a signal wittnse and ments,y = F's, that "?‘"OW for detectlon of the defeCtIYe
sparse matrices for different data lengkis The data are fitted respectively €lements § = 1). In this case, the experimental constraints
by a quadratic and a linear function. require a sparse matri¥: only if the tested compound
vy = »_; Fuis; is made of a very few elements &f the
linear response holds and non-linear effects can be ignored
Models of this kind are analytica”y solvable and have shown However, in the more genera| case, one does not direcﬂy
very interesting results [24]. observe the sparse signabut rather a linear transformation
The use of our striped sparse matrices allows for gf it, = Ds, made with a dictionary matri¥ (which
great reduction in computational complexity. Indeed, thes typically a Fourier or wavelet transformation, and thus
measurement and recovery times grow linearly with thgs a dense matrix). In this more difficult case, one would
size of the Signal if sparse matrices are used, while thﬁm’(e to design a sparse measurement matixsuch that
grow quadratically if dense matrices are used. Fidure e measurement/compression operatign= Az, is fast,
shows the measurement and recovery times of a signal fghd the resulting observed datais short, thanks to the
different signal lengthsv. For this test, we used dense block-sparseness of. The conflicting requirement is to have a
structured matrices and sparse striped matrices. The mumkgst recovery scheme, because, now, to recover the original
of EM-BP iterations to reach the solution is roughly constarsignal one should solvé = argmin ||s||o subject toy =
for different V. A quadratic fit for the dense case and a Iinea(AD)s, whereAD is typically dense (e.g. in case of Fourier
fit for the sparse one perfectly interpolate the data. and wavelet transformations). So a very interesting future
development of the present approach is to extend it to this
more complex case.

100

10

t(s)

0.1

VI. CONCLUSIONS AND FUTURE DEVELOPMENT

We introduced an ensemble of sparse random matifites
that, thanks to their particular structure (see Fidure Kwa
us to perform the fo||owing Operations in linear time: FR-T is grateful for his useful discussions with F. Krza-
(|) measurement Ofao-sparse vectog of |engthN by using kala, M. Mézard and L. Zdeborova and financial support
a linear transformatiom — FS, to a Vectory of |engtha]\] from the Italian Research Minister through the FIRB PrOjeCt
(i) perfect recovery of the original vectog by using a No. RBFRO86NN1 on “Inference and Optimization in Com-

message passing algorithm (Expectation Maximization Bélex Systems: From the Thermodynamics of Spin Glasses to
lief Propagation) for almost any parameter satisfying th¥essage Passing Algorithms”. _
theoretical boungh, < a. YK is supported by grants from the Japan Society for the
These striped sparse matrices that have such good pBfomotion of Science (KAKENHI No. 22300003) and the
formance because there is a ‘seeding’ sparse square matlitsubishi foundation.
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