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Abstract— We present a model-based approach to synthesiz-
ing insulin infusion pump usage parameters against varying
meal scenarios and physiological conditions. Insulin infusion
pumps are commonly used by type-1 diabetic patients to
control their blood glucose levels. The amounts of insulin
to be infused are calculated based on parameters such as
insulin-to-carbohydrate ratios and correction factors that need
to be calibrated carefully for each patient. Frequent and
careful calibration of these parameters is essential for avoiding
complications such as hypoglycemia and hyperglycemia.

In this paper, we propose to synthesize optimal parameters
for meal bolus calculation starting from models of the patient’s
insulin-glucose regulatory system and the infusion pump. Var-
ious off-the-shelf global optimization techniques are used to
search for parameter values that minimize a penalty function
defined over the predicted glucose sensor readings. The penalty
function “rewards” glucose levels that lie within the prescribed
ranges and “penalizes” the occurrence of hypoglycemia and
hyperglycemia. We evaluate our approach using a model of the
insulin-glucose regulatory system proposed by Dalla Man et al.
Using this model, we compare various strategies for optimizing
pump usage parameters for a virtual population of in-silico
patients.

I. INTRODUCTION

Insulin infusion pumps are commonly used by type-1
diabetic patients to control their blood glucose levels. These
pumps supply insulin at programmable rates over time. Typi-
cally, the use of insulin infusion pumps has two components:
(a) continuous background infusion provided at a fixed basal
rate to offset the endogenous glucose production, and (b)
a fixed amount of insulin bolus provided to cover elevated
glucose levels, especially after a meal. The basal rate is set
by trial and error until the level of glucose remains steady
during fasting conditions (eg., overnight). Likewise, the bolus
dosage is decided by a fixed insulin to carbohydrate ratio
(icRatio) and a correction factor (Cor). The parameter icRatio
is used to calculate the amount of insulin bolus required to
address the increase in blood glucose levels following a meal,
based on the amount of carbohydrates in the meal. Likewise,
the parameter Cor can be used to help reduce higher than
desired blood glucose levels.
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In this paper, we propose the use of mathematical models
of the insulin glucose regulatory system to find ideal val-
ues of the basal rate, the insulin-carbs and the correction
factor. Mathematical models of the insulin glucose regula-
tory system are quite sophisticated and can capture many
key physiological processes that govern the insulin glucose
regulation [1], [2], [3]. Furthermore, these models include a
large number of parameters that can potentially be adjusted
to fit the data available for an individual patient including
their carbohydrate intake, insulin infusion and blood glucose
readings over an extended period of time. The models have
the potential to account for short-term and medium-term
changes in insulin sensitivity and changes to the physical
fitness levels that can require changes in the pump usage
parameters.

Assuming the availability of a mathematical model with
parameters fitted to a particular patient, we consider the prob-
lem of finding optimal parameters for insulin infusion pump
usage. The criterion for finding the parameters include the
absence of hypoglycemia (the glucose concentration remains
above a minimum value), the absence of hyperglycemia
(the blood glucose concentration remains below a maximum
value) and the settling of the glucose concentration within
a narrow range roughly 3 hours post-meal. Our approach
involves the formulation of a penalty function that measures
the undesirability of the blood glucose concentrations over
time resulting from a scenario with fixed values of the
pump usage parameters, the amount of meal carbohydrates
and the starting value of the blood glucose concentration.
Starting with a natural penalty function that measures the
“robustness” of the glucose concentrations w.r.t. correctness
properties specified in Metric Temporal Logic (MTL) [4], we
modify the robustness metric to provide proper weightage to
hypoglycemia, which is much more undesirable than hyper-
glycemia. Furthermore, we penalize hypo-/hyper-glycemia
that persist for a long amount of time as opposed to transient
violations.

Finally, we define optimization problems to discover pump
usage parameters that minimize the penalty objective. How-
ever, the resulting objective function cannot be expressed
in a convenient closed form. In this paper, we use various
heuristic global optimization techniques such as simulated
annealing, cross-entropy and genetic algorithms [5].

We present an implementation of the setup based on
the model of insulin-glucose regulation proposed by Dalla
Man et al. [3]. This model is part of the commercially
available UVa-Padova simulator that was originally designed



for testing control algorithms for the artificial pancreas
concept [1]. Our simulation environment includes models of
commonly recommended pump usage strategies governed by
the parameters to be optimized. The simulation environment
allows us to compute the objective function for the opti-
mization of the pump usage parameters. This optimization
is performed under various configurations for a virtual set
of in-silico patients available as part of the simulator. We
conclude that our approach is viable for synthesizing pump
usage parameters automatically in a relatively short amount
of time. Our approach can be incorporated into tools that
can analyze a patient’s pump usage logs and automatically
recommend pump usage parameters for patient.

A. Related Work

Our ongoing project on robustness-guided model checking
studies the use of optimization algorithms for finding input
signals and parameter values to falsify correctness properties
of system designs [6], [7]. The tool S-Taliro provides an
implementation of these ideas to analyze MTL properties
of Simulink/Stateflow (tm) diagrams [8]. S-Taliro was used
previously to study insulin infusion pump usage models.
Therein, we examined the effect of various types of system
failures and user mistakes on the occurrence of hyper- and
hypoglycemia [9]. The key difference in this paper is the
focus on synthesizing parameters that minimize the overall
robustness. Furthermore, we modify the robustness metric
to obtain a penalty function that addresses some of the
characteristics of this problem.

Recently, Jha et al. presented the use of statistical model
checking to tune the parameters for a Proportional-Integral-
Derivative (PID) controller that regulates insulin infusion
based on glucose sensor readings [10]. Their approach
searches for the proportional, integral and differential gain
parameters that satisfies a given set of temporal properties
with a given probability at a high level of confidence. The
search is guided by the number of simulations required
before the statistical model checker rejects the correctness
criterion. A higher number indicates likely property satis-
faction. In contrast, our approach uses a robustness metric
in lieu of Boolean property satisfaction to search for pump
usage parameters that are optimal with respect to the chosen
robustness metric. The approach of Jha et al. is applicable to
the problem proposed here if additional information in the
form of probability distributions over the initial physiological
state and meal intake profiles are available. A detailed
comparison of the two approaches will be carried out in the
future.

Our work is similar in spirit to the idea of program
sketching proposed originally by Solar-Lezema et al. [11].
In particular, the patient’s usage strategy shown in Figure 4
can be seen as a simple program with “holes” specified by
the parameters basal,icRatio and Cor. A recent extension
to sketching uses program smoothing, wherein a discrete
program is modeled as a continuous function by adding noise
to the program variables and computing the expected out-
put [12]. In contrast to the work on sketching, the technique

proposed here does not provide any guarantees of correctness
by construction. This is primarily due to the complexity
of the non-linear hybrid system model being treated here,
whereas work on correct-by-construction sketching is mostly
restricted to programs with linear guards and updates.

Model predictive control algorithms proposed for the ar-
tificial pancreas [13] use optimization techniques to control
infusions in real time. However, the presence of delays in
sensing glucose values and the action of insulin hinders the
ability to control blood glucose levels in the presence of
unannounced meal disturbances. The problem of retrofitting
artificial pancreas with meal disturbance prediction and
estimation has been studied recently by Lee et al. [14].
They report substantial improvements in the ability of their
retrofitted technique to handle meal disturbances.

A number of other works study the parameter synthesis
problem for biological systems [15], [16], [17]. In general,
the problem is posed as follows. Given a hybrid or nonlinear
dynamical system and a temporal logic specification, find the
parameter ranges for which the resulting system trajectories
satisfy the specification. In particular, in [16], the authors
use sensitivity analysis in order to quantify neighborhoods of
trajectories with the same qualitative behavior under uncer-
tain system parameters and initial conditions. The authors in
[17] study the parameter synthesis problem for discrete-time
piecewise affine systems with parametric uncertainties. Rizk
et al. [15] provide an alternative definition of robustness for
temporal logic specifications. In addition, they use evolution-
ary optimization methods in order to find biochemical kinetic
parameter values satisfying properties in temporal logic.

II. BACKGROUND

In this section, we briefly describe models of insulin-
glucose regulatory system and insulin infusion pumps. Fur-
ther details are available from numerous surveys and mono-
graphs on this topic [18], [19].

A. Diabetes

The healthy human body has a sophisticated closed-loop
control mechanism to maintain the level of glucose in the
blood within upper and lower limits (roughly 60 mg/dl to
100 mg/dl under the fasting state). This is achieved mainly
by the action of the pancreas, using the hormones insulin
and glucagon. Insulin regulates blood glucose levels in many
ways including the promotion of glucose uptake by the
liver and skeletal muscles, the inhibition of glucagon and
conversion of glucose by the fat cells.

Diabetes Mellitus is a condition wherein this control
system is disrupted either by damage to the [S-cells in the
pancreas that secrete insulin (type-1 diabetes) or by reduced
sensitivity of the cells in the body to insulin (type-2 diabetes).
As a result, the blood glucose levels are chronically elevated,
damaging many organs including the kidneys, eyes and
nerves.

A common treatment for chronic type-1 diabetes involves
the external delivery of artificial insulin (or insulin analogs)
directly through a syringe, or sub-cutaneously through an



insulin infusion pump. The everyday delivery of insulin is
controlled by the patient with advance knowledge of their
activities such as diet and exercise. Furthermore, diabetic
patients are required to monitor their blood glucose levels
intermittently. This can be done through “finger stick” blood
glucose monitors, or continuous glucose monitors (CGMs)
that provide frequent estimates of the blood glucose concen-
tration by measuring the subcutneous glucose concentration.

B. Insulin Infusion Pumps

Insulin infusion pumps are commonly used by type-1
diabetic patients to infuse artificial insulin subcutaneously.
Commercially available pumps include numerous features,
including the ability to deliver insulin at a preset rates
through the day (basal insulin) and the ability to deliver
a programmable amount of insulin (bolus insulin) upon
request. The amount, timing and shape of the bolus can also
be adjusted by the user.

The use of insulin infusion pump poses numerous chal-
lenges to the patient. Too much insulin poses the risk of
hypoglycemia, wherein the patient’s blood glucose levels are
dangerously low. This condition seriously impairs the patient,
causing coma in extreme situations. On the other hand,
too little insulin poses the risk of hyperglycemia, wherein
the patient’s blood glucose levels are too high causing
dangerous conditions such as ketacidosis. Likewise, blood
glucose levels that are chronically elevated can also cause
damage to important organs such as the kidneys, eyes and
heart. Thus, the patient using the insulin pump has to choose
appropriate basal rates and bolus amounts at the appropriate
times to maintain their blood glucose level inside the ideal
range.

In practice, physicians and diabetic educators use a widely
accepted system based on three parameters that are calibrated
for each patient individually [20]. These include: (a) the basal
rate (basal), (b) an insulin-to-carbohydrates ratio (icRatio)
and (c) a correction factor (Cor). These parameters dictate the
user’s pump usage strategy for covering two major sources
of glucose: (1) endogenous glucose production by the liver
covered by the basal infusion and (2) meal glucose absorbed
by the digestive system covered by bolus infusions. Finally, a
bolus infusion is called for periodically to correct high blood
glucose levels, as measured by a glucose monitor.

Consequently, an infusion pump is typically used as fol-
lows:

1) The patient is expected to infuse a background insulin at
the basal rate basal. Basal rates can be varied depending
on the time of the day and physical activity level.

2) The patient frequently measures the blood glucose level
G and infuses a correction bolus using the correction
factor Cor as follows:

correction = Corx(G—G gagired) if G > Gesired T2 -

Here Gyegired 18 the normal glucose level (eg.,
80mg/dl) and A represents a tolerance factor (eg.,
A = 20mg/dl).
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Fig. 1. Key components in the meal insulin infusion pump usage scenario.

3) Roughly AT minutes prior to each meal, the patient
infuses a meal bolus to compensate for the amount
carbohydrates due to the meal (mealCarbs). The value
of AT depends on the meal composition. Typical values
for AT are in the range of 15 to 20 min.

mealBolus = icRatio x mealCarbs .

Typically, the usage parameters (basal,icRatio, Cor) are
calibrated individually through trial and error, starting from
an initial guess given by the patient’s weight and daily
carbohydrate consumption. These parameters are periodically
readjusted to account for longer term changes in the patient’s
insulin sensitivity due to factors such as illness, medications
and physical fitness levels.

III. MODELING

We will now discuss the process of modeling the various
parts of the insulin infusion scenario in order to optimize
the pump parameters for the user. Figure 1 shows the main
parts of the overall model for the insulin infusion pump
usage scenario. Commonly used models of insulin glucose
regulatory system use non-linear ODEs to predict the blood
glucose concentration. On the other hand, the model of
insulin infusion pump and the patient’s usage strategies
involve discrete actions. The overall composed model is a
non-linear hybrid system.

A. Modeling Insulin-Glucose Regulation

In this paper, we seek to synthesize pump usage parame-
ters using models of the patient’s insulin glucose regulatory
system that are periodically updated based on data that
includes the patient’s insulin infusion log, food intake and
blood glucose data. We first briefly review the state-of-the-
art for modeling the physiological processes involved in the
regulation of glucose. Details on the models and the model
identification process are available elsewhere [18], [19], [3],
[2].

There are numerous modeling approaches for the insulin
glucose regulatory system [18]. These models attempt to
predict the key physiological state variables including the
blood glucose levels and the insulin levels in various tissues,
along with key physiological process including the action
of insulin on glucose consumption, endogenous glucose
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Fig. 2. Block diagram showing the major physiological processes involved
in the insulin-glucose regulatory system for a type-1 diabetic patient using
a subcutaneous infusion pump. Adapted from Dall Man et al. [21].

production, renal clearance of glucose, glucose secretion,
gut absorption of glucose from meal and the transfer of
subcutaneously infused insulin into the plasma. Figure 2
shows a block diagram that depicts these processes and the
interactions between them.

Modeling approaches can be broadly classified into mini-
mal models that attempt to capture the basic trends without
modeling the underlying physiological processes that gives
rise to these trends and comprehensive models that predict
the blood glucose levels using models of the physiological
processes mentioned above. A popular example of a minimal
model is the Bergman minimal model [22]. Two recent ex-
amples of comprehensive models used in developing artificial
pancreas controllers include the Hovorka model [23], [2] and
the Dalla Man model [21].

We will use the Dalla Man model in our work following
descriptions available elsewhere [21], [3]. This model, along
with the patient parameters from the UVa-Padova simulator
will be used in this paper as the reference model for insulin
glucose regulation. The model is a non-linear ODE with ~
13 continuous variables. The dynamics are hybrid due to the
discrete action of renal clearance which is activated whenever
the blood glucose level exceeds a threshold.

B. Modeling Insulin Infusion Pumps

Insulin infusion pumps are responsible for delivering in-
sulin to the patient at a programmable rate. For the purposes
of this paper, we model two key aspects of the insulin
infusion pump: (a) the delivery of a continuous infusion at
a fixed basal rate (basal) and (b) the delivery of a fixed
bolus at the maximum rate, specified by the bolus amount.
Our model assumes a fixed delivery profile for the bolus
(“sine wave bolus”) with a small width. Figure 3 shows the
basic model of the pump. This model is a hybrid automaton
consisting of two modes for basal and bolus delivery.

C. User Control Strategy

Another important part of our overall model is an idealized
model of pump usage by the patient. We specifically focus
on the process of controlling glucose levels surrounding a
meal. Let us assume that the meal is started at time ¢t = T},

bolus(amt)! — ( to =t Ip:=1 )

J = amt,
N
Basal Mode Bolus Mode
start 1{%{):;::;' { ydT({):yb(ats)al s }
\/
I—Ig>J
Fig. 3. Hybrid automaton modeling basal and bolus infusion delivery by

an infusion pump. Variable y refers to current infusion rate, I: amount of
infused so far, ¢: current time. The input event “bolus(amt)” is parameterized
by the amount of bolus requested amt. Function F} models the shape of
the bolus as a function of time from start of bolus.

assert(t € [T, — 20, Ty, — 15]);
mealBolus := mealCarbs * icRatio;
G := glucoseSensor(t);
if (G > Gdesired +10)

correctionBolus := (G — G gesired) * Cor;
else

correctionBolus := 0;
deliverBolus(mealBolus + correctionBolus);

l

assert(t € [T + 120, Tr, + 150]);
G := glucoseSensor(t);
if (G > Gegired +10)

correctionBolus := (G — G gesired) * Cor:
else

correctionBolus := 0;
deliverBolus(correctionBolus);

Fig. 4. An idealized user control strategy for insulin bolus centered around
a meal taken at time ¢ = T},, minutes. (Top) Pre-meal and correction bolus
15 — 20 minutes prior to the meal and (Bottom) post-meal correction 120 —
150 minutes post-meal. Note that the strategy is dependent on the pump
usage parameters basal, icRatio and Cor in addition to the pre-meal glucose
levels and the estimated amount of carbohydrates in the meal.

minutes. Following the widely prescribed guidelines, we
assume that the user infuses a “pre-bolus” at time t =
T — [15,20] minutes. This combines a bolus to cover the
planned meal, using the insulin-carbs ratio icRatio and a
correction factor in case the pre-meal glucose levels are
elevated. Similarly, we assume that the user checks their
post-meal blood glucose levels roughly [120,150] minutes
post meal and uses a correction bolus if required. Figure 4
shows the calculation of bolus amounts as part of the user
control strategy.

D. Model Implementation

The models for the various components of the infusion
were implemented inside the Simulink/Stateflow (tm) pro-
gramming environment. As mentioned earlier, we implement
the model proposed by Dalla Man et al. [21], [3]. An
implementation is commercially available as part of the
University of Virginia (UVa) -Padova simulator along with
representative parameter sets for 30 “in-silico” patients. We
reimplemented the publicly available Dalla Man model, as
described in papers by Dalla Man and co-workers [3], [21],
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Fig. 5. Correctness requirements for ideal glycemic control at a glance.
The requirements include (a) No hypoglycemia, (b) No hyperglycemia, and
(c) Settle within a narrow range. Note that axes on the graph are not to
scale.

[24] with in silico parameters available from the commercial
simulator. This was performed in order to provide a more
convenient integration of the resulting model inside the
overall optimization scheme for finding pump parameters.
The final model requires a few parameters to be specified
by the user at the start of the simulation, including (a) the
amount of carbohydrates to be consumed during the meal
(mealCarbs), (b) the starting glucose value for the simulation
and (c) the pump usage parameters (basal, icRatio, Cor).
The simulation involves a single meal consumed at T;,, =
30 with a fixed duration of 15 minutes. The simulation is
carried out for a total time period of 1" = 720 minutes (12
hours), assuming no meals in the intervening period. Other
than the first meal at ¢ = T,,,, we assume no other meals
during the simulation. However, the model can be easily
modified to support multiple meals over a longer time period.

IV. TRACE ROBUSTNESS

We discuss the desired properties of the insulin infusion
process and the derivation of a penalty function. These
properties can be expressed as formulae in Metric Temporal
Logic (MTL) [4] involving the blood glucose concentration
G(t) as a function of time. We then define a notion of
robustness of a trace that assigns a numerical score that pe-
nalizes situations such as hypoglycemia and hyperglycemia
(implicitly “rewarding” their absence). The design of the
penalty function requires careful consideration of the weights
given to hypoglycemia and hyperglycemia. Finally, we pose
the problem of calibrating the pump usage in terms of
an optimization of the trace robustness, or equivalently a
minimization of the trace penalty. We show different ways
of formulating this optimization to account for varying meal
sizes and initial physiological states.

Figure 5 depicts the three main correctness requirements
for meal insulin bolus selection. The correctness specifica-
tions refer to the observed values of blood glucose concen-
tration over time G(t). These include
(a) No hypoglycemia: (Vt) G(t) > 50mg/dl,

(b) No hyperglycemia: (V¢) G(t) < 170mg/dl, and

(c) The settling of the glucose concentrations to a narrow
range three hours after the meal:

(Vt), t > T, + 180min = G(t) € [60,90]mg/dl .

A. Robustness

Given the correctness specifications provided in the pre-
vious section, it is an easy problem to check if a given
signal G(¢) (specified by means of samples at discrete time
points) satisfies the specification. As a result, given a trace
of glucose levels G(t), we may obtain a true/false answer to
whether it satisfies the specifications or not. In this paper, we
seek further information about “nearby” traces G’ (¢) that are
within some € distance from G. We first present the notion of
robustness, that augments the true/false answer obtained from
the formula satisfaction with a value € € R that specifies the
robustness of G(t) w.r.t the specification.

Definition 4.1 (Robustness Metric): Given a trace G(t)
and a property ¢ involving G, the robustness metric rob, (G)
satisfies the following main properties:

1) If G(t) satisfies the property ¢, then rob,(G(t)) > 0.

2) If G(t) violates ¢, then rob,(G(t)) < 0.

3) Let rob,(G) = e. Consider any trace G’(t) that is
contained in an e cylinder around G(t), i.e, for all ¢,
|G'(t) — G(t)| < |e|. Tt follows that G’ has the same
outcome for the property ¢ as G. In other words, both
G, G satisfy the property or both violate the property
®.

The general theory of robustness metrics for continuous
signals and MTL properties has been described by Fainekos
et al. [25], [26]. Their work provides a systematic defini-
tion of the robustness metric given a trace and a property
described in MTL. Since the conditions for hyperglycemia,
hypoglycemia and failure to settle can be described in MTL,
the work of Fainekos et al. is directly applicable to obtain
a robustness metric. Based, on their work, we obtain the
following functions for the robustness of a signal G(t) w.r.t
each of the three properties for the ideal control of post-meal
blood glucose levels:

1) The robustness Rpyper for hyperglycemia is given by
Rhyper(G) = mfux(l?O - G(t)).
2) The robustness Rpyp, for hypoglycemia is given by
Riypo(G) = mtax(G(t) —50).
3) The robustness R4 for failure to settle is given by

Roer1e(G) = (min(90 — G(t), G(t) — 60)).

max
t>T, +180

The reader can verify that the robustness metrics for each
of the three properties satisfy the requirements for being a
robustnes metric.

Robustness metrics directly lead to a penalty function
defined as

F(G) = —min(Rpyper (G), Rhypo(Q); Rsetrie(G)) -

A large positive value of this penalty function implies
a low, negative value of robustness. In turn, this implies a



“blatant” violation wherein nearby traces are also violations.
Likewise, a low negative penalty implies a large positive
robustness and thus a robust satisfying trace with nearby
traces also satisfying the properties.

B. Modified Robustness Metrics

While robustness metrics provide a natural means for
associating a numerical measure of satisfaction with a trace,
they are not entirely suitable for the purposes of providing a
penalty score for the trace G(t) resulting from a fixed set of
parameters basal, icRatio and Cor. This is due to two reasons:

1) The metric penalizes a violation based on the maxi-
mum/minimum value of G(t) over a time interval. In
practice, a hypoglycemia that persists for a significant
period of time may be more harmful than a transient
hypoglycemia for a short time period.

2) Secondly, hypoglycemia is generally deemed much
more harmful than hyperglycemia. For instance G(t) =
40mg/dl is a significant problem whereas G(t) =
180mg/dl is only a problem if it persists for a long
time. As a result, the metric needs to provide appropriate
weights for hyperglycemia vs. hypoglycemia.

Weighting Hyperglycemia vs. Hypoglycemia One ap-
proach to appropriately penalizing hypoglycemia is to pro-
vide an exponential penalty for hypoglycemia. As a result,
the penalty function for hypoglycemia may be defined as

Fhypo(G) = mtax(e’\(w_c(t)) — 1), for some fixed A > 0.

The penalty functions for hyperglycemia and failure to settle
are given by the robustness metric. The overall penalty is
obtained by adding the various penalty functions from the
three properties together.

In this model, assuming A = 0.3, a hypoglycemic trace
with Gnin = 40mg/dl yields a penalty e? —1 ~ 20. This
is equivalent to the penalty induced by a hyperglycemic
trace with G, = 190mg/dl. However, the exponential
nature of the scale ensures that a significant hypoglycemia
Gmin = 30mg/dl yields the same penalty as a significant
hyperglycemia with G4, = 630mg/dl.

Integrating Violations As an alternative to the use of
extremal glucose values (obtained by the use of max and
min in the robustness function), we propose integrating the
penalty in order to differentiate between a property violation
that is corrected soon as opposed to a violation that persists.
As a result, we define the penalty function for hypoglycemia
as
Frypo(G) = fThypu (e0350=6GM) —1)dt
where Thypo = {t | G(t) < 50}.

If G(t) is assumed to be a continuous function of time, then
the integral above is well-defined. Note that the function
Frypo(G) > 0 if a trace G(t) violates the hypoglycemia
property, while Fj,,,(G) = 0 if G(t) satisfies the property.
Likewise, we may define Fhyper(G) and Fiee(G) by
integrating the penalties over all time intervals that pertain
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Fig. 6. The objective function F for the optimization problem takes in

three parameters, performs a simulation and reports the penalty function
value on the resulting simulation trace.

to property violations.

thper(G) - fThypc'r (G(t) — 170)dt,

where Th,yper = {t | G(t) > 170}

Fyer11e(G) = fTup(G(t) —90)dt + deown(GO — G(t))dt,
where T, = {t | t > 180+ T,, A G(t) > 90}

and Tyown = {t | t > 180+ T,, A G(t) <60}.

V. OPTIMIZATION

We will now present the setup for the optimization prob-
lem for setting up the various pump usage parameters. We
first present a joint optimization setup wherein all parameters
are jointly optimized for a fixed meal scenario.

Figure 6 shows the setup for the optimization problem.
The penalty function F has parameters (basal, icRatio, Cor).
The optimization seeks to minimize the penalty function
over a permissible range of values for the usage parameters
(basal, icRatio, Cor).

Formally, let P be the set of search parameters. Namely,
given a point (basal,icRatio,Cor) € P and a func-
tion X that returns the system trace G(t) for parameters
(basal, icRatio, Cor), then the optimization problem that we
try to solve is

min 7 (p) = min F(3(p))

Non-linear Objective Function: We note that the overall
model of the insulin infusion process is a hybrid system with
discrete mode switches induced by the insulin pump and
the usage models. Furthermore, each mode has non-linear
dynamics due to the physiological model. As a result, the
function F' cannot be written down in a closed form suitable
for optimization. We can evaluate [’ numerically to some
given degree of precision using a simulation environment
such as Simulink/Stateflow (tm).

As a result, the optimization cannot be solved exactly.
However, we may use heuristic techniques to obtain pump
usage parameters that yield an acceptable value of the penalty
function, possibly satisfying the desired properties for ideal
control of glucose levels. Examples of heuristic techniques
include stochastic optimization techniques such as simulated
annealing and the cross-entropy method [5], heuristic global
optimization techniques such as genetic algorithms, and
gradient descent techniques that estimate an approximate
gradient by evaluating the objective function.



Implementation The optimization routines provided
in the global optimization toolbox (fmincon,
simulannealbnd and ga) were used to carry out
the optimization. The ranges of the pump usage parameters
were restricted to basal € [0.1, 5],icRatio € [0.05,.5] and
Cor € [0.05, 2] for our experiments.

VI. EXPERIMENTAL RESULTS

We will now present an experimental evaluation of our
approach to optimizing pump usage. We report on the results
of our optimization procedure and the performance over a
virtual set of 10 adult patients, namely d1 to d10, available
as part of the UVa-Padova simulator [1] I

We consider the optimization for a meal scenario
with the starting values of the blood glucose level
Gstart = 140mg/dl and the amount of meal carbohydrates
mealCarbs = 120gms. Table I shows the tuned parameters
for the single meal scenario. We compare two scenarios:
(a) all three parameters basal, icRatio, Cor are jointly opti-
mized for the scenario and (b) The parameters icRatio, Cor
jointly optimized with a fixed value of the basal rate that is
calibrated separately. The calibration of the basal rate was
performed by running an optimization over basal assuming
no meal input to search for a basal rate that held the blood
glucose level stable within the range [75, 85|mg/dl.

With the exception of three patients (d3, d6 and d7),
the joint optimization produces markedly lower penalty val-
ues than the separate optimization of the basal parameter.
We note that joint optimization produces acceptable maxi-
mal/minimal values of the blood glucose levels in almost all
cases, with a possible severe hypoglycemia in one case and
potential hyperglycemia for patient d9. The performance of
separate basal optimization is slightly worse producing both
severe hyperglycemia and hypoglycemia for patient d9, and
hyperglycemia for patients d1, d10.

The running times for the optimization are mostly within
15 minutes. While these running times are not suitable for
practical implementation, we can reduce them considerably
given more efficient simulation algorithms (eg., compiling
the simulator down to native code), parallel simulations and
a better choice of optimization algorithm.

VII. THREATS TO VALIDITY

In this section, we discuss some of the threats to validity
and address remedial steps taken to ensure that the results in
this work are applicable to real-life situations.

With any result involving in silico simulations, there is
a risk that we are observing modeling quirks that are not
reflective of what happens in reality. However, the models
used here have been extensively evaluated against studies on
real patients [21], providing evidence for their validity.

This work considers the joint optimization of pump pa-
rameters under a single meal scenario that consists of a
single meal with fixed amount of carbohydrates taken at
some time ¢t = 7T,, and no futher meal disturbances for

I'The results on the entire available virtual set of 10 adults, 10 adoloscents
and 10 children are available upon request

the next 12 hours. While this scenario is feasible, a realistic
scenario involves three meals at times that correspond to
breakfast, lunch and dinner times. Discrepancies between
announced meal carbohydrates and actual meal consumed
are very common. Another limitation of the scenario is the
assumption that the meal times are fixed. The choice of the
pump parameters should consider some variability in the
meal times. However, the framework presented here can be
extended naturally to cover a more complex meal scenario.

The model is currently simulated starting from a fixed
initial physiological state (blood glucose concentration, blood
insulin concentration, insulin infusion history, meal history
etc.). This is an unrealistic assumption in practice. Our
optimization needs to consider the choice of parameters that
perform well under varying physiological states prior to the
meal.

Finally, our work does not consider the problem of fitting
parameters to the patient’s glucose monitor and insulin
infusion logs, which is essential to build personalized models
for the patients. In practice, model parameters are fitted using
an expensive tracer study under physiological controlled con-
ditions that cannot be carried out frequently on a patient [21].
We are currently investigating the use of parameter fitting
techniques that start from an assumed prior set of parameter
values measured for a patient with similar body weight and
daily insulin requirements.

VIII. CONCLUSIONS

We have provided a technique to optimize insulin infusion
pump usage parameters based on repeated simulations to
minimize a penalty function. Our preliminary evaluation
demonstrates the advantage of a joint optimization of the
three pump usage parameters against a meal scenario, as
opposed to the more commonly used separate optimization
of the basal infusion rate. Our ultimate goal is to provide
a model-based analysis tool that can fit models to patient
data and use the resulting models to identify optimal pump
usage parameters against meal scenarios. As noted in our
discussion on threats to validity (Section VII), a lot needs
to be done before such a tool can be made available to
patients. Our future research will focus on piecewise affine
abstractions of the non-linear model, which will enable us
to simplify the dynamics of the model. The optimization
of pump usage parameters against uncertain initial phys-
iological states and multiple meal scenarios will also be
investigated.
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