
ar
X

iv
:1

20
7.

28
53

v2
  [

cs
.IT

]  
12

 A
pr

 2
01

3

Compressed sensing with sparse, structured matrices

Maria Chiara Angelini
Dip. Fisica
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Abstract— In the context of the compressed sensing problem,
we propose a new ensemble of sparse random matrices which
allow one (i) to acquire and compress aρ0-sparse signal
of length N in a time linear in N and (ii) to perfectly
recover the original signal, compressed at a rateα, by using
a message passing algorithm (Expectation Maximization Belief
Propagation) that runs in a time linear in N . In the large
N limit, the scheme proposed here closely approaches the
theoretical bound ρ0 = α, and so it is both optimal and
efficient (linear time complexity). More generally, we showthat
several ensembles of dense random matrices can be converted
into ensembles of sparse random matrices, having the same
thresholds, but much lower computational complexity.

I. I NTRODUCTION

Compressed sensing is a framework that enables anN -
dimensional sparse signals = (si) to be recovered from
M(< N) linear measurements of its elements,y = Fs,
by exploiting the prior knowledge thats contains many
zero elements [1]. A simple consideration guarantees that
ℓ0-recovery,

ŝ = argmin
x

||x||0 subj. to y = Fx, (1)

where||x||0 denotes the number of non-zero elements inx,
is theoretically optimal in terms of minimizing the number
of measurementsM necessary for perfectly recovering any
original signal s. However, carrying outℓ0-recovery for
a general measurement matrixF is NP-hard. To avoid
such computational difficulties, an alternative approach,ℓ1-
recovery

ŝ = argmin
x

||x||1 subj. to y = Fx, (2)

where ||x||1 =
∑N

i=1 |xi|, is widely employed, as (2) is
generally converted into a linear programming problem, and
therefore, signal recovery is mathematically guaranteed in an
O(N3) computational time through the use of the interior
point method. Nevertheless, theO(N3) cost of computation
can still be unacceptably high in many practical situations,
and much effort is being put into finding more computation-
ally feasible and accurate recovery schemes [2]–[7].

Among such efforts, the recovery scheme recently pro-
posed by Krzakala et al. [7] is worth special attention. Their
scheme basically follows the Bayesian approach. Namely, the

signal recovery problem is formulated as one of statistical
inference from the posterior distribution,

P (x|F ,y) =
δ(Fx− y)P (x)

Z(F ,y)
, (3)

whereZ(F ,y) is a normalization factor imposing the con-
dition

∫

dxP (x|F ,y) = 1 and a component-wise prior
distributionP (x) =

∏N
i=1[(1−ρ)δ(xi)+ρφ(xi)] is assumed.

ρ and φ(x) represent the density of the non-zero signal
elements and a Gaussian distribution, respectively. Exactly
inferring s from (3) is NP-hard, similarly to (1). However,
by employing the belief propagation (BP) in conjunction
with the expectation-maximization (EM) algorithm for es-
timating ρ and the parameters ofφ(x), they developed an
approximation algorithm, termed EM-BP, which has better
recovery performance than (2) with a computational cost of
only O(N2). Furthermore, they showed that, by employing a
peculiar type of “seeded” matrixF , the threshold of the com-
pression rateα = M/N of EM-BP, above which the original
signal is typically recovered successfully, can approach very
close to that ofℓ0-recovery,αs−EMBP = ρ0, whereρ0 is the
actual signal density ofs ands−EMBP stands for ‘seeded
EM-BP’. The seeded matrix is composed of blocks along the
diagonal densely filled with Gaussian random variables. It is
important to remember that this result is achieved for the
first time with an approach different fromℓ0-recovery, being
the threshold forℓ1-recovery that is much higher than the
optimal one:αℓ1 > ρ0. The optimality of theℓ0-recovery
is guaranteed for EM-BP, which means that this scheme
can practically achieve the theoretically optimal threshold
of signal recovery with anO(N2) computational cost. This
remarkable property was recently proved in a mathematically
rigorous manner in the case that the matrix entries satisfy
certain conditions concerning their statistics [8]. However,
it is still unclear whether their scheme is optimal in terms
of the computational complexity; there might be a certain
design of the measurement matrixF that makes it possible
to further reduce the computational cost while keeping the
same signal recovery threshold.

The purpose of the present study is to explore such a
possibility. For this, we focus on a class of matrices that
are characterized by the following properties:

• sparsity: The matrix F has onlyO(1) non-zero el-
ements per row and column. This implies that the
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measurements can be performed in a time linear in
the signal length. This situation is highly preferred for
the sake of practicality, given that such an operation
typically needs to be done in real time, during data
acquisition.

• integer values:The matrix elements are not real valued,
but take on small integer values. This means that an
optimized code for the measurements can work with
bitwise operations, thus achieving much better perfor-
mance without any loss of precision.

• no block structure: The block structure used in [7]
may not be necessary for reaching the optimal thresh-
old. As an alternative possibility, we study a structure
made of a square matrix in the upper left corner (the
seed) plus a stripe along the diagonal. This structure is
much more amenable for analytic computations, since it
corresponds to a one-dimensional model homogeneous
in space.

The use of sparse matrices for compressed sensing has al-
ready been suggested in several earlier studies [9]–[13]. Our
approach is particularly similar to that of [13] in the sense
that both sides are based on the Bayesian framework and use
integer-valued sparse measurement matrices. Nevertheless,
these two approaches differ considerably in the following
two points. Firstly, we adopt EM-BP, which updates only
a few variables per node for the signal recovery, while
the recovery algorithm of [13] involves functional updates
and needs significantly more computational time than ours.
Secondly, we thoroughly explored a simple design ofF that
achieves nearly optimal recovery performance. In contrast,
the problem of the matrix design is not fully examined in
[13]. By carrying out extensive numerical experiments in
conjunction with an analysis based on density evolution [15],
we show that a threshold close to the theoretical limitα = ρ0
can be achieved by using matrices with the above properties
with an almostlinear computational cost in the measurement
and recovery stages.

This paper is organized as follows. In Section II, the
EM-BP algorithm is briefly explained and the results for
dense matrices are summarized. The algorithm is applied
to homogeneously sparse matrices in Section III and to
structured sparse block matrices in Section IV. A new type
of “striped” sparse matrix without blocks is introduced in
Section V. The last Section summarizes our work, focusing
on its importance for practical use, and touches on future
issues.

II. EXPECTATION MAXIMIZATION BELIEF PROPAGATION

The new algorithm based on BP in conjunction with the
EM proposed in Ref. [7] starts from Eq. (3). A similar idea
was also proposed in Ref. [14]. In order to solve it with
BP, O(MN) messages for the probability distributions of

the variablesxi are constructed in the following way:

mµ→i(xi) =
1

Zµ→i

∫

∏

j 6=i

dxjmj→µ(xi)δ
(

yµ −
∑

k

Fµkxk

)

mi→µ(xi) =
1

Zi→µ

[

(1 − ρ)δ(xi) + ρφ(xi)
]

∏

γ 6=µ

mγ→i(xi)

whereZi→µ andZµ→i are normalization factors. This EM-
BP equations are very complicated because the messages are
distribution functions. In order to make them simpler, the
messages can be approximated by assuming that they are
Gaussian, thus obtaining the equations for the meanai→µ

and the variancevi→µ of mi→µ(xi). This approximation
was introduced for sparse matrices in Refs. [16]–[19], and
it becomes asymptotically exact ifF is dense. In fact, it is
derived from an expansion in smallFµi, and in the dense
caseFµi = O(1/

√
N). Supposing that the elements of the

original signal follow a Bernoulli-Gaussian distributionwith
parametersρ0, x0 andσ0, the update rules for the messages
are the following:

ai→µ = fa





∑

γ 6=µ

Aγ→i,
∑

γ 6=µ

Bγ→i





ai = fa

(

∑

γ

Aγ→i,
∑

γ

Bγ→i

)

vi→µ = fc





∑

γ 6=µ

Aγ→i,
∑

γ 6=µ

Bγ→i





vi = fc

(

∑

γ

Aγ→i,
∑

γ

Bγ→i

)

Aµ→i =
F 2
µi

∑

j 6=i F
2
µjvj→µ

Bµ→i =
Fµi

(

yµ −
∑

j 6=i Fµjaj→µ

)

∑

j 6=i F
2
µjvj→µ

(4)

wherefa andfc are some analytical functions depending on
the parametersρ, x andσ. For details, see Ref. [7].

In general, the originalρ0, x0 andσ0 are not known, but
one can use EM to derive the update rules for them, using
the property that the partition function

Z(ρ, x, σ) =

∫

dxP (x)δ(y − Fx)

is the likelihood of the parameters(ρ, x, σ) and is maximized
by the true parametersρ0, x0, andσ0. Thus, after the update
of all the messages, the inferred parameters of the original
distribution are updated following these rules:

x← 1

ρN

∑

i

ai , σ2 ← 1

ρN

∑

i

(vi + a2i )− x2 ,

ρ←
∑

i
1/σ2+Ui

Vi+x/σ2 ai

∑

i

[

1− ρ+ ρ

σ(1/σ2+Ui)
1
2
e

(Vi+x/σ2)2

2(1/σ2+Ui)
− x2

2σ2

]−1 ,



with Ui =
∑

γ Aγ→i andVi =
∑

γ Bγ→i. If the algorithm
converges to the correct solution,ai = si andvi = 0.

To reduce the number of messages fromO(NM) to
O(N), one can see that in the largeN limit, the messages
ai→µ and vi→µ are nearly independent ofµ. Thus, we
can derive the equations involving only a variable per each
measurement node and a variable per signal node, if we are
careful to keep the correcting Onsager reaction term as in
the TAP equations of statistical physics [20]. This method
was introduced in the context of compressed sensing in Ref.
[6] and is called approximated message passing (AMP).

In general, the correct distribution of the original signal
is unknown. However, in Ref. [7], it is demonstrated that if
α > ρ0, the most probable configuration ofx with respect to
P (x) =

∏N
i=1[(1− ρ)δ(xi) + ρφ(xi)] with ρ < 1, restricted

to the subspacey = Fx, is the original signals, even if the
signal is not distributed according toP (x). So our choice
of a Gaussian distribution forφ(x) should be perfectly fine
even if the original signal has a different distribution.

The free entropyΦ(D) at a fixed mean square error
D = (1/N)

∑N
i=1(xi − si)

2 can be computed if a dense
matrix is used. Forα > ρ0, the global maximum of the
functionΦ(D) is at D = 0, that corresponds to the correct
solution. However, below a certain thresholdα < αBP that
depends on the distributionP (s), the free entropy develops a
secondary, local maximum atD 6= 0. As a consequence, the
EM-BP algorithm can not converge to the correct solution
for ρ0 < α < αBP , because a dynamical transition occurs.
Nonetheless, the thresholdαBP is lower thanαℓ1 .

III. EM-BP WITH A SPARSE MATRIX

First of all, we want to verify if the use of a sparse matrix
can reach the same results as the use of a dense one. For a
sparse random matrix, the AMP equations can not be used;
thus, we can use the update rules in Eq. (4) for inferring
the original signals. In particular, we choose the matrixF
to have onlyK = O(1) elements different from zero in
each row andH = αK = O(1) elements in each column,
extracting them from the distribution,

P (Fµi) =
1

2
δ(Fµi − J) +

1

2
δ(Fµi + J) (5)

with J = 1. The use of the messagesai→µ and vi→µ

instead of the AMP equations does not involve an extra cost
in memory, because the number of the messages isO(N)
from the sparsity of the matrix. In principle, the messages
mi→µ(x) are not Gaussian if the matrix is sparse, so the
use of only the two parametersai→µ andvi→µ is not exact.
However, the convolution ofK messages (withK = 20 in
a typical matrix we use) is not far from a Gaussian, and
indeed, we can verify a posteriori that this approximation is
valid, because it gives good results.

In all our numerical simulations, we use a Bernoulli-
Gaussian distributed signal and a compression rateα = 0.5.

Figure 1 (top) shows the probability of perfect recovery as
a function of the sparsity of the signalρ0 for different sizes,
by applying the EM-BP algorithm using a sparse matrix
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Fig. 1. Top: Probability of perfect recovery versus the signal sparsityρ0
using sparse matrices withα = 0.5 andK = 20. The threshold is the same
as with dense matrices. Bottom: Probability of perfect recovery computed
with density evolution has the same threshold. Here,N is the population
size.

with K = 20. The threshold for perfect recovery in the
thermodynamic limit (N → ∞) is ρBP ≃ 0.315, which
is the same as the one obtained in Ref. [7] with a dense
matrix. We can not analytically compute the free entropy
Φ(D) as in [7], because we use sparse matrices and cannot
use methods such as the saddle point one. However, we
performed a numerical density evolution analysis, as shown
in Fig. 1 (bottom), and found that the threshold is almost the
same as the one computed with the matricesF .

Next, we will verify that the correct solution is always the
global maximum ofΦ(D) and it is locally stable up toα ≃
ρ0 when using EM-BP with a sparse matrix. Since we can
not analytically compute the free entropy, we must resort toa
numerical method. We start EM-BP with an initial condition
very close to the correct solution:a0i→µ = si + δi→µ, with
δi→µ a random number uniformly distributed in[−∆,∆]. In
this way, we have verified (see Fig. 2) that if∆ is sufficiently
small, the correct solution can be found up toα ≃ ρ0, as in
the case of a dense matrix.

For the algorithms based on theℓ1 minimization, it is
known that the threshold with a sparse matrix is lower than
that with a dense one. However, these algorithms are not
optimal, because the correct solution disappears below the
thresholdαℓ1 . In this sense, the EM-BP algorithm is optimal,
because the global maximum of the free entropy is always
on the correct solution. Thus, one can expect that, if the rank
of the sparse matrix is the same as that of the dense one, a
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Fig. 2. Stability check of the solution determined by the EM-BP message
passing algorithm. Starting the recovery process with a sparse matrix from
an initial condition differing less than∆ from the correct solution, the latter
is recovered as long asρ0 < αstab(∆). In the limit ∆ → 0, the stability
limit αstab(∆) tends to the theoretical boundα (which is 0.5).
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Fig. 3. ρc(N) with a sparse, structured matrix with blocks, for different
sizesN and values ofL (see text). The thresholds for theℓ1-recovery and
for EM-BP without any structure are also drawn. For comparison with the
data in Fig. 5, we used the exponenta ≃ 0.18 best fitting those data.

similar threshold can be reached (as we have demonstrated
numerically).

In summary, we can say that the EM-BP algorithm of
Ref. [7] seems to reach the same thresholdαBP , either
using a dense Gaussian matrix or a sparse binary one
if the numbers of non-zero elements per row/column are
O(1) but sufficiently large. However, the use of a sparse
matrix is computationally much faster than the use of a
dense one. Moreover, the use of binary elements, instead
of Gaussian real values, allows for better code optimization
and eventually for hard-wired encoding of the compression
process.

IV. B LOCK-STRUCTURED SPARSE MATRICES

To avoid the secondary maximum of the free entropy, in
Ref. [7], the authors use a structured block matrix that helps
to nucleate the correct solution. The idea is that the correct
solution is found for the first variables, and then it propagates

to the whole signal. This idea is similar to the so-called
spatial coupling that is very useful for solving many different
problems [21]. With this trick, the authors of Ref. [7] reach
perfect recovery for almost anyα > ρ0 in the largeN limit
while Ref. [22] reports that the gain is quite small when
different recovery algorithms are used. Here, we try to use a
matrix with the same block structure, but sparsely filled. We
divide theN variables intoL groups of sizeN/L andM
measurements intoL groups of sizeMp = αpN/L in such
a way thatM =

∑L
p=1 Mp = αN and1/L

∑L
p=1 αp = α.

In this way, the matrixF is divided intoL2 blocks, labeled
with indices(p, q). Each block is a sparse binary matrix with
k elements different from zero for each row andhp = αpk
elements for each column, distributed according to Eq. (5),
with J = Jp,q. As in Ref. [7], we chooseJp,p−1 = J1,
Jp,p = 1, Jp,p+1 = J2, and Jp,q = 0 otherwise. The
important ingredient to nucleate the correct solution is that in
the first blockα1 = (M1/N)L > αBP holds. For simplicity,
we can chooseα1 = 1 and αp = (Lα − 1)/(L − 1) for
p 6= 1. The recovery strongly depends on the parametersJ1
andJ2, and the best results forα = 0.5 are obtained around
J1 = 4 andJ2 = 1. Moreover, we used these two values in
the experiments described below because we wanted to work
with matrices with elements having small integer values.

Similarly to the dense case, the use of a sparse structured
matrix with blocks allows to overcome the dynamical tran-
sition atαBP and to nucleate the correct solution untilα is
very close toρ0. Figure 3 shows the mean critical threshold
ρc(N) for different signal lengths at a fixed compression
rateα = 0.5. Thex axis uses the same scaling variable as in
Fig. 5, and the best parametera obtained from the fit of data
in Fig. 5 also interpolates the data in Fig. 3 quite well. In the
thermodynamic limit,ρc extrapolates to a value compatible
with the optimal one,α, and it is certainly much higher than
the thresholds forℓ1-recovery and for EM-BP without any
structure. We have also done a density evolution analysis that
confirms this result.

For each value ofN andL, the mean critical threshold
ρc is computed as follows. We randomly generate a block
structured matrixF with the given N and L. We start
with a sufficiently sparse original signals, which has been
recovered by the algorithm; we then add non-zero entries to
the signal and check whether the new signal can be recovered
by the algorithm; we go on adding non-zero elements to
the signal until a failure in a perfect recovery occurs. The
previous to the last value forρ0 is the critical threshold for
the matrix F . The mean critical threshold is obtained by
averaging over many different random matrices and signals,
with the same values ofN and L. The number of such
random extractions goes from103 for the largestN value
up to 104 for the smallestN value.

The values of(N,L, k) used for the simulations shown
in Fig. 3 are the following:(2250, 10, 9), (19000, 20, 19),
(31200, 40, 39), and (49000, 50, 49). We need to increase
both N and L if we want to obtain good results in the
thermodynamic limit. However, if we changeL, we must
changek too. Indeed, in order to have the same number of
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Fig. 4. A nearly one-dimensional sparse matrix with a squareblock of size
L×L at the top left and non-zero elements in the stripes around the diagonal
can achieve compression and perfect recovery close to the theoretical bound
in linear time.

elements per row and column for each of theL2 blocks,
we must satisfy the conditions:(N/L)/Mp = k/hp with
k and hp integer valued. Here, we have used the smaller
possible value fork, that isk = L − 1. The fact that it is
impossible to keepk constant while increasingL implies
that these kinds of block-structured matrices always become
dense in the thermodynamic limit. This is a limitation of the
block structure that we want to eliminate with the matrix
proposed in the following Section.

V. A ND WITHOUT BLOCKS?

The matrix proposed in Ref. [7] is not the only one
that allows the optimal threshold to be reached. Reference
[23] analyzes the use of other good dense, block-structured
matrices. However, the block-structure is not so simple to
handle if one wants to do analytical calculations in the
continuum limit. Moreover, in making these block-structured
matrices sparse, one has to be careful to find the right values
of L,M,N,Mp, αp, k. For these reasons, we want to know if
the block structure is crucial, and, if not, we want to eliminate
it.

We tried a different structured sparse matrix (see Fig. 4),
that we called a striped matrix. It has one sparse square
block of sizeL on the top left of the matrix withK =
O(1) elements for each row and column extracted from (5)
with J = 1. This arrangement is fundamental for nucleating
the correct solution. Apart from this first block, the residual
compression rate isα′ = M−L

N−L . Then, we construct a one-
dimensional structure around the diagonal of the remaining
matrix. For each columnc > L, we randomly place2Kα′

non-zero elements, again extracted from (5), in the interval
of the width 2Lα′ around the diagonal. One element with
J = 1 is always placed on the diagonal (actually on the
position closest to the diagonal). For the remaining elements,
we use the following rules. If the element is at a distance
d ≤ Lα′/3 from the diagonal, we useJ = 1. Otherwise,
if its distance isd > Lα′/3, we useJ = J1 below the
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Fig. 5. ρc(N) with a sparse, striped matrix, as described in Section V
for different sizes (fromN = 2000 to N = 40000). The thresholds for
ℓ1-recovery and for EM-BP without structure are drawn for comparison.
The best fitting parameter isa ≃ 0.18, and it leads to an extrapolation of
ρc(N) in the thermodynamic limit compatible withα.

diagonal andJ = J2 above the diagonal. In this way, the
number of elements per column is constant, while the number
of elements per row is a truncated Poisson random variable
with mean2K: indeed, there are no empty rows, thanks to
the rule of placing the first element of each column closest to
the diagonal. When constructing the matrix, we apply exactly
the same rule to each column, but in the lastL columns it
may happen that a non-zero element has a row index larger
thanM : these elements are then moved below the first square
matrix by changing the row and column indices as follows:
r ← r − (M − L) andc← c− (N − L).

In this way, we have some kind of continuous one-
dimensional version of the block-structured matrix discussed
in the previous Section. Within this striped matrix ensemble,
the thermodynamic limit at a fixed matrix sparsity can be
calculated without any problem, by sendingN,L→∞ at a
fixed L/N and fixedK = O(1). In Fig. 5, we show the
mean critical threshold reached by using striped matrices
with a fixed ratioL/N = 1/50 (the same used in the plot
of Fig. 4) and different signal lengths. Perfect decoding up
to ρc is again achieved by using the EM-BP algorithm. We
extrapolated theρc(N) data to the thermodynamic limit by
assuming the following behavior in the largeN limit:

ρc(N) = ρc(∞)− bN−a (6)

The data in Fig. 5 are plotted with the best fitting parameter
a ≃ 0.18, and the extrapolated valueρc(∞) is perfectly
compatible with the theoretical boundα.

Hence, we can conclude that the important ingredient to
reach optimality is not the block structure, but the nearly
one-dimensional structure, associated with the initial block
with α1 > αBP to nucleate the correct solution.

It is worth noticing that the corresponding statistical
mechanics model for these striped random matrices is a
one-dimensional disordered model with an interaction range
growing with the signal length, as in a Kac construction.
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Fig. 6. Actual time (in seconds) for recovery of a signal withdense and
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Models of this kind are analytically solvable and have shown
very interesting results [24].

The use of our striped sparse matrices allows for a
great reduction in computational complexity. Indeed, the
measurement and recovery times grow linearly with the
size of the signal if sparse matrices are used, while they
grow quadratically if dense matrices are used. Figure 6
shows the measurement and recovery times of a signal for
different signal lengthsN . For this test, we used dense block-
structured matrices and sparse striped matrices. The number
of EM-BP iterations to reach the solution is roughly constant
for differentN . A quadratic fit for the dense case and a linear
fit for the sparse one perfectly interpolate the data.

VI. CONCLUSIONS AND FUTURE DEVELOPMENT

We introduced an ensemble of sparse random matricesF

that, thanks to their particular structure (see Figure 4), allow
us to perform the following operations in linear time:
(i) measurement of aρ0-sparse vectors of lengthN by using
a linear transformation,y = Fs, to a vectory of lengthαN
(ii) perfect recovery of the original vectors by using a
message passing algorithm (Expectation Maximization Be-
lief Propagation) for almost any parameter satisfying the
theoretical boundρ0 < α.

These striped sparse matrices that have such good per-
formance because there is a ‘seeding’ sparse square matrix
in the upper left corner that nucleates a seed for the right
solution and the one-dimensional structure along the diagonal
propagates the initial seed to the complete right solution.
Both seeding and a one-dimensional structure have been used
in the past [7], [21], but in our new ensemble, the matrices
are sparse, and this permits us to perform all the operations
in a time linear in the signal length.

We also checked that sparse matrices perform as well as
dense ones in the case of block-structured matrices and for
matrices with no structure at all.

Apart from the compressed sensing case, several other
applications require a sparse matrix or equivalently linear
time complexity [10]

In data streaming computing, one is typically interested
in doing very quick measurements in constant time. For
example, if the task is to measure the number of packetssi
with destinationi passing through a network router, it is not
possible to keep a vectors because it is generally too long.
Instead, a much shorter sketch of it,y = Fs, is measured
in such a way that a very sparse vectors can be recovered
from y. The matrixF must be sparse in order to be able to
update the sketchy in a constant time for each new packet
passing through the router.

Another interesting application is the problem of group
testing, where a very sparse vectors ∈ {0, 1}N is given and
one is interested in performing the fewest linear measure-
ments,y = Fs, that allow for detection of the defective
elements (si = 1). In this case, the experimental constraints
require a sparse matrixF : only if the tested compound
yµ =

∑

i Fµisi is made of a very few elements ofs, the
linear response holds and non-linear effects can be ignored.

However, in the more general case, one does not directly
observe the sparse signals but rather a linear transformation
of it, x = Ds, made with a dictionary matrixD (which
is typically a Fourier or wavelet transformation, and thus
is a dense matrix). In this more difficult case, one would
like to design a sparse measurement matrixA such that
the measurement/compression operation,y = Ax, is fast,
and the resulting observed datay is short, thanks to the
sparseness ofs. The conflicting requirement is to have a
fast recovery scheme, because, now, to recover the original
signal one should solvês = argmin ||s||0 subject toy =
(AD)s, whereAD is typically dense (e.g. in case of Fourier
and wavelet transformations). So a very interesting future
development of the present approach is to extend it to this
more complex case.
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