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Abstract—Several works have developed vector-linear Repair Problemhow to maintain the encoded representation
maximum-distance separable (MDS) storage codes that min- when asingle node erasure occurs. To maintain the same
imize the total communication costequired to repair a single redundancy posterior to an erasure, a new node has to

coded symbol after an erasure, referred to as repair bandwith . .
(BW). Vector codes allow communicating fewer sub-symbols 101 the storage array and regenerate the lost contents by

per node, instead of the entire content. This allows non triial  downloading and processing data from the remaining storage
savings in repair BW. In sharp contrast, classic codes, likReed- nodes. Classic codes, like Reed-Solomon are scalar MDS

Solomon (RS), used in current storage systems, are deemedcodes. Currently used repair scheme for these codesive
to suffer from naive repair i.e. downloading the entire stored repair. This involves downloading all the contents of ahy

tmhg}s,szrgeesgraefﬁgg_e failed node. This mainly happens becsa: of the remaining nodes to reconstruct the entire file and then

In this work, we present a simple framework that treats replacing the coded sub-symbols of a single failed node.
scalar codes as vector-linear. In some cases, this allowssifi- During repair process of an erasure, there are several
CaﬂtbsaVings in rep'cﬂr BW. Wle f;hﬁwghat Vect?rized Scalf?]r cogs  metrics that can be optimized, namelgpair bandwidth
exhibit properties that simplify the design of repair schenes. ;

Our framework can be seen as a finite field analogue of real (BW) and locality [13] [14] [IE] [16] . Currently,
interference alignment. the most W(_all understood oneis the total n_umber of b|ts_ com-

Using our simplified framework, we design a scheme that Municated in the network, i.eepair bandwidth(BW). This
we call clique-repair which provably identifies the best linear was characterized inJ[2] as a function of storage per node.
repair strategy for any scalar 2-parity MDS code, under some Codes with minimum storage that offer optimal bandwidth
conditions on the sub-field chosen for vectorization. We spify e MDS, and are called minimum storage regenerating

optimal repair schemes for specific (5,3)- and (6,4)-Reed- a1 .
Solomon (RS) codes. Further, we present a repair strategy (MSR) codes. Building on the work in[2], a great volume

for the RS code currently deployed in the Facebook Analytics ©f studies have developed MSR codes [3+[12].

Hadoop cluster that leads t020% of repair BW savings over In this paper, we deal with the following specific repair
naive repairwhich is the repair scheme currently used for this scenario forsystematidMSR codes: a file consisting af/
code | sub-symbols, over some field, is storedsinnodes using

Index Terms—Scalar MDS Codes; Reed Solomon; clique- an(n, k) vector systematic MDS code. Every node contains
repair; alignment. o = % sub-symbols over the field. The firkt systematic

nodes store uncoded sub-symbols in group%oﬂ'he parity
nodes contain the coded data. An MDS code can tolerate
n — k erasures.

Large-scale distributed storage systems employ erasur&Suppose one of the systematic nodes fail and this needs to
coding to offer data reliability against hardware failureseplaced. For such a repaf, sub-symbols are downloaded
Typically, the erasure codes employed &me k) MDS from every remaining parity node, through suitable linear
(maximum distance separable) codes. An important propegiymbinations of thex symbols present in each parity node.
that ensures data reliability against failures, is thatoeed From every remaining systematic node, at ledstymbols
data from anyk nodes suffice to recover the data storecre downloaded. The downloaded symbols must be sufficient
However, a central issue that arises in coded storage is tbeenerate the contents of the failed node through linear op

erations for successful repair. According to the cut-setlo
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n — 1 nodes for repair. It is easily seen that the optimurdique-repair, that outputs an optimal repair scheme for a

repair strategy for MSR codes has immense benefit ovgven 2-parity scalar linear MDS code, viewed as a vector

naive repair for constant rate codes and for latgd@he key code over a suitably chosen sub-field. This is based on

property of MSR codes that enables the non-trivial repair & analytical condition, obtained through the repair field

that they are vector codes, i.e. data in a node is a colleofionelements approach, thdirectly relates the code’s generator

smaller sub-symbols over a field and few linear combinationsatrix entries to the repair bandwidth. We show that, for a

from every node suffice for repair of a single failure. specific(6,4) Reed Solomon code, the clique repair scheme
MSR codes, with efficient encoding and decodingbtains nontrivial gains in terms of repair bandwidth. Fos t

schemes, that meet the minimum cut-set BW bounds, derivéd4) RS code and another specifit, 3) RS code, the gains

in [2], exist for ratek/n < 1/2 [7]. In the high rate regime, can be brought close to the optimal cut-set bound[of [2],

5], [6l, [8], [8], [L1] have presented constructions thaby vectorizing over a smaller sub-field. Further, we present

achieve the optimal repair bandwidth. However, the amoumtmerical results regarding the repair of tfiet, 10) RS

of subpacketizatior(sub-symbols) required is exponentiatode currently used in productidn [18] by Facebook Hadoop

in the parameters: and k. Code constructions in_[10] Analytics cluster. There, we observe@ savings in terms

rectify this problem by constructing high rate codes, fodf repair BW compared to naive repair.

specific rates, that have polynomial subpacketization. For

more details on regenerating codes for other scenarios, we Il. REPAIR OFMDS STORAGE CODES

refer the reader to the surveys [10]]20] [3].

. . . . . . In this section, we first state the repair BW minimization
An interesting problem is developing repair strategies

I . . roblem for systematic vector MDS codes to clarify the
for existing systematic scalar linear MDS codes that a#?a Y fy

. |m|plications of storing vectors per node instead of scalars
currently used in erasure coded storage systems. A m

limiting issue of these codes is that they lack the fundaalent roughout the paper, we Cons!dgr the case of downloz_;tdlng
: ) . . ] sub-symbols from all the remaining — 1 nodes to repair
ingredient of repair optimal ones: the vector-code prgopert . : )

. S a single failed node. We see that scalar-linear MDS codes
Naive repair is currently the only known strategy for the . - R
codes ave an inherent deficit when assuming indivisible coded

. . . symbols.
In this work, we focus on repairing a failed systematlcy

node of a systematic scalar linear MDS code, defined over
a large extension field. The focus isot on designing A. Vector MDS Codes

codes that achieve the cut-set bound-gf-(n — 1) for Let a file x be subpacketized intd/ = k(n — k)3 p-ary

repair bandwidth but on analyzing the repair efficiency qhformation symbols such that ¢ FM*! and partitioned

existing ones. We show that any scalar linear MDS codg, ;. partsx = [x7...x7T T’ with x; € F¥*1, where M

can be vectorized over a suitable smaller sub-field. Wheryanotes the file size anfl = GF(p). Here, the number of
systematic scalar linear MDS code is vectorized, the problesyp-sympols ovelGF(p) stored in a node isy = A =
of designing the right linear combinations of stored symbol(n — k)B. Let us define thelegree of subpacketizatida be
from a surviving parity node, to be used for repair (alsg ¢ 7+, we want to store this file with raté < 1 across

called asrepair vectordesign) can be equivalently seen ag systematic andh — k parity storage units with storage
the problem of designingepair field elementsinstead of capacity p-ary symbols each.

designing a repair vector for each equation downloaded, athe encoding is given by:
field element belonging to the extension field is chosen for

every repair equation of a vectorized scalar code. Thege fiel R i 0
elements satisfy some linear independence constraints. Th y1 c
equivalent formulation is the main technical contributimin : 0 B 0 X1
the paper. This gives some analytical insights for repair of _ _ . _ 0 L5 ) (1)
2-parity codes when vectorized over specific sub-fields. we ° | = | | PP ... P{FY :
summarize our contributions below. : : : : Xk

Our contributions: In this work, we develop a framework Yn P .. p

to represent scalar linear MDS codes in a vector form, .

when they are constructed over extension fields. The vectohere PEJ) € F**« represents a matrix of coding coeffi-
form provides more flexibility in designing non-trivial repp  cients used by thgth node § > k£ + 1 and hence a parity
strategies. We pose the problem of designing repair vectoizde) to “mix” the symbols of theth file piece x;. y;
(the best linear combinations to download) for repairindenotes the vector of coded sub-symbols stored in riode
a systematic node, as a problem of designing repair fidlj denotes amx x « identity matrix. The MDS property is
elements satisfying some algebraic linear dependence prgparanteed if the file can be reconstructed from from any
erties. Using this framework, we develop an algorithm azhll subset of sizé: of the n nodes storing the codewosd



Remark: The choice ofM being a multiple ofk(n — k) DesigningR{ to achieve the following:
is due to the following reasons:

: L M
1) The lowest per node repair bandwidth (in terms of min Z Yu subject to v; = % ()
sub-symbols oveGF(p)) possible isg = —2+ sub- u,ut
symbols according to the cut-set boundlin [2]. is therepair vector (matrix) design problem; = X means

2) Further, for repair of all systematic vector codes occuthat the useful data matrix must have full rank.
ring in this wor_k, we assume that the number of_ s_ub- The cut-set bound of_[2] states that equations from
symbols that will be downloaded from every survivingach of the remaining systematic nodes is the minimum one
parity node will bef = % = ;- However, note could achieve, i.e., the minimum rank of each interference
that it may not be possible to download omlgymbols space is3. This results in a minimum download bound of
from each surviving systematic ones unless optimai=L 2L = (n — 1)3. Observe that the above benefits can
repair is feasible for that code. In fact, the goal obnly be unlocked if we treat each stored symbol as a block
efficient repair will be to download as close fosub-  of smaller(n — k)3 sub-symbols.

symbols as possible from each surviving systematic

node. C. Scalar MDS Codes
. _ When we consider scaldn, k)-MDS codes, we assume
B. Repair Vector Design Problem that & information symbolsx = [z;...z;] € (Fpm)"™"

Let [k] denote the sefl,2,3...k}. To maintain the same are used to generate coded symbolsy = [y;...yn] €
redundancy when a single systematic nade [k] fails, a qu »)"*! under the linear generator map
repair process takes place to regenerate the lost data in a ~

newcomeistorage node. This process is carried out as linear - 1 1 e 0 ]
operations on the content of the — 1 remaining nodes, L& .
namely, each parity nod¢ € {k + 1...n} sends data of : 0 g 0 2
sizef = % (i.e., 8 equations) to the newcomer in the _ 0 1 _
form of linear equations: Y= o | T P p}ikﬂ) : (6)
Tk
a9 = (R ((P9) 1+ + (P9) xy : ; ; ;
0 () () (7))
L Y% k

= (m) e (m) B0 . _ .
whereP is thek x (n — k) matrix that generates the parity
whereR/ € F(»~k5x5 s arepair matrix which is to be symbols of the code anl,» = GF(p™). Similar to the
designed. In the same manner, all parity nodes proceedpiigvious section, IeJPi(J) denote the parity coefficient, drawn
transmitting a total of% linear equations (i.e., the size offrom GF(p™), used by thejth parity node to multiply
what was lost) to the newcomer, which eventually receivegmbolz;. Instead of matrices and vectors in the the previous
the following system of linear equations case, here we have scalars drawn from the extension field

(Ri_chl)T p . (R§+1)T p+D GF(p™). The MD_S property is equivalent to the requirement
d— : - +Z : Xe, (3) that thek mf_ormatlon symbols can be reconstructed from any
e () s VS subset of sizék. _ . .
(R)" P; (R?)" Py When a node, or a coded symbol is lost, if we wish to re-
useful data interference byc., pair it using linear methods over the extension figlE(p™),

v , ) , we can perform naive repair. Scalar-linear operations @n th
whered; € 'k . Solving forx; is not possible due to the ;o 4e pinds us to this worst case repair bandwidth cost.

(k — 1) additive interferencecomponents in the received Moving away from scalar-linear methods, we could
equations. To retrieve the lost piece of data, we need iitead download “parts” of each symbol defined over
“erase” the interference terms by downloading addition@!wpm)_ Observe that, oveBF(p™), each symbol consists
equations from the remaining — 1 systematic nodes and; ,, sub-symbols defined ove&F(p) and GF(p™) is
the resulting system has to be full-rank. To erase the i“t%bmorphic to a vector space of dimensionover GF(p).

ference generated by the undesired symbelg,(we need | the following section, we describe how an extension
to download from systematic nodethe minimum number fieq can be used to allow decomposition of each coded

of equations that can re-generate the interference dug,to symbol into sub-symbols, such that a scalar linear MDS

i.e., we need to download data of size equal to codes is interpreted as a a vector-linear MDS code. The key
(R’?H)T ng+1) ideas used are the following:

_ rank ) 4 1) Each element of the generator matrix is viewed as a
Yu =ran : (4) square matrix with dimensions. x m over the field
(R P GF(p).



2) Every data symbal; and every coded symbg} over ~ P1 Additivity: For any ¢,d € GF(p) and A,B €

GF(p™) are viewed as vectors; andy;, respectively, M (Fpm), we havecA + dB € M(F).
of dimensionm over the fieldGF(p). P2 Commutativity:For any A,B € M (F,~), we have
AB =BA € M (Fpn).
[1l. V ECTORIZING SCALAR CODES Lemma 1: [22] If ¢ = ab wherec, a,b € GF(p™), then

We review some result§ [21[22] regarding represent§-— AP wheref(c) = ¢, f(b) = b andg(a) = A.
tions of finite field elements. Let the irreducible primitive
polynomial P(z) of degreem over the base fieldsF(p) A. Vectorization of the code ill(6)

that generate&IF (p™) be: 1) The information symbols:;; and the coded symbols

P(z) = ap + a1z + . .. a1 2™ 4 2™, @) y; can be rewritten am-dim_ensional vectorsg; and
yi over (GF(p))™*! by settingx; = f(z;) andy; =
where ag, ...,am—1 € GF(p). Let ¢ be any root of the f(yi).
polynomial P(z). Hence,¢ is a primitive element. There = 2) Every entry of the generator matrix, i.€", can
may be more than one root of the primitive polynomial. All be represented in terms of the multiplication operator

primitive elements are isomorphic to each other (extension  pU) ¢ Af(F,..) by settingP?) = g(P\?).
fields obtained by setting one of the roots to be the primitive 3) By Lemmall, everyP‘(j)
element is isomorphic to the one obtained through other :
roots) Then, any field elemente GF(p™) can be written
as a polynomial off over GF(p) of degree at most — 1

z; is represented by the
matrix-vector muItipIicatioriPl(.J)xi.
Settingm = (n — k)53, we observe that we have changed
the scalar code in[16) into the vector code given by (1).
b="bo+biC+ .. .0y 1" (8) The reason for the choice af has been given in1ZA. The
only difference between this and a generic vector code is
whereb; € GF(p), i € {0,1...m — 1}. y : ) andag
. ) . : - that the matrice®,”’ are multiplication operators that have
Definition 1: Thecompanion matrixof the primitive poly- ii g hat th ion has b
nomial P(x) — o+ a12-+ . . am_ 12" + 2™ is am x m specific structure. Note that the same construction has been
matrix aiven b O AR Bmel recently used in [23]. Also, this construction can be taken t
9 y: be the finite field analogue of the procedure for generating

0 0 0 0 —ao irrational dimensions out of a real dimension][24] that glay

1 00 0 —-a an important role ireal interference alignment

0 1 0 0 —a

c—|00o 1 - 0 -—a IV. REPAIR FIELD ELEMENTS
o At this point, one could consider the vectorized code
obtained to be a generic vector linear code and design repair

(‘) O O o 1 a' matricesR/ to solve [5) by searching over all possible repair

e — 1

matrices. Any such design seems to depend on the structure
1) Vector RepresentationAny, b € GF(p™) can be of the multiplication operatorPl(:”. However, we use the
interpreted as a vector that belongs to a vector spaedlowing technical lemma to illustrate that designing a&p
of dimensionm over GFF(p) with the following vector matrices (or repair vectors) as [d (5) can be cast as a problem
representation of designingepair field elementsvhen it comes to repairing
T a vectorized scalar code. This lets us bypass the need for
fb) = [bo b ... b1 (©) "looking into” the structure of the multiplication operaso
2) Matrix RepresentatianAny nonzero field element in @nd the need for checking all possible repair matrices. This
GF(p™) can be written ag™, 0 < n < pm — IS the main technical idea behind the paper.
2. The mappingg(¢Y) = C¢ is an isomorphism
betweenGF (p™) and the set ofm x m matrices
{0,C° Ct,...,CP" 2} over GF(p) that preserves
the field multiplication and addition in terms of matrix
multiplication and addition over the space of matrices  proof: The proof is provided in the appendix. m
(GF(p))m™>™. Remark: We have represented the multiplication of=
We refer tog(b) = B as the “multiplication operator” ab over the extension field as8 = Ab, where A is a
corresponding tob € GF(p™) and to f(b) = b as the multiplication operator and is the vector representation.
vector representation of € GF(p™). Let M (F,») = But this corresponds to right multiplicatioonly. Clearly,
{0,C% C'...CP" 2} be the set of multiplication opera-c’ = b”A is not true as the matrixA in general is
tors. Then clearly, not symmetric. Hence, we require Lemmh 2 to establish

Lemma 2:For any two nonzero vectora’,b” ¢
GF(p)t*™, there always exists a multiplication operator (or
a matrix) M € M (F) (m x m) such thatb’M = aT.



properties when the matrix is multiplied by a vector from _ 91& fg; ii
the left. Repair for nodel ?c? @) - 001 ()
Consider the repair problem for the vectorized code as in fo(w) = g2(w)(w? +1)
Section[1I-A and use Lemmd 2. We downlogdequations 91(w) =w+l
from every node since we have vectorized over the field| Repair for node ?fgi; ;Tw2+w+1)g1(w)
GF(p) andm = (n — k). Without loss of generality, let fa(w) = ga(w)(w? + 1)
us consider the repair of node= 1. As in Section 1A, glg:’; —et 1
. ) . \ i _ 2 (w) =
gfﬁr mag;:es which n}jléitl%;/x?e—k p§r|tles are dengtgd Repair for node3 F1(w) = (@2 + w + g1 (w)
Yo € (GF(p)) , dropping the subscript fa(w) = ga(w)w
since we will state everything for repair of node Let r§ TABLE |
denote thej-th column of R?. This corresponds to thgth  REPAIR FIELD ELEMENTS FOR THE REPAIR OF SYSTEMATIC NODES FOR
equation downloaded from node THE (5,3) RSCODE.

Now, due to Lemm&l2, we can fix an arbitrary nonzero
(r)" as a reference vector. Thetd, v, EMf € M(Fpm),

T T pl A. lllustration of repair of a (5,3) Reed-Solomon Code
(rj) = (r)" M;. (20) .
_ ) Consider a(5, 3)-Reed Solomon code ovér = GF(24).
Hence, all the ripaw vectors can be replaced byzﬁmlr Let w be the fifth root of unity. Using the explicit formula
field elements\/j corresponding to the operatoM; . I for the generator matrix of the systematic Reed Solomon

Ferms of the repair field_ elements, we have the fgllowingode given in[[25], we obtain the following structure for the
important theorem that gives an alternate characterizatio generator matrixG

any repair scheme.

(@ —w?) (@ —w®) (WP —w?) (W —w®)
100 (w4—w2)(w4—w32 (wg—w%(wﬁ—w?
01 0 (W —w) (W =w?) (W’ —w) (W’ —=w?)
e e
00 1 Goe= ue=—)
For the repair problem, without loss of generality, the gen-
(Rk+1)T plFtD erator matrix given above can be simplified by factoring out

some coefficients along every row and renormalizing so that

Theorem 1:Consider a repair scheme with repair matrices_,
R, k+1 < ¢ < n for repairing nodel (for any node o
¢ in general) where the rank of the column of vectors
corresponding to theth data vector as ir[{4) is

Yu = rank S we can work on the following equivalent generator matrix
(R")" Py 100 1 otwrl
This is possible if and only if one can find repair field el- G=]01 01 w . (12)
ementst € F,~ for every equatiory € [1, 5] downloaded 0 0 1 1 w?+1

from every nodé’ € [k +1, 7], such thatvu: Let ¢ be the primitive element oF corresponding to the

v = rank, (Mprf“, L MEPLPERY M P, primiti?:/e polynomial P(z) = 1+ +x*. Then,('® =1 and
w=C_".
n p(n) . .
o Mg Py ) (11) Now, we consider the repair problem under the vector

where rank(a,,...a,) with a; € GF(p™) is defined representation of the code ov@8if(2). For this cases = 2.

according to the following restricted definition of lineat1€NCce.3 = 2 equations are downloaded from theparity
independence: A set of field elements € GF(p™) are nodes. The cut-set bound (from the optimal repair bound)

linearly independent over a sub-fieBi(p) (i.e., have rank for this scenario_ is dt_)wnloadir'fg equations in total. _
equal to the cardinality of this set of elements), when 'N€ Polynomials in Tablell correspond to repair by

one cannot find non zero scalars € GF(p) such that downloading10 equations in the event of a failure of any
S v A; = 0. systematic node for thg¢5,3) Reed Solomon code over

{{&F(16). Now, we fillustrate this using the framework of
repair field elements. Each parity node stores four equstion
over the binary field. Let us consider the repair of ndde
We call the above formulation of the repair problemesair  fi(w) denotes the repair field element corresponding to the
field element desigras one needs to design one repair fieldit i downloaded from the first parity node (nodg and
element (i.er’s) for every repair vectorﬁ or equivalently g¢;(w) denotes the repair field element for the second parity
for every downloaded equation. The repair bandwidth (imode (nodes). Let us assume that the corresponding repair
bits) of any such scheme with repair field elements igctors are(r‘ll)T,(ré)T,(r?)T and (rg)T.

proportional to the sum of the ranks, i.gle rilogs (p) As an illustration of the results in this section, we show
bits where the code is subpacketized oGt (p). how the repair field elements in Taljle | correspond to a repair

Proof: The proof uses Lemma 3, and is relegated to t
appendix.



[«2]

bandwidth of10 equations oveGIF(2) for repair of nodel. Then the only possibility is thag; (¢)(¢® + (3 + 1) =
First, we show how the column of vectors corresponding g f; (¢+wvs f2(¢) andg () (¢4 +¢3+1) = vz f1({)+va f2(C).
data nodel in @) is full rank, if we use the repair vectorsSimilarly, g1 (¢)(¢®+1) = v5 f1(¢) +ve f2(¢) andga(¢)(¢C +
obtained through the repair field elements in Tdble I. We) = v7 f1(¢) + vs f2(¢). Here, allv; € GF(2).

need to verify the following: Therefore,
v = rank (fl(w)7f2(w),gl(w)(w2—|—w—|—1), gl(C)(CS) = (v1 +v35) f1(€) + (v2 + vs) f2(C),
g(W)(@ +w+1)) =4 92(0)(¢%) = (v3 +v7) f1(C) + (va + vs) f2(Q).

By expressing everything as a polynomialdrof degree  This violates the full rank condition of (14). Similar argu-
at most3 with coefficients fromGF(2) using the irreducible ments hold for repair of systematic nodesnd 3. Further,

polynomial, we have very similar arguments can be made to show thetjuations
fi(w) 01 1 1 ¢ are not enough for repair of the nodes. The arguments are
fa(w) 1110 % Iengf[hy but follow aIS|m|Iar .style to the one above. The
g1(w)(w? +w+1) 00 0 1 ¢ |- cru0|a_l property that is usgd in these converse resultses th
G (w)(W? +w+1) 1 100 1 following property: In the fifth ron{1 + ¢% + ¢3,¢3, ¢ + 1]

(13) of the generator matrix, two coefficients add up to give the

] ] third coefficient.
We see that they are linearly independent a@&(2) (full

rank). Hence;y; = 4. Now, we set(r‘{)T = @7 f1(W),

nNT _ T T T T
= W), = W) and = . .
g:)%} (\A(/‘lg)wgz(re\%f i(srlt)he mu(II;R Iii;iion)o eragfc?r) fow Note that we made no assumption ab@lfi(p). So this
92\ W\ P P . __could be an extension field by itself. So, for a given extemsio
By applying Theoren]1, the Column of vectors corresponﬁéld GF(p("—), where p is prime, one could do the
ing to data from r;oda as in [3) given by: vectorization overGF(p”), so that the effective degree of

B. Different degrees of subpacketization

( 54)) subpacketisation i$ = 1. The lowest degree i$ and the
. rT f1 (W) highest possible degree is and any intermediate degree
(P§4>) o o (W) would be anys that dividesr. The following intuitive
(P§4))T ; (W)(W2 +TW+T) result shows Fhat/ any repair scheme for a lower degree of
go(W)(W2 + W +1) subpacketization’ can be implemented using an equivalent
(r ) (P(4)) repair scheme with a higher degree of subpacketization
2 ! . rf’ and with the same benefits with respect to the repair

is full rank overGF(2), with the above assignment of repaibandwidth.
vectors because of (lL3). Here,is any arbitrary non-zero . )
reference vector. Lemma 3'Con5|(iler a scalar systematie, k) MDS code
a(n—k 7 H
Now, the rank of interference terms follows from similaPVe" @ field GF(p ). vectorized overGF(p®), with

observations regarding repair field elementsy (w) = ]:1 1.k+l_2et then associated repair field elements be
fi(w) implies 72 = 3 (making column for data vectos 2~ M - M™ that operate on the parity nodes num-

to have rank3) and (w? + 1)gs(w) = fo(w) implies s = 3. bering from & + 1 to n. Consider the rank' of the col-
Therefore,>"7; = 10 equations ovelGF(2) needs to be umn of vectors in[(I1) corresponding to nodlgiven by:

downloaded for repair for node 1. Repair bandwidth fdri = @nks ([Pt 2Pt M7 Pr). Define

repair of node< and3 can be verified similarly. new repair field elements, for the code subpacketized over
Now, We argue thatl0 bits is the optimal linear repair GF(p) to be: [M1 M2"'M¢11:| = [M%, M°C,... Mi¢*]

bandwidth achievable for this code. We consider the cagerresponding tou equations being drawn from nodg

where node 2 fails and we will assume tBaepair equations wherek +1 < i < n. Here,¢ € GF(p“) is the primitive

are sufficient. To recover the lost data, according to [Eq), (Lelement. The system of new repair elemefns;} have the

we require same repair bandwidth gs\/; }.
ranke [f1(¢) f2(¢) g1(O)¢? 92(C)C%] =4. (14 Proof: The proof is relegated to the appendix. m
If 8 equations are sufficient then there must exist polyno-
mials such that the following conditions are true: V. CLIQUE REPAIR

6 3 In this section, we use the repair field elements framework

rank|f1(¢) f2(¢) 961(C)(§ HCH to prove the following theorem that gives an optimal repair
92O+ +1))] =2, scheme wherp = 1 for any (n,n — 2) scalar MDS code.

rank[f1(¢) f2(¢) g1(¢)(¢® +1) g2(¢)(¢® +1))] =2. (15) We call this schem&lique Repair From now on, without



loss of generality, we assume t D) — 1, je. all parity [2, we find that all the three nodes lie in the same clique.

coefficients for parity nodé + 1 are1. This can be justified In other words,(w? + w + 1)"'w, w(w? + 1)~! belong to
as it does not affect the MDS repair problem. GIF(2?). Hence, for this code, clique repair does not give
) ) any gain in terms of repair bandwidth.

TheoremQTZ:Con5|der a s_ysteman(n, n — 2)-MDS code Now, we present examples of bandwidth savings that are
over GF (p*) and an undirected grapﬁ(Vile) such that possible for &6,4) Reed Solomon code and for tgt, 10)
V| =k and (i, j) € E iff Pi(k“’) Pj(k“)) € GF (p"). Reed Solomon code employed in HDFS open source module.
Then, with linear repair schemes, noideannot be repaired As we will see, clique repair gives nontrivial bandwidth
with BW less thanM—%% when vectorized ove&F (p"), savings over naive repair for th6,4) Reed Solomon code
where(; is the size of the largest clique 6f not containing considered below. This can be improved further by going to
nodei. a higher degree of subpacketization.

Proof: The proof is relegated to the appendix. ™

Remark: There is an alternative way to see the above
theorem. GF(p")\{0} is a multiplicative subgroup of VI. ANALYSIS OF REPAIR OF(6,4) REED SOLOMON
GF(p?")\{0}. Consider the set of cosets formed by the CODES
subgroupgGF(p™)\{0}. Consider the repair of nodeAmong
all cosets that do no contain the field elemétit™, pick Here, we consider &6,4)-RS code ovefGF(24). Let ¢
the coset that contains the largest number of elements fré the primitive element df corresponding to the primitive
{PJk*Q}j#, Let the number of elements fror{]Pf*Q}j# polynomial P(z) = 1 + x + at Using the formula in[[25],
which lie in this coset b&’;. Then, the repair bandwidth iswe obtain the following systematic generator matrix

no less than/ — %% in terms of GF(p") symbols.

Although the theorem above only specifies a lower bound, 10001 ¢G4+¢+¢+1
one can come up with an algorithm to achieve the optimum 01001 ¢+1
: : - (16)
performance. It is easy to check that the following algo- 00101 1
rithm works. The algorithm Generate Clique identifies the 000 11 ¢
Algorithm 1 Generate Clique We consider the vector representation of the code over
while i = 1 — k do GF(2?) (8 = 1). If we apply Theoreni2 to this code, there
while j =1 =i —1 do are 3 cliques that are formed. The first clique (or coset)

v o (k42) [ pkr2)) ! , contains node$ and4 while the second one contaifisand
it P; (PJ ) € GF(p") then the third one contains node By the clique repair algorithm
E <« (i,7) presented in Sectidn]V, the repair of nodeand 3 require

end if 6 repair equations oveGF(4) to be downloaded. For the
Z”dr‘]’_‘:h”e repair of nodes and4, 7 equations oveGF(4) need to be
end while

downloaded which is close to the file si2é = 8, while the
S ~ cut-set bound ist= % = 5 equations.

disjoint cliques (or cosets). Let us assume that there ista li Now, consider a higher degree of subpacketization, i.e.
{Cli]}1<i<m such thatC[i] contains all vertices containedeach node stores elements ovelGF(2). Now, M = 16

in clique 7 or coseti. The algorithm Find Repair finds thegiements. We get a good repair scheme (by Lefima 3) for
optimal repair field element for repairing nodei. Notice odes2 and 3 over GF(2) that requiresl2 equations by
converting the clique repair scheme for these nodes over
GIF(2?). Hence, the repair bandwidth farand3 is 6 x 2 =

Algorithm 2 Find Repair

Find N:ie C[N] 12 equations for repair oveBF(2) . The cut set bound is
Kmax ¢ arg g;%”c[k]ﬂ 5 x 2 = 10 equations oveGF(2).
Pick some node £ € Cy_ .. For this case, the repair scheme with repair field elements
e (PZ(HQ))_I given in Table[Dl improves the repair BW for nodésand

4 to 12 equations compared to the clique repair equivalent

that requireg x 2 = 14 equations{ f;} represent repair field
that the algorithm runs usin@(n?) field multiplication op- elements for the first parity node adg;} represent repair
erations. The scheme gives an analytical connection betwdield elements for the second parity node. It is possible to
the repair BW and the coefficients of the generator matrshow thatl2 equations is the optimal linear repair bandwidth
(see remark after Theore 2). for this code. The argument is lengthy, but similar in style
Consider the vector representation of ifie3) RS code to the one in Section TV-A for the (5,3) Reed-Solomon code
in Section[IV-A overGF(22). Then by applying Theorem and hence we skip it.



91%8 f?Z repair in each case. The average number of equations to
Repair for nodel | %) ~ | be downloaded i$4.2 equations. The naive repair involves

f2(0) =¢2 downloading30 equations and the lower bou@q—i % gives

91(¢) - ! 26 equations. We note that the repair scheme that we provide
Repair for nodet ‘}fgg -5 is not the optimal for the code because an exhaustive search

f2(0) =¢ involves checking a huge number of combinations (akétit

TABLE II combinations) of the repair field elements. We have searched
REPAIR FIELD ELEMENTS FOR REPAIR OF NODE$ AND 4 FOR THE over aboutl00000 random combinations of the repair field
SYSTEMATIC(6,4) RSCODE WITH SUBPACKETIZATION OVERGF(2). elements to produce this repair scheme that saves aifout
percent bandwidth over naive repair.

Remark: In [18], a new implementation of a locally re-
pairable code based on tlie4, 10) code is used to optimize
repair. It saves$0 percent bandwidth over naive repair but
incurs a cost ofl4 percent in additional storage overhead.
We have demonstrated that tije4, 10) code used "as is”

The Apache Hadoop Distributed File System (HDFS)ithout any storage overhead can give non-trivial savings.
relies by default on block replication for data reliability
A module called HDFS RAID ([]18],[126]) was recently VIIl. CONCLUSION
developed for HDFS that allows the deployment of Reed-\ye jniroduced a framework for repairing scalar codes

Solomon and also more sophisticated distributed Storage eating them as vectors over a smaller field. This is
codes. HDFS RAID is currently used in production clusterg.pieyed py treating multiplication of scalar field elenssint
including Facebook analytics clusters storing more than o original field as a matrix-vector multiplication opeoat

,PB of Qata. In this §ection, we present numericgl results gfer the smaller field. Interference alignment conditiorapm
improving the repair performance of the specifiol, 10) to designing repair field elements in the large field. Further

Reed-Solomon code implemented in HDFS-RAIDI[26]. gjng the conditions on designing repair field elements, we

HDFS RAID mplementsagystematlc Reed Solomon codg o quced theclique repair scheme for two parities when
over the extension f|eI@312F(2 )'3 Let4§ begthe root of the he degree of subpacketization 1s which establishes a
primitive polynomiall +2* +2” + 2% + 2° that generates .,nnection between the coefficients of the generator matrix
the extension field. The generator matrix used is: and the repair schemes possible. We exhibited good repair

1o schemes for a few Reed-Solomon codes including the one
G= [ P } currently deployed in Facebook.
This work hints at the existence of scalar MDS codes

VII. NUMERICAL RESULTS ON THE(14, 10)
REED-SOLOMON CODE IMPLEMENTED IN THEHADOOP
FILE SYSTEM

whereP is a4 x 10 matrix given by: with good repair properties. An interesting problem would
[ (6 (T8 (249 (T5 T bg Fo come up with easi!y testablg analytical conditions,
(81 (59 (189 (163 S|mllar in spirit to the chqye repair scheme, for codes
169 (162 (198 (131 with Iargef nL_meer of _parmes a_1r_1d for higher Q(_egrees of
CI3T (253 (49 (143 subpacketlzanon. Sufficient conditions for a specm_c clak
. (149 (17T (96 (205 codes like Reed Solomon would be also interesting. More
P = AL (T 1T 1 generally, it seems that scalar MDS codes with near optimal
(140 (236 (154 (43 repair could be designed using this framework.
49 213 112 88
o 2171 2138 g% IX. ACKNOWLEDGEMENT
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Since the number of parities is (n — k = 4), the clique .
) . . . ; ) .|Bnmensely.
repair technique is not applicable. We consider repair wit

the highest possible subpacketization, jje= 2 and each
node store$n—k)S = 8 elements oveG F'(2) and M = 80.
The repair requires downloading equations form every [1] K. Shanmugam, D.S. Papailiopoulos, A. G. Dimakis, anddaire,

. . . . . “A repair framework for scalar MDS codes,” B0th Annual Allerton
parity node. We provide a repair scheme in terms of the eight ~nterence on Communication,Control and Computing (Adfek
repair field elementd/;t, M3t ... M4, M}*, belonging to 2012 IEEE, 2012, pp. 1166-1173.

GF(2%), as in Theoreril1. The repair scheme, given in Tabl&l A- G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and
[ lists the repair field elements for repair of each node K. Ramchandran, “Network coding for distributed storagstems,

p p IEEE Transactions on Information Thegryol. 56, no. 9, pp. 4539—
and the total number of equations to be downloaded for 4551, 2010.
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be written in the form given by[{10) using Lemnid 2GF(p"). The transitivity property partitions the graph
Consider the repair field eIemean that correspond to into disjoint cliques.

the multiplication 0perator§\/[§ obtained from [(Z0) . All Using Theoreni]l we have that there are two repair field
multiplication matrices are full rank matrices. If theréstx elements, i.el, u € GF(p?") corresponding to the two
scalarSUf € GF(p), ¢ € {l1,05...44},5 € {j1,j2...Jq}, repair vectors that will be used to multiply the contents

with at least one nonzer@f, such that: of the two parities respectively. The repair field elements
for parity 1 is 1 because the corresponding repair vector
> o (rﬁ)TPff) =0. (18) acts as the reference vector. Then, the rank-tf block
0,5 ' is 2 if 1 and uPi(k”) are linearly independent over sub-

field GF(p"). Similarly, the rank would bel if they are
linearly dependent, i.ﬁPi(k+2) € GF(p"). Now we establish
va (r)" MfPSf) =0. (19) the following property: ifi and j are in the same clique,
i ' then either both columns of elements are simultaneously

) . linearly dependent or linearly independent ov@F(p").
Using the fact that the reference vectoj~ is non zero and Thjs is due to the fact thauP*t? € GF (p") forces

Property P1: P uPikJrz (Pik+2)—1 ij+2 € GF (p").

> viM{PY =0, (20)  Similarly, if i and j are in different cliques, then

.3 the corresponding columns of vectors cannot be lin-
This gives the rank condition over sub-figliF(p) as stated early(k(i%:)endent smultaneous(lzﬂ.hz)Suppose they are, then
in (). This proves the forward direction. 4 (PZ- ) € GF(p") and p (Pj ) € GF(p"). There-

. L L . 1
For the converse, given a set of_repa|r. f|g|d glements 'tfcswe, plkt2) M_IMP_(HQ) _ (pWt2) pkt2)

possible to construct a set of repair multiplication operat ¢ J ¢

Then this is equivalent to

J S

and together with an arbitrary choice of a non-zero refezen®F (") But (i, j) ¢ E and therefore a contradiction.

repair vector, one can construct repair vectors satisfilieg F(%Zr)epair of nodei, 4 is chosen in such a way that
same rank conditions. m M ¢ GF(p"), so that the corresponding column

of vectors are linearly independent. This selection rof
forces all blocks corresponding to the nodes in the same
C. Proof of Lemmal3 clique to be linearly independent and it can at most make
Proof: It is enough to show thab field elements of columns corresponding to exactly one other clique linearly
the form {M,P;}, 1 < j < b are linearly dependent overdependent. Hence, the reduction in number of equations to
GF(p®) if and only if ab field elements{M;P;¢*}, 1 < be downloaded comes from the dependent clique. From this,
i <b 0< s <a-—1are also linearly dependent overthe last claim in the theorem follows. |
GF(p). Here, M; correspond to the repair field elements
and P; correspond to the coefficients of the generator matrix
corresponding to the parity node. Linear dependence over
GF(p®) implies that there exists scalars € GIF(p®), with

at least one of them non-zero, such thatv; M, P; = 0.
J
Let us rewrite field elements; in GF(p®) as polynomials

in ¢ with coefficientsv,; from GF(p). Hence, the linear
dependency relation becomgs> " v, M; P;(* = 0. Hence

S
over GF(p), {M;P;¢°}, 1 < bj, 0 <s<a-—1 are linearly
dependent. The converse is also true since some scalar set
¢;s € GF(p) with one non zero element determines a scalar
setv; € GF(p*) with one non zero element. Hence, the
claim follows. ]

D. Proof of Theoren]2
—1
Proof: If P{*tY (Pé’“* 2’) e GF()
—1
and P (PZ('“”)) € GF (p"), then
1 B B
ph+2 (Py(k+2)) Pi+2 (pi+2) 1 =Pk+2 (ph+2) 1
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