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Abstract—Several works have developed vector-linear
maximum-distance separable (MDS) storage codes that min-
imize the total communication costrequired to repair a single
coded symbol after an erasure, referred to as repair bandwidth
(BW). Vector codes allow communicating fewer sub-symbols
per node, instead of the entire content. This allows non trivial
savings in repair BW. In sharp contrast, classic codes, likeReed-
Solomon (RS), used in current storage systems, are deemed
to suffer from naive repair, i.e. downloading the entire stored
message to repair one failed node. This mainly happens because
they are scalar-linear.

In this work, we present a simple framework that treats
scalar codes as vector-linear. In some cases, this allows signifi-
cant savings in repair BW. We show that vectorized scalar codes
exhibit properties that simplify the design of repair schemes.
Our framework can be seen as a finite field analogue of real
interference alignment.

Using our simplified framework, we design a scheme that
we call clique-repair which provably identifies the best linear
repair strategy for any scalar 2-parity MDS code, under some
conditions on the sub-field chosen for vectorization. We specify
optimal repair schemes for specific (5, 3)- and (6, 4)-Reed-
Solomon (RS) codes. Further, we present a repair strategy
for the RS code currently deployed in the Facebook Analytics
Hadoop cluster that leads to20% of repair BW savings over
naive repairwhich is the repair scheme currently used for this
code.

Index Terms—Scalar MDS Codes; Reed Solomon; clique-
repair; alignment.

I. I NTRODUCTION

Large-scale distributed storage systems employ erasure
coding to offer data reliability against hardware failures.
Typically, the erasure codes employed are(n, k) MDS
(maximum distance separable) codes. An important property
that ensures data reliability against failures, is that encoded
data from anyk nodes suffice to recover the data stored.
However, a central issue that arises in coded storage is the

This paper was presented in part at50th Annual Allerton Conference
on Communication, Control and Computing2012 [1]. This research was
partially supported by NSF Awards 1055099, 1218235 and research gifts
by Google, Intel and Microsoft.

Repair Problem: how to maintain the encoded representation
when asingle node erasure occurs. To maintain the same
redundancy posterior to an erasure, a new node has to
join the storage array and regenerate the lost contents by
downloading and processing data from the remaining storage
nodes. Classic codes, like Reed-Solomon are scalar MDS
codes. Currently used repair scheme for these codes isnaive
repair. This involves downloading all the contents of anyk
of the remaining nodes to reconstruct the entire file and then
replacing the coded sub-symbols of a single failed node.

During repair process of an erasure, there are several
metrics that can be optimized, namelyrepair bandwidth
(BW) and locality [13] [14] [15] [16] [17] [18]. Currently,
the most well understood one is the total number of bits com-
municated in the network, i.e.repair bandwidth(BW). This
was characterized in [2] as a function of storage per node.
Codes with minimum storage that offer optimal bandwidth
are MDS, and are called minimum storage regenerating
(MSR) codes. Building on the work in [2], a great volume
of studies have developed MSR codes [3]–[12].

In this paper, we deal with the following specific repair
scenario forsystematicMSR codes: a file consisting ofM
sub-symbols, over some field, is stored inn nodes using
an (n, k) vector systematic MDS code. Every node contains
α = M

k
sub-symbols over the field. The firstk systematic

nodes store uncoded sub-symbols in groups ofM
k

. The parity
nodes contain the coded data. An MDS code can tolerate
n− k erasures.

Suppose one of the systematic nodes fail and this needs to
replaced. For such a repair,β sub-symbols are downloaded
from every remaining parity node, through suitable linear
combinations of theα symbols present in each parity node.
From every remaining systematic node, at leastβ symbols
are downloaded. The downloaded symbols must be sufficient
to generate the contents of the failed node through linear op-
erations for successful repair. According to the cut-set lower
bounds of [2], the optimum per-node download achievable
by any code and repair scheme isβ = M

k(n−k) = α
n−k

when
exactly β symbols are downloaded fromall the remaining

http://arxiv.org/abs/1312.2135v1


2

n − 1 nodes for repair. It is easily seen that the optimum
repair strategy for MSR codes has immense benefit over
naive repair for constant rate codes and for largen. The key
property of MSR codes that enables the non-trivial repair is
that they are vector codes, i.e. data in a node is a collectionof
smaller sub-symbols over a field and few linear combinations
from every node suffice for repair of a single failure.

MSR codes, with efficient encoding and decoding
schemes, that meet the minimum cut-set BW bounds, derived
in [2], exist for ratek/n ≤ 1/2 [7]. In the high rate regime,
[5], [6], [8], [9], [11] have presented constructions that
achieve the optimal repair bandwidth. However, the amount
of subpacketization(sub-symbols) required is exponential
in the parametersn and k. Code constructions in [10]
rectify this problem by constructing high rate codes, for
specific rates, that have polynomial subpacketization. For
more details on regenerating codes for other scenarios, we
refer the reader to the surveys [19] [20] [3].

An interesting problem is developing repair strategies
for existing systematic scalar linear MDS codes that are
currently used in erasure coded storage systems. A major
limiting issue of these codes is that they lack the fundamental
ingredient of repair optimal ones: the vector-code property.
Naive repair is currently the only known strategy for these
codes.

In this work, we focus on repairing a failed systematic
node of a systematic scalar linear MDS code, defined over
a large extension field. The focus isnot on designing
codes that achieve the cut-set bound ofα

n−k
(n − 1) for

repair bandwidth but on analyzing the repair efficiency of
existing ones. We show that any scalar linear MDS code,
can be vectorized over a suitable smaller sub-field. When a
systematic scalar linear MDS code is vectorized, the problem
of designing the right linear combinations of stored symbols,
from a surviving parity node, to be used for repair (also
called asrepair vectordesign) can be equivalently seen as
the problem of designingrepair field elements. Instead of
designing a repair vector for each equation downloaded, a
field element belonging to the extension field is chosen for
every repair equation of a vectorized scalar code. These field
elements satisfy some linear independence constraints. This
equivalent formulation is the main technical contributionof
the paper. This gives some analytical insights for repair of
2-parity codes when vectorized over specific sub-fields. We
summarize our contributions below.

Our contributions: In this work, we develop a framework
to represent scalar linear MDS codes in a vector form,
when they are constructed over extension fields. The vector
form provides more flexibility in designing non-trivial repair
strategies. We pose the problem of designing repair vectors
(the best linear combinations to download) for repairing
a systematic node, as a problem of designing repair field
elements satisfying some algebraic linear dependence prop-
erties. Using this framework, we develop an algorithm, called

clique-repair, that outputs an optimal repair scheme for a
given 2-parity scalar linear MDS code, viewed as a vector
code over a suitably chosen sub-field. This is based on
an analytical condition, obtained through the repair field
elements approach, thatdirectly relates the code’s generator
matrix entries to the repair bandwidth. We show that, for a
specific(6, 4) Reed Solomon code, the clique repair scheme
obtains nontrivial gains in terms of repair bandwidth. For this
(6, 4) RS code and another specific(5, 3) RS code, the gains
can be brought close to the optimal cut-set bound of [2],
by vectorizing over a smaller sub-field. Further, we present
numerical results regarding the repair of the(14, 10) RS
code currently used in production [18] by Facebook Hadoop
Analytics cluster. There, we observe a20% savings in terms
of repair BW compared to naive repair.

II. REPAIR OFMDS STORAGE CODES

In this section, we first state the repair BW minimization
problem for systematic vector MDS codes to clarify the
implications of storing vectors per node instead of scalars.
Throughout the paper, we consider the case of downloading
sub-symbols from all the remainingn − 1 nodes to repair
a single failed node. We see that scalar-linear MDS codes
have an inherent deficit when assuming indivisible coded
symbols.

A. Vector MDS Codes

Let a file x be subpacketized intoM = k(n− k)β p-ary
information symbols such thatx ∈ FM×1 and partitioned
in k partsx =

[

xT
1 . . .xT

k

]T
, with xi ∈ F

M

k
×1, whereM

denotes the file size andF ≡ GF(p). Here, the number of
sub-symbols overGF(p) stored in a node isα = M

k
=

(n− k)β. Let us define thedegree of subpacketizationto be
β ∈ Z+. We want to store this file with ratek

n
≤ 1 across

k systematic andn − k parity storage units with storage
capacityM

k
p-ary symbols each.

The encoding is given by:

y =












y1

...

...

...
yn












=














I1α . . . 0

0
. . . 0

0 . . . Ikα

P
(k+1)
1 . . . P

(k+1)
k

...
...

...
P

(n)
k . . . P

(n)
k



















x1

...
xk




 (1)

whereP
(j)
i ∈ Fα×α represents a matrix of coding coeffi-

cients used by thejth node (j ≥ k + 1 and hence a parity
node) to “mix” the symbols of theith file piece xi. yi

denotes the vector of coded sub-symbols stored in nodei.
Iiα denotes anα × α identity matrix. The MDS property is
guaranteed if the file can be reconstructed from from any
subset of sizek of then nodes storing the codewordy.
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Remark: The choice ofM being a multiple ofk(n− k)
is due to the following reasons:

1) The lowest per node repair bandwidth (in terms of
sub-symbols overGF(p)) possible isβ = α

n−k
sub-

symbols according to the cut-set bound in [2].
2) Further, for repair of all systematic vector codes occur-

ring in this work, we assume that the number of sub-
symbols that will be downloaded from every surviving
parity node will beβ = α

n−k
= M

k(n−k) . However, note
that it may not be possible to download onlyβ symbols
from each surviving systematic ones unless optimal
repair is feasible for that code. In fact, the goal of
efficient repair will be to download as close toβ sub-
symbols as possible from each surviving systematic
node.

B. Repair Vector Design Problem
Let [k] denote the set{1, 2, 3 . . . k}. To maintain the same

redundancy when a single systematic nodei ∈ [k] fails, a
repair process takes place to regenerate the lost data in a
newcomerstorage node. This process is carried out as linear
operations on the content of then − 1 remaining nodes,
namely, each parity nodej ∈ {k + 1 . . . n} sends data of
sizeβ = M

k(n−k) (i.e., β equations) to the newcomer in the
form of linear equations:

d
(j)
i =

(

R
j
i

)T ((

P
(j)
1

)

x1 + · · ·+
(

P
(j)
k

)

xk

)

=

[(

R
j
i

)T

P
(j)
1 · · ·

(

R
j
i

)T

P
(j)
k

]

x, (2)

whereRj
i ∈ F(n−k)β×β is a repair matrix, which is to be

designed. In the same manner, all parity nodes proceed in
transmitting a total ofM

k
linear equations (i.e., the size of

what was lost) to the newcomer, which eventually receives
the following system of linear equations

di=







(
Rk+1

i

)T
P

(k+1)
i

...
(Rn

i )
T
P

(n)
i






xi

︸ ︷︷ ︸

useful data

+
k∑

u=1,u 6=i







(
Rk+1

i

)T
P

(k+1)
u

...
(Rn

i )
T
P

(n)
u






xu

︸ ︷︷ ︸

interference byxu

, (3)

wheredi ∈ F
M

k . Solving for xi is not possible due to the
(k − 1) additive interferencecomponents in the received
equations. To retrieve the lost piece of data, we need to
“erase” the interference terms by downloading additional
equations from the remainingk − 1 systematic nodes and
the resulting system has to be full-rank. To erase the inter-
ference generated by the undesired symbols (xu), we need
to download from systematic nodeu the minimum number
of equations that can re-generate the interference due toxu,
i.e., we need to download data of size equal to

γu = rank

















(

Rk+1
i

)T
P

(k+1)
u

...

(Rn
i )

T
P

(n)
u

















(4)

DesigningRj
i to achieve the following:

min
∑

u,u6=i

γu subject to γi =
M

k
(5)

is therepair vector (matrix) design problem. γi = M
k

means
that the useful data matrix must have full rank.

The cut-set bound of [2] states thatβ equations from
each of the remaining systematic nodes is the minimum one
could achieve, i.e., the minimum rank of each interference
space isβ. This results in a minimum download bound of
n−1
n−k

M
k

= (n − 1)β. Observe that the above benefits can
only be unlocked if we treat each stored symbol as a block
of smaller(n− k)β sub-symbols.

C. Scalar MDS Codes

When we consider scalar(n, k)-MDS codes, we assume
that k information symbolsx = [x1 . . . xk] ∈ (Fpm)

k×1

are used to generaten coded symbolsy = [y1 . . . yn] ∈
(Fpm)

n×1 under the linear generator map

y =



















y1
...
...
...
yn



















=























1 . . . 0

0
. . . 0

0 . . . 1

P
(k+1)
1 . . . P

(k+1)
k

...
...

...

P
(n)
k . . . P

(n)
k





























x1

...
xk






(6)

whereP is thek × (n− k) matrix that generates the parity
symbols of the code andFpm ≡ GF(pm). Similar to the
previous section, letP (j)

i denote the parity coefficient, drawn
from GF(pm), used by thejth parity node to multiply
symbolxi. Instead of matrices and vectors in the the previous
case, here we have scalars drawn from the extension field
GF(pm). The MDS property is equivalent to the requirement
that thek information symbols can be reconstructed from any
subset of sizek.

When a node, or a coded symbol is lost, if we wish to re-
pair it using linear methods over the extension fieldGF(pm),
we can perform naive repair. Scalar-linear operations on this
code binds us to this worst case repair bandwidth cost.

Moving away from scalar-linear methods, we could
instead download “parts” of each symbol defined over
GF(pm). Observe that, overGF(pm), each symbol consists
of m sub-symbols defined overGF(p) and GF(pm) is
isomorphic to a vector space of dimensionm overGF(p).

In the following section, we describe how an extension
field can be used to allow decomposition of each coded
symbol into sub-symbols, such that a scalar linear MDS
codes is interpreted as a a vector-linear MDS code. The key
ideas used are the following:

1) Each element of the generator matrix is viewed as a
square matrix with dimensionsm ×m over the field
GF(p).
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2) Every data symbolxi and every coded symbolyi over
GF(pm) are viewed as vectorsxi andyi, respectively,
of dimensionm over the fieldGF(p).

III. V ECTORIZING SCALAR CODES

We review some results [21] [22] regarding representa-
tions of finite field elements. Let the irreducible primitive
polynomial P (x) of degreem over the base fieldGF(p)
that generatesGF (pm) be:

P (x) = a0 + a1x+ . . . am−1x
m−1 + xm, (7)

where a0, . . . , am−1 ∈ GF(p). Let ζ be any root of the
polynomial P (x). Hence,ζ is a primitive element. There
may be more than one root of the primitive polynomial. All
primitive elements are isomorphic to each other (extension
fields obtained by setting one of the roots to be the primitive
element is isomorphic to the one obtained through other
roots) Then, any field elementb ∈ GF(pm) can be written
as a polynomial ofζ overGF(p) of degree at mostm− 1

b = b0 + b1ζ + . . . bm−1ζ
m−1 (8)

wherebi ∈ GF(p), i ∈ {0, 1 . . .m− 1}.
Definition 1: Thecompanion matrixof the primitive poly-

nomialP (x) = a0+a1x+ . . . am−1x
m−1+xm is am×m

matrix given by:

C =

























0 0 0 · · · 0 −a0
1 0 0 · · · 0 −a1
0 1 0 · · · 0 −a2
0 0 1 · · · 0 −a3
. . . · · · . .
. . . · · · . .
. . . · · · . .
0 0 0 · · · 1 −am−1

























1) Vector Representation: Any, b ∈ GF(pm) can be
interpreted as a vector that belongs to a vector space
of dimensionm overGF(p) with the following vector
representation

f(b) = [b0 b1 . . . bm−1]
T
. (9)

2) Matrix Representation: Any nonzero field element in
GF(pm) can be written asζn, 0 ≤ n ≤ pm −
2. The mappingg(ζℓ) = Cℓ is an isomorphism
betweenGF (pm) and the set ofm × m matrices
{0,C0,C1, . . . ,Cpm−2} over GF(p) that preserves
the field multiplication and addition in terms of matrix
multiplication and addition over the space of matrices
(GF(p))m×m.

We refer tog(b) = B as the “multiplication operator”
corresponding tob ∈ GF(pm) and to f(b) = b as the
vector representation ofb ∈ GF(pm). Let M (Fpm) =
{0,C0,C1 . . .Cpm−2} be the set of multiplication opera-
tors. Then clearly,

P1 Additivity: For any c, d ∈ GF(p) and A,B ∈
M (Fpm), we havecA+ dB ∈ M(F).

P2 Commutativity:For anyA,B ∈ M (Fpm), we have
AB = BA ∈M (Fpm).

Lemma 1: [22] If c = ab wherec, a, b ∈ GF(pm), then
c = Ab wheref(c) = c, f(b) = b andg(a) = A.

A. Vectorization of the code in (6)

1) The information symbolsxi and the coded symbols
yi can be rewritten asm-dimensional vectors,xi and
yi over (GF(p))m×1 by settingxi = f(xi) andyi =
f(yi).

2) Every entry of the generator matrix, i.e.P (j)
i , can

be represented in terms of the multiplication operator
P

(j)
i ∈M (Fpm) by settingP(j)

i = g(P
(j)
i ).

3) By Lemma 1, everyP (j)
i xi is represented by the

matrix-vector multiplicationP(j)
i xi.

Settingm = (n− k)β, we observe that we have changed
the scalar code in (6) into the vector code given by (1).
The reason for the choice ofm has been given in II-A. The
only difference between this and a generic vector code is
that the matricesP(j)

i are multiplication operators that have
specific structure. Note that the same construction has been
recently used in [23]. Also, this construction can be taken to
be the finite field analogue of the procedure for generating
irrational dimensions out of a real dimension [24] that plays
an important role inreal interference alignment.

IV. REPAIR FIELD ELEMENTS

At this point, one could consider the vectorized code
obtained to be a generic vector linear code and design repair
matricesRj

i to solve (5) by searching over all possible repair
matrices. Any such design seems to depend on the structure
of the multiplication operatorsP(j)

i . However, we use the
following technical lemma to illustrate that designing repair
matrices (or repair vectors) as in (5) can be cast as a problem
of designingrepair field elements, when it comes to repairing
a vectorized scalar code. This lets us bypass the need for
”looking into” the structure of the multiplication operators
and the need for checking all possible repair matrices. This
is the main technical idea behind the paper.

Lemma 2:For any two nonzero vectorsaT ,bT ∈
GF(p)1×m, there always exists a multiplication operator (or
a matrix)M ∈M (F) (m×m) such thatbTM = aT .

Proof: The proof is provided in the appendix.
Remark: We have represented the multiplication ofc =

ab over the extension field asc = Ab, where A is a
multiplication operator andb is the vector representation.
But this corresponds to right multiplicationonly. Clearly,
cT = bTA is not true as the matrixA in general is
not symmetric. Hence, we require Lemma 2 to establish
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properties when the matrix is multiplied by a vector from
the left.

Consider the repair problem for the vectorized code as in
Section II-A and use Lemma 2. We downloadβ equations
from every node since we have vectorized over the field
GF(p) andm = (n − k)β. Without loss of generality, let
us consider the repair of nodei = 1. As in Section II-A,
repair matrices which multiply then−k parities are denoted
Rk+1, . . .Rn ∈ (GF(p))β(n−k)×β , dropping the subscripti
since we will state everything for repair of node1. Let rℓj
denote thej-th column ofRℓ. This corresponds to thejth
equation downloaded from nodeℓ.

Now, due to Lemma 2, we can fix an arbitrary nonzero
(r)T as a reference vector. Then∀ℓ, ∀j, ∃Mℓ

j ∈ M(Fpm),
(

rℓj
)T

= (r)
T
Mℓ

j . (10)

Hence, all the repair vectors can be replaced by therepair
field elementsM ℓ

j corresponding to the operatorsMℓ
j . In

terms of the repair field elements, we have the following
important theorem that gives an alternate characterization of
any repair scheme.

Theorem 1:Consider a repair scheme with repair matrices
Rℓ, k + 1 ≤ ℓ ≤ n for repairing node1 (for any node
i in general) where the rank of the column of vectors
corresponding to theuth data vector as in (4) is

γu = rank

















(

Rk+1
)T

P
(k+1)
u

...

(Rn)T P
(n)
u

















.

This is possible if and only if one can find repair field el-
ementsM ℓ

j ∈ Fpm for every equationj ∈ [1, β] downloaded
from every nodeℓ ∈ [k + 1, n], such that∀u:

γu = rankp
(

M
k+1
1 P

k+1
u , . . .M

k+1
β P

k+1
u , . . .M

n
1 P

(n)
u ,

. . . ,M
n
β P

(n)
u

)

(11)

where rankp(a1, . . . am) with ai ∈ GF(pm) is defined
according to the following restricted definition of linear
independence: A set of field elementsAi ∈ GF(pm) are
linearly independent over a sub-fieldGF(p) (i.e., have rankp
equal to the cardinality of this set of elements), when
one cannot find non zero scalarsvi ∈ GF(p) such that
∑

viAi = 0.
Proof: The proof uses Lemma 3, and is relegated to the

appendix.

We call the above formulation of the repair problem asrepair
field element design, as one needs to design one repair field
element (i.eM ℓ

j ’s) for every repair vectorrℓj or equivalently
for every downloaded equation. The repair bandwidth (in
bits) of any such scheme with repair field elements is
proportional to the sum of the ranks, i.e.

∑k
i=1 ri log2 (p)

bits where the code is subpacketized overGF(p).

Repair for node1

g1(ω) = ω3 + 1
g2(ω) = ω2 + 1
f1(ω) = ωg1(ω)
f2(ω) = g2(ω)(ω2 + 1)

Repair for node2

g1(ω) = ω + 1
g2(ω) = ω

f1(ω) = (ω2 + ω + 1)g1(ω)
f2(ω) = g2(ω)(ω2 + 1)

Repair for node3

g1(ω) = ω + 1
g2(ω) = ω

f1(ω) = (ω2 + ω + 1)g1(ω)
f2(ω) = g2(ω)ω

TABLE I
REPAIR FIELD ELEMENTS FOR THE REPAIR OF SYSTEMATIC NODES FOR

THE (5,3) RSCODE.

A. Illustration of repair of a (5,3) Reed-Solomon Code

Consider a(5, 3)-Reed Solomon code overF = GF(24).
Let ω be the fifth root of unity. Using the explicit formula
for the generator matrix of the systematic Reed Solomon
code given in [25], we obtain the following structure for the
generator matrixG

G =









1 0 0 (ω4−ω2)(ω4−ω3)
(ω−ω2)(ω−ω3)

(ω5−ω2)(ω5−ω3)
(ω−ω2)(ω−ω3)

0 1 0 (ω4−ω)(ω4−ω3)
(ω2−ω)(ω2−ω3)

(ω5−ω)(ω5−ω3)
(ω2−ω)(ω2−ω3)

0 0 1 (ω4−ω)(ω4−ω2)
(ω3−ω)(ω3−ω2)

(ω5−ω)(ω5−ω2)
(ω3−ω)(ω3−ω2)









.

For the repair problem, without loss of generality, the gen-
erator matrix given above can be simplified by factoring out
some coefficients along every row and renormalizing so that
we can work on the following equivalent generator matrix

G =





1 0 0 1 ω2 + ω + 1
0 1 0 1 ω
0 0 1 1 ω2 + 1



 . (12)

Let ζ be the primitive element ofF corresponding to the
primitive polynomialP (x) = 1+x+x4. Then,ζ15 = 1 and
ω = ζ3.

Now, we consider the repair problem under the vector
representation of the code overGF(2). For this case,β = 2.
Hence,β = 2 equations are downloaded from the2 parity
nodes. The cut-set bound (from the optimal repair bound)
for this scenario is downloading8 equations in total.

The polynomials in Table I correspond to repair by
downloading10 equations in the event of a failure of any
systematic node for the(5, 3) Reed Solomon code over
GF(16). Now, we illustrate this using the framework of
repair field elements. Each parity node stores four equations
over the binary field. Let us consider the repair of node1.
fi(ω) denotes the repair field element corresponding to the
bit i downloaded from the first parity node (node4) and
gi(ω) denotes the repair field element for the second parity
node (node5). Let us assume that the corresponding repair
vectors are

(

r41
)T

,
(

r42
)T

,
(

r51
)T

and
(

r52
)T

.
As an illustration of the results in this section, we show

how the repair field elements in Table I correspond to a repair



6

bandwidth of10 equations overGF(2) for repair of node1.
First, we show how the column of vectors corresponding to
data node1 in (3) is full rank, if we use the repair vectors
obtained through the repair field elements in Table I. We
need to verify the following:

γ1 = rank2
(

f1(ω), f2(ω), g1(ω)(ω
2 + ω + 1),

g2(ω)(ω
2 + ω + 1)

)

= 4.

By expressing everything as a polynomial inζ of degree
at most3 with coefficients fromGF(2) using the irreducible
polynomial, we have








f1(ω)
f2(ω)

g1(ω)(ω
2 + ω + 1)

g2(ω)(ω
2 + ω + 1)









=









0 1 1 1
1 1 1 0
0 0 0 1
1 1 0 0

















ζ3

ζ2

ζ
1









.

(13)

We see that they are linearly independent overGF(2) (full
rank). Hence,γ1 = 4. Now, we set

(

r41
)T

= (r)T f1(W),
(

r42
)T

= (r)
T
f2(W),

(

r51
)T

= (r)
T
g1(W) and

(

r52
)T

=

(r)
T
g2(W) whereW is the multiplication operator forω.

By applying Theorem 1, the column of vectors correspond-
ing to data from node1 as in (3) given by:


















(

r41
)T

(

P
(4)
1

)T

(

r42
)T

(

P
(4)
1

)T

(

r51
)T

(

P
(4)
1

)T

(

r52
)T

(

P
(4)
1

)T



















=









rT f1(W)
rT f2(W)

rT g1(W)(W2 +W + I)
rT g2(W)(W2 +W + I)









is full rank overGF(2), with the above assignment of repair
vectors because of (13). Here,r is any arbitrary non-zero
reference vector.

Now, the rank of interference terms follows from similar
observations regarding repair field elements:ωg1(ω) =
f1(ω) implies γ2 = 3 (making column for data vector3
to have rank3) and(ω2 +1)g2(ω) = f2(ω) impliesγ3 = 3.
Therefore,

∑

γi = 10 equations overGF(2) needs to be
downloaded for repair for node 1. Repair bandwidth for
repair of nodes2 and3 can be verified similarly.

Now, We argue that10 bits is the optimal linear repair
bandwidth achievable for this code. We consider the case
where node 2 fails and we will assume that8 repair equations
are sufficient. To recover the lost data, according to Eq. (11),
we require

rank2
[

f1(ζ) f2(ζ) g1(ζ)ζ
3 g2(ζ)ζ

3
]

= 4. (14)

If 8 equations are sufficient then there must exist polyno-
mials such that the following conditions are true:

rank
[

f1(ζ) f2(ζ) g1(ζ)(ζ
6 + ζ3 + 1)

g2(ζ)(ζ
6 + ζ3 + 1))

]

= 2,

rank
[

f1(ζ) f2(ζ) g1(ζ)(ζ
6 + 1) g2(ζ)(ζ

6 + 1))
]

= 2. (15)

Then the only possibility is thatg1(ζ)(ζ6 + ζ3 + 1) =
v1f1(ζ+v2f2(ζ) andg2(ζ)(ζ6+ζ3+1) = v3f1(ζ)+v4f2(ζ).
Similarly, g1(ζ)(ζ6+1) = v5f1(ζ)+v6f2(ζ) andg2(ζ)(ζ6+
1) = v7f1(ζ) + v8f2(ζ). Here, allvi ∈ GF(2).

Therefore,

g1(ζ)(ζ
3) = (v1 + v5)f1(ζ) + (v2 + v6)f2(ζ),

g2(ζ)(ζ
3) = (v3 + v7)f1(ζ) + (v4 + v8)f2(ζ).

This violates the full rank condition of (14). Similar argu-
ments hold for repair of systematic nodes1 and3. Further,
very similar arguments can be made to show that9 equations
are not enough for repair of the nodes. The arguments are
lengthy but follow a similar style to the one above. The
crucial property that is used in these converse results is the
following property: In the fifth row[1 + ζ6 + ζ3, ζ3, ζ6 +1]
of the generator matrix, two coefficients add up to give the
third coefficient.

B. Different degrees of subpacketization

Note that we made no assumption aboutGF(p). So this
could be an extension field by itself. So, for a given extension
field GF(p(n−k)r), where p is prime, one could do the
vectorization overGF(pr), so that the effective degree of
subpacketisation isβ = 1. The lowest degree is1 and the
highest possible degree isr and any intermediate degree
would be anys that divides r. The following intuitive
result shows that any repair scheme for a lower degree of
subpacketizationβ′ can be implemented using an equivalent
repair scheme with a higher degree of subpacketization
rβ′ and with the same benefits with respect to the repair
bandwidth.

Lemma 3:Consider a scalar systematic(n, k) MDS code
over a field GF(pa(n−k)), vectorized overGF(pa), with
β = 1. Let the associated repair field elements be
Mk+1,Mk+2 . . .Mn that operate on the parity nodes num-
bering from k + 1 to n. Consider the rank of the col-
umn of vectors in (11) corresponding to nodei given by:
ri = rankpa

([

Mk+1P k+1
i Mk+2P k+2

i . . .MnPn
i

])

. Define
new repair field elements, for the code subpacketized over
GF(p) to be:

[

M̃ i
1 M̃ i

2 . . . M̃
i
a

]

=
[

M i, M iζ, . . .M iζa−1
]

corresponding toa equations being drawn from nodei,
wherek + 1 ≤ i ≤ n. Here, ζ ∈ GF(pa) is the primitive
element. The system of new repair elements{M̃ i

j} have the
same repair bandwidth as{Mi}.

Proof: The proof is relegated to the appendix.

V. CLIQUE REPAIR

In this section, we use the repair field elements framework
to prove the following theorem that gives an optimal repair
scheme whenβ = 1 for any (n, n − 2) scalar MDS code.
We call this schemeClique Repair. From now on, without
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loss of generality, we assume thatP
(k+1)
j = 1, i.e. all parity

coefficients for parity nodek+1 are1. This can be justified
as it does not affect the MDS repair problem.

Theorem 2:Consider a systematic(n, n− 2)-MDS code
over GF

(

p2r
)

and an undirected graphG(V,E) such that

|V | = k and (i, j) ∈ E iff P
(k+2)
i

(

P
(k+2)
j

)−1

∈ GF (pr).
Then, with linear repair schemes, nodei cannot be repaired
with BW less thanM− Ci

2
M
k

when vectorized overGF (pr),
whereCi is the size of the largest clique ofG not containing
nodei.

Proof: The proof is relegated to the appendix.
Remark: There is an alternative way to see the above

theorem. GF(pr)\{0} is a multiplicative subgroup of
GF(p2r)\{0}. Consider the set of cosets formed by the
subgroupGF(pr)\{0}. Consider the repair of nodei. Among
all cosets that do no contain the field elementP k+2

i , pick
the coset that contains the largest number of elements from
{P k+2

j }j 6=i. Let the number of elements from{P k+2
j }j 6=i

which lie in this coset beCi. Then, the repair bandwidth is
no less thanM − Ci

2
M
k

in terms ofGF(pr) symbols.
Although the theorem above only specifies a lower bound,

one can come up with an algorithm to achieve the optimum
performance. It is easy to check that the following algo-
rithm works. The algorithm Generate Clique identifies the

Algorithm 1 Generate Clique
while i = 1→ k do

while j = 1→ i− 1 do

if P
(k+2)
i

(

P
(k+2)
j

)−1

∈ GF(pr) then
E ← (i, j)

end if
end while

end while

disjoint cliques (or cosets). Let us assume that there is a list
{C[i]}1≤i≤m such thatC[i] contains all vertices contained
in clique i or coseti. The algorithm Find Repair finds the
optimal repair field elementµ for repairing nodei. Notice

Algorithm 2 Find Repair

Find N : i ∈ C[N ]
kmax ← argmax

k 6=N
‖C[k]‖

Pick some node ℓ ∈ Ckmax
.

µ←
(

P
(k+2)
ℓ

)−1

that the algorithm runs usingO(n2) field multiplication op-
erations. The scheme gives an analytical connection between
the repair BW and the coefficients of the generator matrix
(see remark after Theorem 2).

Consider the vector representation of the(5, 3) RS code
in Section IV-A overGF(22). Then by applying Theorem

2, we find that all the three nodes lie in the same clique.
In other words,(ω2 + ω + 1)−1ω, ω(ω2 + 1)−1 belong to
GF(22). Hence, for this code, clique repair does not give
any gain in terms of repair bandwidth.

Now, we present examples of bandwidth savings that are
possible for a(6, 4) Reed Solomon code and for the(14, 10)
Reed Solomon code employed in HDFS open source module.
As we will see, clique repair gives nontrivial bandwidth
savings over naive repair for the(6, 4) Reed Solomon code
considered below. This can be improved further by going to
a higher degree of subpacketization.

VI. A NALYSIS OF REPAIR OF(6,4) REED SOLOMON

CODES

Here, we consider a(6, 4)-RS code overGF(24). Let ζ
be the primitive element ofF corresponding to the primitive
polynomialP (x) = 1 + x + x4 Using the formula in [25],
we obtain the following systematic generator matrix

G =









1 0 0 0 1 ζ3 + ζ2 + ζ + 1
0 1 0 0 1 ζ + 1
0 0 1 0 1 1
0 0 0 1 1 ζ2









(16)

We consider the vector representation of the code over
GF(22) (β = 1). If we apply Theorem 2 to this code, there
are 3 cliques that are formed. The first clique (or coset)
contains nodes1 and4 while the second one contains2 and
the third one contains node3. By the clique repair algorithm
presented in Section V, the repair of nodes2 and3 require
6 repair equations overGF(4) to be downloaded. For the
repair of nodes1 and4, 7 equations overGF(4) need to be
downloaded which is close to the file sizeM = 8, while the
cut-set bound isn−1

n−k
M
k

= 5 equations.
Now, consider a higher degree of subpacketization, i.e.

each node stores4 elements overGF(2). Now, M = 16
elements. We get a good repair scheme (by Lemma 3) for
nodes2 and 3 over GF(2) that requires12 equations by
converting the clique repair scheme for these nodes over
GF(22). Hence, the repair bandwidth for2 and3 is 6× 2 =
12 equations for repair overGF(2) . The cut set bound is
5× 2 = 10 equations overGF(2).

For this case, the repair scheme with repair field elements
given in Table II improves the repair BW for nodes1 and
4 to 12 equations compared to the clique repair equivalent
that requires7×2 = 14 equations.{fi} represent repair field
elements for the first parity node and{gi} represent repair
field elements for the second parity node. It is possible to
show that12 equations is the optimal linear repair bandwidth
for this code. The argument is lengthy, but similar in style
to the one in Section IV-A for the (5,3) Reed-Solomon code
and hence we skip it.
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Repair for node1

g1(ζ) = ζ−2

g2(ζ) = 1
f1(ζ) = 1
f2(ζ) = ζ2

Repair for node4

g1(ζ) = 1
g2(ζ) = ζ
f1(ζ) = 1
f2(ζ) = ζ

TABLE II
REPAIR FIELD ELEMENTS FOR REPAIR OF NODES1 AND 4 FOR THE

SYSTEMATIC (6,4) RSCODE WITH SUBPACKETIZATION OVERGF(2).

VII. N UMERICAL RESULTS ON THE(14, 10)
REED-SOLOMON CODE IMPLEMENTED IN THE HADOOP

FILE SYSTEM

The Apache Hadoop Distributed File System (HDFS)
relies by default on block replication for data reliability.
A module called HDFS RAID ( [18], [26]) was recently
developed for HDFS that allows the deployment of Reed-
Solomon and also more sophisticated distributed storage
codes. HDFS RAID is currently used in production clusters
including Facebook analytics clusters storing more than30
PB of data. In this section, we present numerical results on
improving the repair performance of the specific(14, 10)
Reed-Solomon code implemented in HDFS-RAID [26].

HDFS RAID implements a systematic Reed Solomon code
over the extension fieldGF(28). Let ζ be the root of the
primitive polynomial1 + x2 + x3 + x4 + x8 that generates
the extension field. The generator matrix used is:

G =

[

I10
P

]

whereP is a 4× 10 matrix given by:

PT =

































ζ6 ζ78 ζ249 ζ75

ζ81 ζ59 ζ189 ζ163

ζ169 ζ162 ζ198 ζ131

ζ137 ζ253 ζ49 ζ143

ζ149 ζ177 ζ96 ζ205

ζ211 ζ71 ζ157 ζ134

ζ140 ζ236 ζ154 ζ43

ζ49 ζ213 ζ112 ζ88

ζ94 ζ171 ζ138 ζ95

ζ101 ζ13 ζ148 ζ173

































Since the number of parities is4 (n − k = 4), the clique
repair technique is not applicable. We consider repair with
the highest possible subpacketization, i.e.β = 2 and each
node stores(n−k)β = 8 elements overGF (2) andM = 80.
The repair requires downloading2 equations form every
parity node. We provide a repair scheme in terms of the eight
repair field elementsM11

1 ,M11
2 , . . .M14

1 ,M14
2 , belonging to

GF(28), as in Theorem 1. The repair scheme, given in Table
III, lists the repair field elements for repair of each node
and the total number of equations to be downloaded for

repair in each case. The average number of equations to
be downloaded is64.2 equations. The naive repair involves
downloading80 equations and the lower boundn−1

n−k
M
k

gives
26 equations. We note that the repair scheme that we provide
is not the optimal for the code because an exhaustive search
involves checking a huge number of combinations (about264

combinations) of the repair field elements. We have searched
over about100000 random combinations of the repair field
elements to produce this repair scheme that saves about20
percent bandwidth over naive repair.

Remark: In [18], a new implementation of a locally re-
pairable code based on the(14, 10) code is used to optimize
repair. It saves50 percent bandwidth over naive repair but
incurs a cost of14 percent in additional storage overhead.
We have demonstrated that the(14, 10) code used ”as is”
without any storage overhead can give non-trivial savings.

VIII. C ONCLUSION

We introduced a framework for repairing scalar codes
by treating them as vectors over a smaller field. This is
achieved by treating multiplication of scalar field elements in
the original field as a matrix-vector multiplication operation
over the smaller field. Interference alignment conditions map
to designing repair field elements in the large field. Further
using the conditions on designing repair field elements, we
introduced theclique repair scheme for two parities when
the degree of subpacketization is1, which establishes a
connection between the coefficients of the generator matrix
and the repair schemes possible. We exhibited good repair
schemes for a few Reed-Solomon codes including the one
currently deployed in Facebook.

This work hints at the existence of scalar MDS codes
with good repair properties. An interesting problem would
be to come up with easily testable analytical conditions,
similar in spirit to the clique repair scheme, for codes
with larger number of parities and for higher degrees of
subpacketization. Sufficient conditions for a specific class of
codes like Reed Solomon would be also interesting. More
generally, it seems that scalar MDS codes with near optimal
repair could be designed using this framework.
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APPENDIX

A. Proof of Lemma 2

Proof: We note that multiplication of the matrixM
from the left byaT does not represent field multiplication.
Hence, with respect to left multiplication, the matrixM does
not necessarilyact as a multiplication operator. The theorem
implies that given any two arbitrary non zero repair vectors,
one can find a multiplication matrix that connects both.

Since, non zero field elements inF are finite, there are
finitely many operators inM (F). Let them be denoted
by M1,M2, . . . ..Mpm−1. All these matrices (or opera-
tors) have full rank. We consider the products,aTMi.
We show that all of them are distinct. Suppose for some
i 6= j, aTMi = aTMj, then

aT (Mi −Mj) = 0. (17)

But Mi−Mj is another multiplication operator by additivity
property. It is non zero and has full rank sinceMi 6= Mj.
This means all thepm−1 products are different. Since there
are onlypm − 1 non zero repair vectorsbT , given anybT ,
one can always find aMj such thataTMj = bT .

B. Proof of Theorem 1

Proof: Consider a repair scheme with repair vectors
(

rℓj
)T

, ℓ ∈ [k + 1, n], j ∈ [1, β]. Taking an arbi-
trary reference vector(r)T , every other repair vector can

http://tinyurl.com/storagecoding
HDFS-Wiki: http://wiki.apache.org/hadoop/HDFS-RAID
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be written in the form given by (10) using Lemma 2.
Consider the repair field elementsM ℓ

j that correspond to
the multiplication operatorsMℓ

j obtained from (10) . All
multiplication matrices are full rank matrices. If there exists
scalarsvℓj ∈ GF(p), ℓ ∈ {ℓ1, ℓ2 . . . ℓq}, j ∈ {j1, j2 . . . jq},
with at least one nonzerovℓj , such that:

∑

ℓ,j

vℓj
(

rℓj
)T

P(ℓ)
u = 0. (18)

Then this is equivalent to
∑

ℓ,j

vℓj (r)
T
Mℓ

jP
(ℓ)
u = 0. (19)

Using the fact that the reference vector(r)
T is non zero and

Property P1:
∑

ℓ,j

vℓjM
ℓ
jP

(ℓ)
u = 0. (20)

This gives the rank condition over sub-fieldGF(p) as stated
in (11). This proves the forward direction.

For the converse, given a set of repair field elements it is
possible to construct a set of repair multiplication operators
and together with an arbitrary choice of a non-zero reference
repair vector, one can construct repair vectors satisfyingthe
same rank conditions.

C. Proof of Lemma 3

Proof: It is enough to show thatb field elements of
the form {MjPj}, 1 ≤ j ≤ b are linearly dependent over
GF(pa) if and only if ab field elements{MjPjζ

s}, 1 ≤
j ≤ b, 0 ≤ s ≤ a − 1 are also linearly dependent over
GF(p). Here,Mj correspond to the repair field elements
andPj correspond to the coefficients of the generator matrix
corresponding to the parity node. Linear dependence over
GF(pa) implies that there exists scalarsvj ∈ GF(pa), with
at least one of them non-zero, such that

∑

j

vjMjPj = 0.

Let us rewrite field elementsvj in GF(pa) as polynomials
in ζ with coefficientsvjs from GF(p). Hence, the linear
dependency relation becomes

∑

j

∑

s

vjsMjPjζ
s = 0. Hence

overGF(p), {MjPjζ
s}, 1 ≤ b, 0 ≤ s ≤ a− 1 are linearly

dependent. The converse is also true since some scalar set
ζjs ∈ GF(p) with one non zero element determines a scalar
set vj ∈ GF(pa) with one non zero element. Hence, the
claim follows.

D. Proof of Theorem 2

Proof: If P
(k+2)
x

(

P
(k+2)
y

)−1

∈ GF (pr)

and P
(k+2)
y

(

P
(k+2)
z

)−1

∈ GF (pr), then

P k+2
x

(

P
(k+2)
y

)−1

P k+2
y

(

P k+2
z

)−1
=P k+2

x

(

P k+2
z

)−1
∈

GF(pr). The transitivity property partitions the graphG
into disjoint cliques.

Using Theorem 1 we have that there are two repair field
elements, i.e.1, µ ∈ GF(p2r) corresponding to the two
repair vectors that will be used to multiply the contents
of the two parities respectively. The repair field elements
for parity 1 is 1 because the corresponding repair vector
acts as the reference vector. Then, the rank ofi-th block
is 2 if 1 and µP

(k+2)
i are linearly independent over sub-

field GF(pr). Similarly, the rank would be1 if they are
linearly dependent, i.eµP (k+2)

i ∈ GF(pr). Now we establish
the following property: if i and j are in the same clique,
then either both columns of elements are simultaneously
linearly dependent or linearly independent overGF(pr).
This is due to the fact thatµP k+2

i ∈ GF (pr) forces

µP k+2
i

(

P k+2
i

)−1
P k+2
j ∈ GF (pr).

Similarly, if i and j are in different cliques, then
the corresponding columns of vectors cannot be lin-
early dependent simultaneously. Suppose they are, then
µ
(

P
(k+2)
i

)

∈ GF(pr) and µ
(

P
(k+2)
j

)

∈ GF(pr). There-

fore,
(

P
(k+2)
j

)−1

µ−1µP
(k+2)
i =

(

P
(k+2)
j

)−1

P
(k+2)
i ∈

GF(pr). But (i, j) /∈ E and therefore a contradiction.
For repair of nodei, µ is chosen in such a way that

µP
(k+2)
i /∈ GF(pr), so that the corresponding column

of vectors are linearly independent. This selection ofµ
forces all blocks corresponding to the nodes in the same
clique to be linearly independent and it can at most make
columns corresponding to exactly one other clique linearly
dependent. Hence, the reduction in number of equations to
be downloaded comes from the dependent clique. From this,
the last claim in the theorem follows.
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