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Abstract

We consider the problem of noisy Bayesian active learning, where we are given a finite set of

functionsH, a sample spaceX , and a label setL. One of the functions inH assigns labels to samples

in X . The goal is to identify the function that generates the labels even though the result of a label

query on a sample is corrupted by independent noise. More precisely, the objective is to declare one of

the functions inH as the true label generating function with high confidence using as few label queries

as possible, by selecting the queries adaptively and in a strategic manner.

Previous work in Bayesian active learning considers Generalized Binary Search, and its variants for

the noisy case, and analyzes the number of queries required by these sampling strategies. In this paper,

we show that these schemes are, in general, suboptimal. Instead we propose and analyze an alternative

strategy for sample collection. Our sampling strategy is motivated by a connection between Bayesian

active learning and active hypothesis testing, and is basedon querying the label of a sample which

maximizes the Extrinsic Jensen–Shannon divergence at eachstep. We provide upper and lower bounds

on the performance of this sampling strategy, and show that these bounds are better than previous

bounds.

Index Terms

Bayesian active learning, hypothesis testing, generalized binary search, Extrinsic Jensen–Shannon

divergence.
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I. INTRODUCTION

We consider the problem of noisy Bayesian active learning, where we are given a finite set

of functionsH, a sample spaceX , and a label setL. One of the functions inH assigns labels

to samples inX , and our goal is to identify this function when the result of alabel query on a

sample is corrupted by independent noise. The objective is to declare one of the functions inH

as the true label generating function with high confidence using as few label queries as possible,

by selecting the queries adaptively and in a strategic manner.

A special case of the problem, first considered by [1], ariseswhen the label set is binary and

the natural sampling strategy for Bayesian active learningbecomes closely related to Generalized

Binary Search (GBS). In the binary label setting, GBS queries the label of a samplex for which

the size of the subsets of functions that labelx as +1 and −1 respectively, are as balanced

as possible. A variant of GBS is Modified Soft-Decision Generalized Binary Search (MSGBS),

which was introduced by [1] to address the case when the observed labels may be noisy. [1]

analyzes the performance of MSGBS, under a symmetric and non-persistent noise model which

flips the labels randomly, and shows that the number of samples required to identify the correct

function with probability of error satisfying Pe≤ ǫ is O
(

logM+log 1
ǫ

λ

)

, whereM is the number

of functions in the classH, andλ is a parameter which depends on the structure of the function

class, the sample space, and the noise rate. The first contribution of this paper is to generalize

the above problem to the case of general (non-binary) label set with general (and potentially

non-symmetric) non-persistent observation noise.

By allowing for the number of samples collected to be determined in a sequential manner

(according to a random stopping time as a function of past observations), we draw a parallel

between active sequential hypothesis testing and Bayesianactive learning. In active sequential

hypothesis testing, we are given a set ofM hypotheses, and a set of actions; each action,

conditioned on the true hypothesis, has a certain probability of yielding an outcome. We observe

that Bayesian active learning is a special case of active hypothesis testing, where the hypotheses

map to functions, actions map to samples, and the outcomes map to noisy observation of labels.

This view of the problem allows for a natural extension of themodel of [1] to the non-binary

Bayesian active learning setting, where the label noise might be label dependent and asymmetric.

Relying on this connection, we derive a universal lower bound on theexpectednumber of samples
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required to identify the true hypothesis amongM with reliability ǫ as a function of noise model

parameters. Our lower bound generalizes that of [2]. This lower bound, when specialized for

the noisy generalized binary search suggests that the proposed schemes of [1] are suboptimal in

general. The next contribution of this work is to propose andanalyze an alternative strategy for

sample collection.

To find an alternative strategy, we again take advantage of the connection between Bayesian

learning and active sequential hypothesis testing. In [3],the authors introduced the notion of

Extrinsic Jensen–Shannon (EJS) divergence, and proposed an active sequential hypothesis test

that, at each step, selects the action that maximizes the EJSdivergence. In this paper, we apply the

corresponding sampling strategy to Bayesian active learning, and characterize the performance of

this strategy. Our analysis improves on the analysis of [3].Our bounds show that the number of

label queries required by our algorithm isO
(

logM
α

+
log 1

ǫ

β

)

, whereM is the number of functions

andα andβ are terms, different fromλ, that depend on the structure of the function class, the

sample space, and the noise model.

To illustrate our bounds, in Section V, we focus on generalized binary search studied in [1] and

consider the class of 1-neighborly functions and its three specific subclasses — intervals on the

line, thresholds on the line, and a set of rich function classes. We show that the upper bounds on

the number of labels required by the EJS policy are superior to those of [1] for all three subclasses

for the asymptotic values ofǫ andM . In addition, we show through numerical simulations that

our policy has better performance than the algorithms of [1]also in non-asymptotic regimes of

practical interest.

There has been a large explosion of recent work on the theory of active learning [4]–[13] but

despite the similarity of the titles, the models and the assumptions vary drastically with at times

contradictory conclusions. Here we attempt to detail specific attributes of these papers and the

connection/disconnect between our work and this literature. Early work on active learning [4],

[5], [7] considered the realizable case where the binary labels are produced by a function in a

given function class and are observed noise-free. Here, thefunction class is either finite, like

our setting, or, unlike our setting, infinite but equipped with a fixed structure, such as the class

of thresholds on a line, or the class of linear classifiers. Incontrast with our work, however,

the learner is only allowed to query the labels of samples among an unlabeled set of points

which are drawn from the unlabeled data distribution. Also unlike ours, the goal here is to find a
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function which has lowprediction error with respect to the data distribution. Thus the challenge

is to identify a function in the function class where the disagreement with the true labeling

function is less than the required accuracy, and the prediction error occurs due to infiniteness

of the function class or due to the indistinguishability of the functions with respect to the data

distribution as opposed to noisy observations of the labels.

Since the realizability assumption can hardly ever be justified in practice, more recent lit-

erature [6]–[8], [10]–[12] has considered active learningin the non-realizable case. A line of

work [7]–[11] considers active learning in the agnostic setting, where the binary labels are

not necessarily generated by a function in a given function class, and the goal is to find a

function in the function class which has low prediction error with respect to the labeled data

distribution. Most of this work employs adisagreement-basedstrategy for label queries; the

algorithm maintains a candidate set of functions that is guaranteed to contain the best function

in the class with high probability, and queries the label of asample only when there are two

functions in the candidate set that disagree on its label. Animportant special case of the non-

realizable setting relevant to our work is the bounded rate class noise of [6] in which labels

are produced by a member of a given function class but are subjected to an exogenous (and

non-persistent) observation noise. In such a setting, [6],[14] show that repeat queries can be

effectively utilized to mitigate the effect of noise. In [12], the authors perform an information

theoretic analysis of active learning in the agnostic setting and provide lower bounds on its

sample complexity.

Finally, [13] considers the same setting as our work. Unlikeus, they do not provide absolute

upper and lower bounds on the query complexity. Instead, they consider sampling strategies that

select the sample that maximizes the information gain basedon a certain measure of information,

and show that if the measure of information in question is adaptively submodular, then this

strategy is competitive with the optimal strategy according to the same information measure.

In summary, our work differs from the previous work on activelearning in three important

ways. First, we are interested in a generalized learning setup where labels can be non-binary

and observation noise can have a general non-symmetric and non-discrete nature. Second, we

are interested in a sequential learning setting where the learner is allowed not only to query

individual samples (hence, rendering the data distribution irrelevant), but also to determine the

number of queries in an online fashion as a function of observations so far. Third, by considering
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the simpler setup of a finite function class as well as an exogenous and non-persistent observation

noise, we provide sharp lower and upper bounds on the query complexity. Our lower bound is

purely information theoretic and is only a function of the observation noise which is the only

inevitable source of inaccuracy in our model. Our upper bound, in contrast, is obtained via the

analysis of an achievable scheme and sheds light on how the structure of the function class

impacts the overall performance of our proposed scheme. Perhaps, most significantly, we show

that the number of label queries required by the proposed scheme matches the lower bound

asymptotically when the function/sample space is sufficiently “rich.”

The remainder of this paper is organized as follows. In Section II, we formulate the problem

of Bayesian active learning. In Section III, we propose our heuristic policy for selecting samples.

Section IV provides the main results of the paper. As a special case, noisy generalized binary

search is discussed in Section V and a comparison to some of the known results is provided.

Finally, we conclude the paper and discuss future work in Section VI.

Notation: Let [x]+ = max{x, 0}. For any setS, |S| denotes the cardinality ofS. The space

of all probability distributions on setA is denoted byP(A). All logarithms are in base 2. The

entropy function on a vectorρ = [ρ1, ρ2, . . . , ρM ] ∈ [0, 1]M is defined asH(ρ) =
∑M

i=1 ρi log
1
ρi

,

with the convention that0 log 1
0
= 0. Finally, the Kullback–Leibler (KL) divergence between two

probability density functionsq(·) andq′(·) on spaceY is defined asD(q‖q′) =
∫

Y
q(y) log q(y)

q′(y)
dy,

with the convention0 log a
0
= 0 and b log b

0
= ∞ for a, b ∈ [0, 1] with b 6= 0.

II. BAYESIAN ACTIVE LEARNING

In this section, we provide the mathematical description ofthe problem of Bayesian active

learning.

Problem (P) [Bayesian Active Learning]

In the Bayesian active learning problem, we are given asample spaceX , a finite label

setL, and anobservation spaceY . We are also given a setH = {h1, h2, . . . , hM} of M

distinct functions, where eachhi : X → L maps elements in the sample spaceX to the

label setL. We assume that one of the functions inH, denoted byhθ, produces the correct

labeling onX .

The decision maker is allowed toquerysamples fromX . Querying a samplex generates an

observation iny ∈ Y whose distribution is a given function of the true label as determined by
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the functionhθ. More specifically, ifhθ is the true underlying function and hencel = hθ(x)

is the true label of samplex, then the result of a query onx is aY-valued random variable

with probability densityfl(·). We assume that the observation densities{fl(·)}l∈L are fixed

and known, and observations are conditionally independentover time.

The goal of the decision maker is to determine the identity ofthe function inH that

generates the true labels by an adaptive sequential query ofa small number of samples. We

assume that the decision maker does not have any extra prior knowledge on the identity

of the true function; in other words, it begins with a uniformprior overH. Let τ be the

stopping time at which the decision maker retires and declares the label generating function

hθ̂. Furthermore, letPe = P (θ̂ 6= θ) whereθ is the index of the true function. In Bayesian

active learning, the objective is to design a strategy for the decision maker for querying

samples inX such that, for any givenǫ > 0, we have

minimizeE [τ ] subject toPe ≤ ǫ. (1)

Here the minimization is taken over the choice of the stopping time τ and the learning

strategy and the expectation is taken with respect to the observation distribution as well as

the Bayesian uniform prior on the true function inH.

Note that Bayesian learning strategy is more than a single sample query but instead is an

adaptive and sequential rule that dictates the causal choice of (random) sample queries depending

on the past observations and past queries prior to the stopping time. In this paper, we refer to this

adaptive and sequential rule as a query scheme,c, which together with the particular realization

of outputsYc(0), Yc(1), . . . , Yc(τ − 2), dictates the sample queriesXc(1), Xc(2), . . . , Xc(τ − 1).

Before we end this section, and in face of the difficulty in fully characterizing the optimal

learning strategy in general we define weaker notions of optimality.

A. Asymptotic and Order Optimality

Definition 1. Let E[τ cǫ ] denote the expected number of samples required by query scheme c to

achievePe ≤ ǫ. Furthermore, letE[τ ∗ǫ ] be the minimum expected number of samples required

to achievePe ≤ ǫ, where the minimum is taken over all possible strategies. Query schemec is

referred to asasymptotically optimalin ǫ (andM) if

( lim
M→∞

) lim
ǫ→0

E[τ cǫ ]− E[τ ∗ǫ ]

E[τ cǫ ]
= 0.
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Query schemec is referred to asorder optimalin ǫ (andM) if

( lim
M→∞

) lim
ǫ→0

E[τ cǫ ]− E[τ ∗ǫ ]

E[τ cǫ ]
< 1.

It is clear from the definitions above that order optimality is weaker than asymptotic optimality.

If a schemec is asymptotically optimal inǫ (andM), thenE[τ cǫ ] andE[τ ∗ǫ ] will have the same

dominating terms inǫ (andM); while order optimality of schemec only implies that dominating

terms inE[τ cǫ ] andE[τ ∗ǫ ] are similar up to a constant factor.

III. PRELIMINARIES AND PROPOSEDHEURISTIC

After providing some preliminary results and notations, including the definition of Extrinsic

Jensen–Shannon (EJS) divergence, in this section we propose our EJS-based heuristic.

Let Ω = {1, 2, . . . ,M}. Recall thatθ ∈ Ω is the random variable that indicates the index of

the true function andτ is the stopping time at which the decision maker retires and guesses the

true index.

Casting the problem as a decision theoretic problem allows for the structural characterization

of the information state, also known as sufficient statistics. Let the decision maker’s posterior

belief about each possible function indexi ∈ Ω, updated after each sample query and observation

for t = 0, 1, . . . , τ − 1, be

ρi(t) := P ({θ = i}|X t−1, Y t−1). (2)

The decision maker’s posteriors about the true label generating function collectively,

ρ(t) := [ρ1(t), ρ2(t), . . . , ρM(t)], (3)

form a sufficient statistics for our Bayesian decision maker. In other words, the selection of

sample query as a function of this posterior does not incur any loss of optimality [15]. In

particular, the optimal decision maker guesses the function with the highest posterior at timeτ

to be the label generating function, i.e.,

θ̂ = argmax
i∈Ω

ρi(τ). (4)

We also note that the dynamics of the information state, i.e., the posterior, follows Bayes’ rule.

But before we make this more precise, let us consider an alternative representation of querying

a samplex ∈ X :
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Definition 2. A samplex ∈ X generates a|L|-partition Ξx := {Hx
l }l∈L of the function class,

i.e., if Hx
l = {h ∈ H : h(x) = l}, thenH = ∪l∈LH

x
l .

This view allows us to characterize the observation densitygiven the belief vectorρ and

queried samplex as

fρ

x (y) :=
∑

i∈Ω

ρifhi(x)(y) =
∑

l∈L

fl(y)
∑

i:hi∈Hx
l

ρi. (5)

Therefore, given the belief vectorρ(t), querying samplex and observing (noisy) labely results

in a refinement of the posterior according to the Bayes’ rule,i.e.,

ρ(t+ 1) = Φ
x(ρ(t), y) (6)

where

Φ
x(ρ, y) :=

[

ρ1
fh1(x)(y)

fρ

x (y)
, ρ2

fh2(x)(y)

fρ

x (y)
, . . . , ρM

fhM (x)(y)

fρ

x (y)

]

. (7)

Many of our results in the paper are obtained as a consequenceof a connection between

Bayesian active learning and the more general problem of Information Acquisition which has

been discussed in full generality in [16]. In particular, taking cue from the seminal work of

DeGroot on statistical decision theory [17], and our own prior work on active hypothesis testing

[3], given a belief vectorρ ∈ P(Ω), the expected utility of the sample queryx ∈ X , or

equivalently its corresponding|L|-partitionΞx = {Hx
l }l∈L, can be characterized by its Extrinsic

Jensen–Shannon divergence [3]:

EJS(ρ, x) :=
∑

l∈L

∑

i:hi∈Hx
l

ρiD

(

fl

∥

∥

∥

∥

fρ

x − ρifl
1− ρi

)

. (8)

We use this to construct our proposed heuristic deterministic Markov sample query strategy.

A. Proposed Heuristic

In this work, we focus on the following (possibly suboptimal) stopping rule. For any given

query schemec, querying samples is only stopped when one of the posteriorsbecomes larger

than1− ǫ, whereǫ > 0 is the desired probability of error:

τ̃ǫ := min{t : max
i∈Ω

ρi(t) ≥ 1− ǫ}. (9)
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Let E[τ ∗ǫ ] andE[τ̃ ∗ǫ ] denote the optimal expected number of queries in (1) and the optimal

expected number of queries with the (possibly suboptimal) stopping rule as given in (9), respec-

tively. The following fact bounds these quantities both from above and below, and hence will

be used in Section IV in bounding the loss of optimality in restricting attention to the above

possibly suboptimal stopping rule.

Lemma 1. Consider stopping times defined earlier with scalarsι ≥ ǫ > 0. We have

E[τ̃ ∗ι ] (1−
ǫ

ι
) ≤ E[τ ∗ǫ ] ≤ E[τ̃ ∗ǫ ]. (10)

The proof of Lemma 1 is similar to that of Lemma 3 in [18] and is given in Appendix IV.

We are now ready to fully describe our proposed heuristic.

Definition 3. Policy cEJS is a stationary deterministic Markov policy with a suboptimal stopping

rule defined in (9) which at a given prior beliefρ queries sampleXcEJS
∈ argmax

x∈X
EJS(ρ, x).1

IV. M AIN RESULTS

We now provide the main results – lower and upper bounds on theoptimal number of queries

to identify the true function with high accuracy. Note that we expect the query complexity of our

problem to depend on the characterizations of the discrete memoryless communication channel

(DMC) which corrupts the true label’s observations. This isa DMC with input alphabet setL,

output alphabet setY , and a collection of conditional probabilitiesfl(·), l ∈ L. We begin with

a few assumptions on this channel.

Assumption 1. C := min
g∈P(Y)

max
l∈L

D(fl‖g) > 0.

Assumption 2. C1 := max
k,l∈L

D(fk‖fl) < ∞.

Assumption 3. C2 := max
k,l∈L

sup
y∈Y

fk(y)
fl(y)

< ∞.

Note thatC defined above is nothing but the Shannon capacity of the DMC with the collection

of conditional probabilitiesP (Y = y|L = l) = fl(y), l ∈ L (See [19, Theorem 13.1.1]). In

1Let A denote the smallest partition of sample spaceX , i.e., X = ∪A∈AA, such that for everyA ∈ A and h ∈ H, the

value ofh(x) remains constant for allx ∈ A. By definition,EJS(ρ, x) = EJS(ρ, x′) for everyx, x′ ∈ A, A ∈ A. We have

|A| ≤ |L|M , and hence,argmax
x∈X

is a valid operation inargmax
x∈X

EJS(ρ, x).
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particular, the minimum is achieved byg∗, a convex combination of{fl}l∈L, i.e.,g∗ =
∑

l∈L π
⋆
l fl

where{π⋆
l }l∈L is referred to as thecapacity-achieving input distributionand has the property

that for eachk ∈ L, if π⋆
k > 0, thenD(fk‖g

∗) = C (See [20, Theorem 4.5.1]). If Assumption 1

does not hold, that is ifC = 0, the label queries will be completely noisy and no information

can be retrieved from the label queries regarding the true function. In this sense, Assumption 1

is a necessary condition that ensures Problem (P) has a meaningful solution.

ParameterC1 emerges as an important quantity in the problem of variable-length coding with

feedback: It denotes the maximum exponential decay rate of the error probability [2]. It is

straight forward to show thatC ≤ C1 and hence, Assumptions 1 and 2 imply that alsoC1 > 0

andC < ∞.

Since, in general,C1 ≤ logC2, Assumption 2 is redundant with respect to Assumption 3.

For observation densities with finite support, i.e., when|Y| < ∞, Assumption 3 ensures that

the conditional distributionsfl, l ∈ L, are absolutely continuous with respect to each other.

Thus for observation densities with finite support, Assumption 3 is a necessary and sufficient

condition to ensure Assumption 2. On the other hand, for observation kernels with unbounded

support, Assumption 3, which is stronger than Assumption 2,is a technical assumption made

for notational convenience, and will help us construct strong non-asymptotic bounds in closed

form.

While the (non-asymptotic) bounds and analysis in this paper are all obtained under Assump-

tions 1 and 3, we have chosen to separately state Assumptions2 and 3 in order to point out

that it is possible to relax Assumption 3. More specifically,it is shown in [16] that at the cost

of increasing notation, more complicated analysis, and loosening the non-asymptotic bounds, it

is possible to relax Assumption 3 and obtain similar asymptotic characterizations only under

Assumption 1 and a slightly stronger variant of Assumption 2.

A. Main Results: Lower Bound

In this subsection, we show the following lower bound on the minimum expected number of

samples required to achievePe ≤ ǫ.
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Theorem 1. Consider Problem (P) under Assumptions 1 and 3.

E[τ ∗ǫ ] ≥

[

(1− 3
log 4

ǫ

− ǫ
2
log 1

ǫ
) logM − 2

C
+

log 1−ǫ
ǫ

− 2 log log 4
ǫ
− logC2 − 4

C1

]+

. (11)

Theorem 1 is proved in Appendix I using results in dynamic programming. Our lower bound

is similar to [21, Theorem 1], [22, Theorem 1], and [23, Theorem 6].

Next we provide upper bounds on the optimal expected sample size of Bayesian active learning.

B. Main Results: Upper Bounds

In this subsection, we characterize upper bounds on the expected number of sample queries

in terms of the corresponding Extrinsic Jensen–Shannon (EJS) divergence obtained at each time.

In our presentation of these results, we will need the following notation:

P
M
ǫ (Ω) =

{

ρ ∈ P(Ω) : max
j∈Ω

ρj ≥ ρ̃
}

, (12)

where

ρ̃ = 1−
1

1 + max{logM, log 1
ǫ
}
. (13)

Theorem 2. Consider Problem (P) under Assumptions 1 and 3. If there exists a positive value

α such that at any given belief vectorρ ∈ P(Ω), it is possible to find a samplex ∈ X satisfying

EJS(ρ, x) ≥ α, then

E[τ ∗ǫ ] ≤
logM +max{log logM, log 1

ǫ
}+ 4C2

α
. (14)

Furthermore, if there exists a positive valueβ > α such that for all belief vectorsρ ∈ P
M
ǫ (Ω),

it is possible to find a samplex ∈ X satisfyingEJS(ρ, x) ≥ β, then the following bound is

obtained

E[τ ∗ǫ ] ≤
logM +max{log logM, log log 1

ǫ
}

α
+

log 1
ǫ

β
+

3(4C2)
2

αβ
. (15)

The proof of the above theorem is constructive and is provided in Appendix II. In other words,

the policy which selects and queries the label of the samplex for whichEJS(ρ, x) ≥ α, ensures

an expected sample size which is smaller than or equal to the right hand side of (14). Now, by

construction, policycEJS is such a policy. A similar statement holds for (15).

We remark that asβ is the minimum value ofEJS(ρ, x) over a subset of belief vectors

ρ ∈ P
M
ǫ (Ω), andα is the minimum value over all belief vectors,β ≥ α, (15) illustrates that we

can get significantly better bounds whenβ is much greater thanα.
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C. Main Results: Asymptotic and Order Optimality

Note that the lower and upper bounds provided by Theorems 1 and 2 are non-asymptotic and

hold for all values ofM andǫ. Nonetheless, they can be applied to establish the asymptotic and

order optimality ofcEJS as defined in Section II-A:

Corollary 1. The proposed Markov deterministic heuristic policy which maximizes the EJS

divergence is order optimal inǫ andM if there exists scalarα > 0 satisfying the first condition

of Theorem 2 such thatα 6→ 0 asM → ∞ or ǫ → 0. Furthermore, it is asymptotically optimal

in ǫ (andM) if β can be selected to be as large asC1 (andα as large asC).

However, the above results depend on characterizing non-zero values, if not sufficiently large

values, for quantitiesα and β, which in turn depend on the function classH and the set of

samples that we are allowed to pick from. In the next subsection, we specialize the above results

to several function classes in order to concretely illustrate the asymptotic performance ofcEJS.

D. Applications and Consequences

So far, we have only characterized the performance ofcEJS in terms of strictly positive

scalarsα and β, assuming they do exist. An important question remains as whether one can

always find such scalars. In this section, we specifically look at an important function class

example and provide nontrivial characterization ofα and β, hence, demonstrating the relative

looseness/tightness of the upper bounds. Furthermore, we discuss the asymptotic and order

optimality of these bounds.

We begin with the following definitions which will allow us togeneralize the notion of

1-neighborly, first suggested by [1]; then for this general class, we will obtain non-trivial scalars

α andβ satisfying the conditions of Theorem 2.

Consider the representation of a pair of samplesx andx′ in terms of their partitioning of the

functions:

Definition 4. A pair of samplesx, x′ ∈ X partition the function classH in an agreement set

Ax,x′ := {h ∈ H : h(x) = h(x′)} and a disagreement set∆x,x′ := {h ∈ H : h(x) 6= h(x′)}.

Definition 5. A class of functionsH is referred to as locally identifiable if for anyhi ∈ H,

there exist samplesx, x′ ∈ X and labelsl, l′ ∈ L such that either of the following be true
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(i) hi ∈ ∆x,x′ ∩Hx
l ∩Hx′

l′ andH− {hi} = Ax,x′ ∪ (Hx
l′ ∩Hx′

l ), or

(ii) {hi} = Ax,x′ ∩Hx
l and for allk 6= l, l′, Hx

k ∪Hx′

k = ∅.

In essence, the locally identifiable condition implies thatfor any functionhi ∈ H, there are (at

least) two samplesx andx′ in X and two labelsl andl′ using whichhi can be distinguished from

all other functions. As we will see in Section V, local identifiability is a fairly mild condition

that is satisfied by a number of natural function classes.

The performance ofcEJS when the labeling function class is locally identifiable is characterized

by the capacity of the (sub)channel with two inputsl, l′ ∈ L denoted byCll′, i.e.,

Cll′ := min
g∈P(Y)

max{D(fl‖g), D(fl′‖g)}, (16)

and consequently

Cmin := min
l,l′∈L,l 6=l′

min

{

Cll′, D

(

fl′

∥

∥

∥

∥

1

2
fl +

1

2
fl′

)}

. (17)

Proposition 1. When function classH is locally identifiable,α ≥ 1
M
Cmin andβ ≥ ρ̃Cmin. More

precisely, for every belief vectorρ, there exists anx ∈ X such that

EJS(ρ, x) ≥











1
M
Cmin if ρ /∈ P

M
ǫ (Ω)

ρ̃Cmin otherwise
. (18)

Proof: To prove Proposition 1, it suffices to show that

max
x∈X

EJS(ρ, x) ≥ max
i∈Ω

ρiCmin.

Let î = argmax
i∈Ω

ρi. By definition of the locally identifiable class, there existxî, x
′
î
∈ X and

l, l′ ∈ L such that one of the following conditions holds

[hî(xî), hî(x
′
î
)] = [l, l′] and [hj(xî), hj(x

′
î
)] ∈

⋃

k∈L

{[k, k]} ∪ {[l′, l]}, ∀j 6= î, (19)

[hî(xî), hî(x
′
î
)] = [l, l] and [hj(xî), hj(x

′
î
)] ∈ {[l, l′], [l′, l], [l′, l′]}, ∀j 6= î. (20)

For anyk, k′ ∈ L, let

πkk′ :=
∑

j∈Ω: [hj(xî
),hj(x′

î
)]=[k,k′]

ρj
1− ρî

.

Suppose (19) holds. Then

max
x∈X

EJS(ρ, x)
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≥ max
{

EJS(ρ, xî), EJS(ρ, x′
î
)
}

≥ ρî max

{

D

(

fh
î
(x

î
)‖
∑

j 6=î

ρj
1− ρî

fhj(xî
)

)

, D

(

fh
î
(x′

î
)‖
∑

j 6=î

ρj
1− ρî

fhj(x′
î
)

)

}

= ρî max

{

D

(

fl‖
∑

k∈L

πkkfk + πl′lfl′

)

, D

(

fl′‖
∑

k∈L

πkkfk + πl′lfl

)

}

(a)

≥ ρî max

{

D

(

fl‖

∑

k∈L

πkkfk + πl′lfl′ + πl′lfl

1 + πl′l

)

, D

(

fl′‖

∑

k∈L

πkkfk + πl′lfl + πl′lfl′

1 + πl′l

)

}

≥ ρî min
g

max{D(fl‖g), D(fl′‖g)}

= ρîCll′

≥ max
i∈Ω

ρiCmin, (21)

where(a) follows by Fact 3 in Appendix IV.

On the other hand, if (20) holds, then

max
x∈X

EJS(ρ, x)

≥ ρî max
{

D
(

fl‖πll′fl + (πl′l + πl′l′)fl′
)

, D
(

fl‖πl′lfl + (πll′ + πl′l′)fl′
)

}

(a)

≥ ρîD
(

fl‖
1

2
fl +

1

2
fl′
)

≥ max
i∈Ω

ρiCmin, (22)

where(a) follows by Fact 3 in Appendix IV and sincemin{πll′, πl′l} ≤ 1
2
.

Combining (21) and (22), we have the assertion of the proposition.

The following corollary provides an upper bound on the expected number of sample queries.

Corollary 2. Consider Problem (P) under Assumptions 1 and 3. If the function classH is locally

identifiable, then

E[τ ∗ǫ ] ≤
M(logM +max{log logM, log log 1

ǫ
})

Cmin
+

log 1
ǫ

ρ̃Cmin
+

3M(4C2)
2

ρ̃C2
min

. (23)

Next, we define a subclass of the locally identifiable function class, and show that for this

function class,α andβ can be selected to match the denominators in the lower bound in (11).

Hence, the policycEJS is provably asymptotically optimal inǫ andM .
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Definition 6. We call the function classH R(H)-sample-rich forR(H) = ∪x∈XΞ
x. In the

special case whereR(H) includes all (|L|M − |L|) non-trivial |L|-partitions ofH, we simply

refer toH as sample-rich.

Proposition 2. When function classH is sample-rich,α ≥ C and β ≥ ρ̃C1.

Proof: To prove Proposition 2, we will show that for all belief vectors ρ,

max
x∈X

EJS(ρ, x) ≥ C,

and furthermore,

max
x∈X

EJS(ρ, x) ≥ max
i∈Ω

ρiC1.

Recall from Section IV that

C = min
g∈P(Y)

max
l∈L

D(fl‖g), (24)

and the minimum is achieved byg∗ =
∑

l∈L π
⋆
l fl where π⋆ is the capacity achieving input

distribution, i.e.,

D

(

fk

∥

∥

∥

∑

l∈L

π⋆
l fl

)

= C for any k ∈ L such that π⋆
k > 0. (25)

By definition of the sample-rich function class, for eachv := [v1, . . . , vM ] ∈ LM , there exists

a sample inX , sayxv, that satisfiesh(xv) = v, whereh(x) := [h1(x), h2(x), . . . , hM(x)]. Let

λ⋆
v
=

M
∏

i=1

π⋆
vi
.

Note that
∑

v∈LM λ⋆
v
= 1. Moreover, for anyi, j ∈ Ω, i 6= j,

∑

v∈LM : vi=k

λ⋆
v
= π⋆

k,
∑

v∈LM : vi=k,vj=l

λ⋆
v
= π⋆

kπ
⋆
l .

Using weights{λ⋆
v
}v∈LM and taking average over allv ∈ LM , we obtain

max
x∈X

EJS(ρ, x) ≥
∑

v

λ⋆
v
EJS(ρ, xv)

=
∑

v

λ⋆
v

M
∑

i=1

ρiD

(

fhi(xv)

∥

∥

∑

j 6=i

ρj
1− ρi

fhj(xv)

)

=

M
∑

i=1

ρi
∑

k∈L

π⋆
k

∑

v : vi=k

λ⋆
v

π⋆
k

D

(

fk
∥

∥

∑

j 6=i

ρj
1− ρi

fvj

)
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(a)

≥
M
∑

i=1

ρi
∑

k∈L

π⋆
kD

(

fk
∥

∥

∑

j 6=i

ρj
1− ρi

∑

v : vi=k

λ⋆
v

π⋆
k

fvj

)

=

M
∑

i=1

ρi
∑

k∈L

π⋆
kD

(

fk
∥

∥

∑

j 6=i

ρj
1− ρi

∑

l∈L

∑

v : vi=k,vj=l

λ⋆
v

π⋆
k

fl

)

=

M
∑

i=1

ρi
∑

k∈L

π⋆
kD

(

fk
∥

∥

∑

l∈L

π⋆
l fl

)

(b)
=

M
∑

i=1

ρiC

= C,

where(a) follows from Jensen’s inequality and(b) follows from (25).

Let î = argmax
i∈Ω

ρi. Let k, l ∈ L be the labels satisfyingD(fk‖fl) = C1. By definition of the

sample-rich function class, there exists a samplexî ∈ X that satisfieshî(xî) = k andhj(xî) = l

for all j 6= i. We have

max
x∈X

EJS(ρ, x) ≥ EJS(ρ, xî) ≥ ρîD

(

fh
î
(x

î
)

∥

∥

∥

∑

j 6=î

ρj
1− ρî

fhj(xî
)

)

= max
i∈Ω

ρiC1.

As a simple corollary,

Corollary 3. Consider Problem (P) under Assumptions 1 and 3. If the function classH is

sample-rich,

E[τ ∗ǫ ] ≤
logM +max{log logM, log log 1

ǫ
}

C
+

log 1
ǫ

ρ̃C1

+
48C2

2

ρ̃CC1

. (26)

The above results show that for sample-rich function classes, cEJS is asymptotically optimal

in both ǫ andM .

The above results generalize the finding of [1] to a multi-label Bayesian learning with non-

binary and asymmetric noise case. However, to make this comparison precise, we will dedicate

the next section to specialize our general results above to the noisy generalized binary search of

[1].

V. SPECIAL CASE: NOISY GENERALIZED BINARY SEARCH

We next compare our work with existing results. Since the only study of similar nature is that

of noisy generalized binary search [1], we consider an application of our main results to noisy
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generalized binary search among 1-neighborly functions, first introduced in [1]. This is a special

case of our problem where functions are binary-valued, i.e., L = {−1,+1}, the observation

spaceY = {−1,+1}, and observation densities are of the following form:

fl(y) =







1− p if y = l

p if y = −l
,

for somep ∈ (0, 1/2). In other words, for any samplex, if hi is the true function, then the label

hi(x) is observed through a binary symmetric channel with crossover probabilityp.

For the case of noisy generalized binary search,C, C1, andC2 defined in Section IV can be

further simplified to

C := 1 + p log p+ (1− p) log(1− p),

C1 := p log
p

1− p
+ (1− p) log

1− p

p
,

C2 :=
1− p

p
.

In order to emphasize the dependence ofC, C1, andC2 on the Bernoulli parameterp (corre-

sponding to the observation noise), we denote them byC(p), C1(p), andC2(p) respectively.

Note that from Jensen’s inequality,C1(p) ≥ 2C(p).

Next we define a class of 1-neighborly functions first defined in [1, Definition 2].

Definition 7. A class of binary-valued functionsH is referred to as 1-neighborly if for any

hi ∈ H, there existx, x′ ∈ X such that






hi(x) 6= hi(x
′)

hj(x) = hj(x
′) if j 6= i andhj(·) 6= −hi(·)

.

It is simple to see that the class of 1-neighborly functions is a subset of binary-valued locally

identifiable function class. This implies the following baseline bound:

Corollary 4. When function classH is 1-neighborly, we haveα ≥ 1
M
C(p) and β ≥ ρ̃C(p).

In comparison, [1] provides two sample query strategies, NGBS and MSGBS, whose perfor-

mance (upper bound) depends strongly on the properties of the function class at hand.
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Let n0 denote the number of queries made by GBS to determinehθ in the noiseless setting.

The number of queries required by NGBS to attainPe ≤ ǫ is upper bounded by

n0(log n0 + log 1
ǫ
)

(1
2
− p)2

. (27)

Let A denote the smallest partition of sample spaceX , i.e.,X = ∪A∈AA, such that for every

A ∈ A andh ∈ H, the value ofh(x) is constant for allx ∈ A; and denote this value byh(A).

Furthermore, let

c∗ := min
P∈P(A)

max
h∈H

∣

∣

∣

∣

∣

∑

A∈A

h(A)P (A)

∣

∣

∣

∣

∣

. (28)

Under MSGBS, the number of queries required to ensure thatPe ≤ ǫ is upper bounded by

logM + log 1
ǫ

min{2(1− c∗), 1}λ(p)
, (29)

where

λ(p) := max
p′∈(p,1/2)

1

4

(

1−
p′(1− p)

1− p′
−

(1− p′)p

p′

)

. (30)

Note thatc∗ (as well asn0) in general depends on the function classH. Since this dependence is

implicit and hard to characterize in closed form for generalfunction classH, a direct comparison

between (29) (or (27)) and (23) is not possible. As a result, next we focus on special cases of

function classes studied in [1] for which a precise characterization of the achievable upper bound

is available. Consequently, we next define two important subclasses of 1-neighborly binary-valued

functions: 1) Disjoint classHD; 2) Threshold classHT . We further specialize the choices ofα

andβ for these classes.

Definition 8. Let ei, i ∈ Ω, represent a vector of sizeM whose ith element is+1 and all

other elements are−1. A collection of functionsH is referred to asdisjoint interval classif

∪x∈X{h(x)} = ∪i∈Ω{ei} ⊂ {−1,+1}M , whereh(x) := [h1(x), h2(x), . . . , hM(x)]. In other

words, for any samplex ∈ X , only one function inH takes value+1 and all other functions

take value−1.

Definition 9. Let ui, i ∈ Ω, represent a vector of sizeM whose firsti elements are−1 and

all other elements are+1. A collection of functionsH is referred to asthreshold classif

∪x∈X{h(x)} = ∪i∈Ω{ui} ⊂ {−1,+1}M .
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Fact 1 (see [24]). For the disjoint interval classHD, n0 ≤ M andc∗ = 1− 2
M

. For the threshold

function classHT , n0 ≤ logM and c∗ = 0. For the sample-rich function classHR, n0 ≤ logM

and c∗ = 0.

We are now ready to contrast these results with our findings. In particular, we have

Proposition 3. For the disjoint interval classHD, α ≥ 1
M
C1(p) and β ≥ ρ̃C1(p). For the

threshold function classHT , α ≥ C(p) and β ≥ C(p). For the sample-rich function classHR,

α ≥ C(p) and β ≥ ρ̃C1(p).

The proof of Proposition 3 is provided in Appendix III-A.

Table I summarizes our results and specializes the upper bounds in [24] and lists the number

of samples required by the policies NGBS, MSGBS, andcEJS to attainPe ≤ ǫ. Furthermore,

these bounds together with (52) establish asymptotic and order optimality ofcEJS.2

Recall that policies NGBS and MSGBS are non-sequential in the sense that they stop after a

fixed number of samples, regardless of the probability of error. The numbers shown in Table I

are the number of samples that these policies require to achievePe ≤ ǫ. Policy cEJS is sequential

and Table I shows the expected number of samples required by this policy to achievePe ≤ ǫ.

TABLE I

PERFORMANCE COMPARISON OFNGBS, MSGBS,AND cEJS ON DIFFERENT FUNCTION CLASSES.

Function class NGBS MSGBS cEJS

Disjoint HD
M(logM+log 1

ǫ
)

( 1

2
−p)2

M(logM+log 1

ǫ
)

4λ(p)

(

M logM

C1(p)
+

log 1

ǫ

C1(p)

)

(1 + o(1))

order optimal inǫ order optimal inǫ asymptotic optimal inǫ

ThresholdHT
logM(log logM+log 1

ǫ
)

( 1

2
−p)2

logM+log 1

ǫ

λ(p)

(

logM

C(p)
+

log 1

ǫ

C(p)

)

(1 + o(1))

order optimal inǫ order optimal inǫ,M order optimal inǫ,M

Sample-richHR
logM(log logM+log 1

ǫ
)

( 1

2
−p)2

logM+log 1

ǫ

λ(p)

(

logM

C(p)
+

log 1

ǫ

C1(p)

)

(1 + o(1))

order optimal inǫ order optimal inǫ,M asymptotic optimal inǫ,M

To provide a comparison between the obtained bounds, in asymptotic regime, Fig. 1 compares

the denominators of the upper bounds given in Table I. Note that our upper bound provides

2The termo(1) goes to zero asǫ → 0 or M → ∞. See Appendix III-B for more details.
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improvement over those corresponding to NGBS and MSGBS. Particularly, the gap between the

bounds is very significant for small values of the Bernoulli parameterp and for large values of
1
ǫ

andM .
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Fig. 1. Comparison ofC(p), C1(p), ( 12 − p)2, andλ(p), for p ∈ (0, 1/2).

Remark. With no tight lower bound on the performance of NGBS and MSGBS, the above

comparison must not be confused with a comparative analysisbetweencEJS versus NGBS and

MSGBS. In fact, the gap between the above upper bounds could potentially be due to the analysis

limitation in [24] of these algorithms rather than their performance.

Next, policiescEJS and MSGBS are compared numerically for the problem of noisy gener-

alized binary search with parameterp and a rich function class of sizeM (we do not consider

NGBS since it is outperformed by MSGBS). This numerical study not only sheds light on

non-asymptotic performance of both policies but also provides a direct comparison between the

performance of these policies (as opposed to a comparison between the upper bounds on the

performance of these policies given in Table I).

In order to have a fair comparison, the candidate policies are compared in both sequential

and non-sequential scenarios. In the sequential scenario,the policies stop as soon as the belief

about one of the functions passes a threshold1 − ǫ, and the expected number of queries is

considered as a measure of performance; while in the non-sequential scenario, the policies are
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compared based on their average probability of making a wrong declaration afterN number of

label queries.

Figs. 2 and 3 show the performance ofcEJS and MSGBS for the sequential scenario while

Figs. 4 and 5 compare their performance for the non-sequential scenario.
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Fig. 2. Sequential noisy generalized binary search with parameterp = 0.2, desired probability of errorǫ, and a rich function

class of sizeM = 5. The expected number of samples is plotted asǫ varies.

The figures show the superior performance ofcEJS over MSGBS in both scenarios and for

different values ofǫ, N , andM .

VI. D ISCUSSION ANDFUTURE WORK

In this paper, we consider the problem of noisy Bayesian active learning. In this setting, we

propose a heuristic policy for querying the labels of samples using Extrinsic Jensen–Shannon

divergence, and provide upper bounds on its performance. Inaddition, we provide information-

theoretic lower bounds on the query complexity of any sampling strategy. Comparison to the

state-of-the-art [24] shows that our sampling strategy achieves superior performance for several

natural function classes.

Our lower and upper bounds reveal that Bayesian active learning in the presence of noise is a

two-phase problem, where the lengths of the phases correspond to the two terms in Theorems 1
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Fig. 3. Sequential noisy generalized binary search with parameterp = 0.2, desired probability of errorǫ = 0.01, and a rich

function class of sizeM . The expected number of samples is plotted asM varies.
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Fig. 4. Non-sequential noisy generalized binary search with parameterp = 0.2, total number of label queriesN , and a rich

function class of sizeM = 5. The average probability of error is plotted asN varies.
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Fig. 5. Non-sequential noisy generalized binary search with parameterp = 0.2, total number of label queriesN = 10, and a

rich function class of sizeM . The average probability of error is plotted asM varies.

and 2. The first phase corresponds to asearchamong theM functions in the class, and the

second phase corresponds to a testing phase where we seek to increase our confidence in the

result. An important direction of future research is to extend our algorithms to more general

function classes such as linear classifiers and to establishits connection to other notions used

to measure the query complexity of active learning such as Alexander’s capacity [7], [9], [12]

and the splitting index [5].

APPENDIX I

PROOF OFTHEOREM 1

From Lemma 1, we have

E[τ ∗ǫ ] ≥ E[τ̃ ∗ι ] (1−
ǫ

ι
). (31)

Let V ∗
ι : P(Ω) → R+ be the solution to the following fixed point equation:

Vι(ρ) =







0 if max
j∈Ω

ρj ≥ 1− ι

1 + minx∈X E[Vι(Φ
x(ρ, Y ))], otherwise

whereΦx, x ∈ X , is the Bayes operator defined in (7).
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It follows from Propositions 9.8 and 9.10 in [25] that

E[τ̃ ∗ι ] = V ∗
ι ([1/M, . . . , 1/M ]). (32)

The assertion of the Theorem follows from (31), (32), and Lemma 2 at the end of this section,

and by settingι = ǫ
2
log 4

ǫ
andδ = 1

log 4
ǫ

, as shown below.

E[τ ∗ǫ ] ≥

(

1−
2

log 4
ǫ

)

[

(1− 1
log 4

ǫ

− ǫ
2
log 4

ǫ
) logM − 2

C
+

log
1− ǫ

2
log 4

ǫ
ǫ
2
log 4

ǫ

− log log 2
ǫ
− logC2 − 1

C1

]+

≥

[

(

1− 2
log 4

ǫ

)

(1− ǫ
2
log 4

ǫ
) logM − logM

log 4
ǫ

− 2

C

+

(

1− 2
log 4

ǫ

)

log 1
ǫ
2
log 4

ǫ

− log 1
1− ǫ

2
log 4

ǫ

− log log 2
ǫ
− logC2 − 1

C1

]+

≥

[

(

1− 2
log 4

ǫ

− ǫ
2
log 1

ǫ

)

logM − logM

log 4
ǫ

− 2

C

+
log 1−ǫ

ǫ
− log log 4

ǫ
− 1− log 1−ǫ

1− ǫ
2
log 4

ǫ

− log log 2
ǫ
− logC2 − 1

C1

]+

≥

[

(

1− 3
log 4

ǫ

− ǫ
2
log 1

ǫ

)

logM − 2

C
+

log 1−ǫ
ǫ

− 2 log log 4
ǫ
− logC2 − 4

C1

]+

. (33)

Lemma 2. At any information stateρ ∈ P(Ω) and for anyι ∈ (0, 1) and δ ∈ (0, 1/2),

V ∗
ι (ρ) ≥

[

H(ρ)− FM(δ)− FM (ι)

C
+

log 1−ι
ι

− log 1−δ
δ

− logC2 − 1

C1
1{max

i∈Ω
ρi≤1−δ}

]+

(34)

whereFM(z) := H([z, 1− z]) + z log(M − 1) for 0 ≤ z ≤ 1.

Proof: The proof of Lemma 2 follows closely the proof of Lemma 1 and Theorem 2 in [16]

and is provided next.

First we will use the following technical lemma, proved in Appendix IV.

Lemma 3. Any functionalV : P(Ω) → R+ that satisfies the following:

V (ρ) ≤







0 if max
j∈Ω

ρj ≥ 1− ι

1 + minx∈X E[V (Φx(ρ, Y ))] otherwise
, (35)

provides a uniform lower bound for the optimal value function V ∗
ι .
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Next we defineJ(ρ) = max{J ′(ρ), J ′′(ρ)} where

J ′(ρ) :=

[

−FM (ι)

C
+

M
∑

i=1

ρi
log 1−ι

ι
− log ρi

1−ρi
− 1

C1

]+

, (36)

andJ ′′ is the right-hand side of (34), i.e.,

J ′′(ρ) :=

[

H(ρ)− FM(δ)− FM(ι)

C
+

log 1−ι
ι

− log 1−δ
δ

− logC2 − 1

C1
1{max

i∈Ω
ρi≤1−δ}

]+

.

We show thatJ satisfies (35) and hence,V ∗
ι ≥ J = max{J ′, J ′′} ≥ J ′′.

We use Jensen’s inequality to show that

J ′(ρ) ≤ 1 + min
x∈X

E[J ′(Φx(ρ, Y ))], ∀ρ ∈ P(Ω). (37)

For anyρ such thatJ ′(ρ) = 0, inequality (37) holds trivially. For anyρ such thatJ ′(ρ) > 0

and for anyx ∈ X , we have

E[J ′(Φx(ρ, Y ))] ≥
−FM(ι)

C
+

M
∑

i=1

∫

ρifhi(x)(y)
log 1−ι

ι
− log

ρifhi(x)(y)∑
j 6=i ρjfhj(x)(y)

− 1

C1

dy

= J ′(ρ)−
M
∑

i=1

ρi

∫

fhi(x)(y) log
fhi(x)(y)∑

j 6=i

ρj
1−ρi

fhj (x)(y)
dy

C1

≥ J ′(ρ)−
M
∑

i=1

ρi

∑

j 6=i
ρj

1−ρi
D(fhi(x)‖fhj(x))

C1

≥ J ′(ρ)− 1.

For all ρ satisfyingmax
i∈Ω

ρi > 1− δ,

H(ρ) < (1− δ) log
1

1− δ
+ (M − 1)×

δ

M − 1
log

1

δ/(M − 1)
= FM(δ),

hence,J ′′ = 0. In other words,J(ρ) = J ′′(ρ) > 0 implies thatmax
i∈Ω

ρi ≤ 1− δ.

Let ρ̂ = Φ
x(ρ, y). If max

i∈Ω
ρ̂i ≤ 1− δ, then

J(ρ̂) ≥ J ′′(ρ̂) ≥
H(ρ̂)− FM (δ)− FM(ι)

C
+

log 1−ι
ι

− log 1−δ
δ

− logC2 − 1

C1
. (38)

On the other hand, ifmax
i∈Ω

ρ̂i > 1− δ, we get

J(ρ̂) = J ′(ρ̂)
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=

[

−FM (ι)

C
+

M
∑

i=1

ρ̂i
log 1−ι

ι
− log ρ̂i

1−ρ̂i
− 1

C1

]+

(a)

≥

[

−FM(ι)

C
+

M
∑

i=1

ρ̂i
log 1−ι

ι
− log 1−δ

δ
− logC2 − 1

C1

]+

≥
−FM(ι)

C
+

log 1−ι
ι

− log 1−δ
δ

− logC2 − 1

C1

, (39)

where(a) follows from the fact that under Assumption 3 and for alli ∈ Ω,

log
ρ̂i

1− ρ̂i
≤

∣

∣

∣

∣

log
ρ̂i

1− ρ̂i
− log

ρi
1− ρi

∣

∣

∣

∣

+

∣

∣

∣

∣

log
ρi

1− ρi

∣

∣

∣

∣

≤

∣

∣

∣

∣

log
ρifhi(x)(y)

∑

j 6=i ρjfhj(x)(y)
− log

ρi
1− ρi

∣

∣

∣

∣

+ log
1− δ

δ

=

∣

∣

∣

∣

log
fhi(x)(y)

∑

j 6=i
ρj

1−ρi
fhj(x)(y)

∣

∣

∣

∣

+ log
1− δ

δ

≤ logC2 + log
1− δ

δ
.

From the above facts, we obtain:

• Case 1:For all ρ such thatJ(ρ) = 0 or J(ρ) = J ′(ρ), it is trivial from (37) that

J(ρ) = J ′(ρ) ≤ 1 + min
x∈X

E[J ′(Φx(ρ, Y ))] ≤ 1 + min
x∈X

E[J(Φx(ρ, Y ))]. (40)

• Case 2:For all ρ such thatJ(ρ) = J ′′(ρ) > 0, and for anyx ∈ X , we have

E[J(Φx(ρ, Y ))] =

∫

J(Φx(ρ, y))fρ

x (y)dy

(a)

≥

∫

H(Φx(ρ, y))fρ

x (y)dy − FM(δ)− FM(ι)

C

+
log 1−ι

ι
− log 1−δ

δ
− logC2 − 1

C1
1{max

i∈Ω
ρi≤1−δ}

= J ′′(ρ)−
I(ρ; fρ

x )

C

≥ J ′′(ρ)− 1

(b)
= J(ρ)− 1, (41)

where(a) follows from (38) and (39), and(b) holds sinceρ is such thatJ(ρ) = J ′′(ρ).

Combining (40) and (41), we have that

J(ρ) ≤ 1 + min
x∈X

E[J(Φx(ρ, Y ))]. (42)
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What remains is to show thatJ(ρ) = 0 for all ρ ∈ P(Ω) such thatmaxi∈Ω ρi ≥ 1− ι.

For ρ ∈ P(Ω) such thatmaxi∈Ω ρi ≥ 1− ι, we have:

J ′(ρ) =

[

M
∑

i=1

ρi
log 1−ι

ι
− log ρi

1−ρi
− 1

C
−

FM(ι)

C

]+

≤





∑

{i∈Ω:ρi<1−ι}

ρi
log 1

ι
+ log 1

ρi
− 1

C1
−

FM(ι)

C





+

(a)

≤









∑

{i∈Ω:ρi<1−ι}

ρi





log 1
ι
+ log |{i∈Ω:ρi<1−ι}|∑

{i∈Ω:ρi<1−ι} ρi
− 1

C1
−

FM(ι)

C





+

(b)

≤

[

ι log 1
ι
+ ι log(M − 1)

C1
−

FM (ι)

C

]+

(c)
= 0, (43)

where(a) follows by Jensen’s inequality;(b) follows from the facts that
∑

{i∈Ω:ρi<1−ι} ρi ≤ ι < 1

for any ρ ∈ P(Ω) that satisfiesmaxi∈Ω ρi ≥ 1− ι, andx log 1
x
≤ 1 for x ∈ [0, 1]; and (c) holds

sinceι log 1
ι
≤ H([ι, 1− ι]) andC ≤ C1.

On the other hand, forJ ′′ and anyρ ∈ P(Ω) such thatmaxi∈Ω ρi ≥ 1− ι, we have:

J ′′(ρ) ≤

[

H(ρ)− FM(ι)

C
+

log 1−ι
ι

− log 1−δ
δ

C1

1{max
i∈Ω

ρi≤1−δ}

]+

(a)

≤

[

log 1−ι
ι

− log 1−δ
δ

C1

1{δ≤ι, max
i∈Ω

ρi≤1−δ}

]+

= 0, (44)

where(a) follows from concavity of the entropy function.

Combining (43) and (44), we have that

J(ρ) = 0 if max
i∈Ω

ρi ≥ 1− ι. (45)

It is implied from (42) and (45) thatJ satisfies (35) and hence,V ∗
ι ≥ J = max{J ′, J ′′} ≥ J ′′.

This is a slightly stronger result than (34).

APPENDIX II

PROOF OFTHEOREM 2

First let us consider inequality (14) in Theorem 2.
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Notice that for alli ∈ Ω, upon selectingX(t) = x and observingY (t) = y, the belief state

evolves as

ρi(t+ 1) = ρi(t)
fhi(x)(y)

f
ρ(t)
x (y)

.

Let U(·) be the average log-likelihood function defined as

U(ρ) :=
M
∑

i=1

ρi log
1− ρi
ρi

, (46)

and let F(t) = σ{X(0), Y (0), . . . , X(t − 1), Y (t − 1)} denote the history of samples and

observations up to timet. We have

E [U(ρ(t+ 1))|F(t)]

=
∑

x∈X

P (X(t) = x)E

[

M
∑

i=1

ρi(t+ 1) log
1− ρi(t+ 1)

ρi(t+ 1)
|F(t), X(t) = x

]

=
∑

x∈X

P (X(t) = x)

∫

Y

M
∑

i=1

ρi(t)fhi(x)(y) log

∑

j 6=i ρj(t)fhj(x)(y)

ρi(t)fhi(x)(y)
dy

=
M
∑

i=1

ρi(t) log
1− ρi(t)

ρi(t)
+

∑

x∈X

P (X(t) = x)
M
∑

i=1

∫

Y

ρi(t)fhi(x)(y) log

∑

j 6=i
ρj(t)

1−ρi(t)
fhj(x)(y)

fhi(x)(y)
dy

= U(ρ(t))−
∑

x∈X

P (X(t) = x)

M
∑

i=1

ρi(t)D(fhi(x)‖
∑

j 6=i

ρj(t)

1− ρi(t)
fhj(x))

= U(ρ(t))−
∑

x∈X

P (X(t) = x)EJS(ρ(t), x).

Remember thatcEJS, at any timet < τ , selects a sample that maximizes the EJS divergence,

i.e., X(t) = argmax
x∈X

EJS(ρ(t), x). Thus, undercEJS, the sequence{U(ρ(t))} satisfies

E [U(ρ(t + 1))|F(t)] = U(ρ(t))−max
x∈X

EJS(ρ(t), x)

(a)

≤ U(ρ(t))− α, (47)

where(a) follows from the assumption of Theorem 2. In other words, thesequence{−U(ρ(t))
α

−t}

forms a submartingale with respect to the filtration{F(t)}. Let us define a stopping time

υ := min

{

t : max
i∈Ω

ρi(t) ≥ 1−min
{ 1

log 2M
, ǫ
}

}

.
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It is clear thatτ̃ǫ ≤ υ and hence,E[τ̃ǫ] ≤ E[υ] under any query scheme. By Doob’s Stopping

Theorem,

−U(ρ(0))

α
≤ E

[

−U(ρ(υ))

α
− υ

]

.

Rearranging the terms, we obtain

E[υ] ≤
U(ρ(0))

α
+ E

[

−U(ρ(υ))

α

]

(a)

≤
logM + E [−U(ρ(υ − 1)) + U(ρ(υ − 1))− U(ρ(υ))]

α
(b)

≤
logM +max{log logM, log 1

ǫ
}+ E [U(ρ(υ − 1))− U(ρ(υ))]

α

(c)

≤
logM +max{log logM, log 1

ǫ
}+ C2

(

3 + 1
log 2M

log(M − 1)
)

α

≤
logM +max{log logM, log 1

ǫ
}+ 4C2

α
, (48)

where (a) follows from the fact that initially the functions are equiprobable, i.e.,ρ(0) =

[1/M, . . . , 1/M ] and henceU(ρ(0)) = log(M−1), (b) holds sinceρi(υ−1) < 1−min
{

1
log 2M

, ǫ
}

for all i ∈ Ω and hence,

−U(ρ(υ−1)) =
M
∑

i=1

ρi(υ−1) log
ρi(υ − 1)

1− ρi(υ − 1)
< log

1−min{ 1
log 2M

, ǫ}

min{ 1
log 2M

, ǫ}
< max{log logM, log

1

ǫ
},

and (c) follows from Lemma 6 in Appendix IV.

The proof of Inequality (15) in Theorem 2 follows similar lines. Recall from (13) that̃ρ =

1− 1
1+max{logM,log 1

ǫ
}
. Notice that ifρi(t) < ρ̃ for all i ∈ Ω, then

U(ρ(t)) =

M
∑

i=1

ρi(t) log
1− ρi(t)

ρi(t)
>

M
∑

i=1

ρi(t) log
1− ρ̃

ρ̃
= log

1− ρ̃

ρ̃
.

Similar to (47), we can show that

E [U(ρ(t + 1))|F(t)] ≤











U(ρ(t))− α if U(ρ(t)) > log 1−ρ̃
ρ̃

U(ρ(t))− β if U(ρ(t)) ≤ log 1−ρ̃
ρ̃

. (49)

Furthermore, from Lemma 6 in Appendix IV, we know that ifmax
i∈Ω

ρi(t) ≥ ρ̃, then

|U(ρ(t))− U(ρ(t− 1))| ≤ C2 (3 + (1− ρ̃) log(M − 1)) ≤ 4C2. (50)

The rest of the proof follows directly from (49) and (50) and Fact 2 in Appendix IV.
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III N OISY GENERALIZED BINARY SEARCH

Let gp(·) and ḡp(·) be probability density functions onY defined as follows:

gp(y) =







p if y = −1

1− p if y = +1
, ḡp(y) = gp(−y). (51)

It can be easily shown that:

C(p) = D(gp‖
gp + ḡp

2
) = D(ḡp‖

gp + ḡp
2

) and C1(p) = D(gp‖ḡp) = D(ḡp‖gp).

A. Proof of Proposition 3

The result for the sample-rich class follows from Proposition 2. Next we provide the proof

for the class of disjoint interval functions and threshold functions.

1) Disjoint Class:

To prove this case, we will show that

max
x∈X

EJS(ρ, x) ≥ max
i∈Ω

ρiC1(p).

Let î = argmax
i∈Ω

ρi. By definition of the class of disjoint interval functions, there exists a

samplexî ∈ X that satisfiesh(xî) = eî. We have

EJS(ρ, xî) ≥ ρîD

(

fh
î
(x

î
)‖
∑

j 6=î

ρj
1− ρî

fhj(xî
)

)

= ρîD(gp‖ḡp) = ρîC1(p).

2) Threshold Class:

We will prove that

max
x∈X

EJS(ρ, x) ≥ C(p).

At any belief vectorρ ∈ P(Ω), there existsk, k ∈ Ω, such that
∑k

j=1 ρj ≤ 1
2

and
∑k+1

j=1 ρj >
1
2
. Let xk andxk+1 be samples inX that satisfyh(xk) = uk andh(xk+1) =

uk+1 respectively. Letδ1 = 1
2
−
∑k

j=1 ρj andδ2 =
∑k+1

j=1 ρj−
1
2
. Notice thatρk+1 = δ1+δ2.

There are two cases:

• Case 1:δ1 ≤ δ2. We have

EJS(ρ, xk) =

M
∑

i=1

ρiD

(

fhi(xk)‖
∑

j 6=i

ρj
1− ρi

fhj(xk)

)
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=

k
∑

i=1

ρiD

(

ḡp‖
1/2− δ1 − ρi

1− ρi
ḡp +

1/2 + δ1
1− ρi

gp

)

+ ρk+1D

(

gp‖
1/2− δ1
1− ρk+1

ḡp +
1/2− δ2
1− ρk+1

gp

)

+

M
∑

i=k+2

ρiD

(

gp‖
1/2− δ1
1− ρi

ḡp +
1/2 + δ1 − ρi

1− ρi
gp

)

(a)

≥ (1/2− δ1)D
(

gp‖(1/2 + δ1)ḡp + (1/2− δ1)gp

)

+ (δ1 + δ2)D
(

gp‖
1

2
ḡp +

1

2
gp

)

+ (1/2− δ2)D
(

gp‖(1/2− δ1)ḡp + (1/2 + δ1)gp

)

(b)

≥ D
(

gp‖(1− γ)ḡp + γgp

)

(c)

≥ D
(

gp‖
1

2
ḡp +

1

2
gp

)

= C(p),

where

γ = (1/2− δ1)
2 +

1

2
(δ1 + δ2) + (1/2− δ2)(1/2 + δ1),

inequality (a) follows from Fact 3 in Appendix IV and (51),(b) holds since KL

divergence is convex, and(c) follows from the fact thatγ = 1
2
+ δ1(δ1 − δ2) ≤

1
2

and

by Fact 3.

• Case 2:δ1 > δ2. We have

EJS(ρ, xk+1) =
k

∑

i=1

ρiD

(

ḡp‖
1/2 + δ2 − ρi

1− ρi
ḡp +

1/2− δ2
1− ρi

gp

)

+ ρk+1D

(

ḡp‖
1/2− δ1
1− ρk+1

ḡp +
1/2− δ2
1− ρk+1

gp

)

+

M
∑

i=k+2

ρiD

(

gp‖
1/2 + δ2
1− ρi

ḡp +
1/2− δ2 − ρi

1− ρi
gp

)

(a)

≥ (1/2− δ1)D
(

gp‖(1/2− δ2)ḡp + (1/2 + δ2)gp

)

+ (δ1 + δ2)D
(

gp‖
1

2
ḡp +

1

2
gp

)

+ (1/2− δ2)D
(

gp‖(1/2 + δ2)ḡp + (1/2− δ2)gp

)
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(b)

≥ D
(

gp‖(1− γ′)ḡp + γ′gp

)

(c)

≥ D
(

gp‖
1

2
ḡp +

1

2
gp

)

= C(p),

where

γ′ = (1/2− δ1)(1/2 + δ2) +
1

2
(δ1 + δ2) + (1/2− δ2)

2,

inequality (a) follows from Fact 3 in Appendix IV and (51),(b) holds since KL

divergence is convex, and(c) follows from the fact thatγ′ = 1
2
+ δ2(δ2 − δ1) <

1
2

and

by Fact 3.

Therefore,

max
x∈X

EJS(ρ, x) ≥ max {EJS(ρ, xk), EJS(ρ, xk+1} ≥ C(p).

B. Noisy Generalized Binary Search: Asymptotic Analysis

For disjoint function classHD and from Theorem 2 and Proposition 3,

E[τ ∗ǫ ] ≤
logM +max{log logM, log log 1

ǫ
}

1
M
C1(p)

+
log 1

ǫ

ρ̃C1(p)
+

3(4C2(p))
2

1
M
C1(p)ρ̃C1(p)

(a)

≤
M logM +M log log M

ǫ

C1(p)
+

log 1
ǫ
+ 1

C1(p)
+

6M(4C2(p))
2

(C1(p))2

≤

(

M logM

C1(p)
+

log 1
ǫ

C1(p)

)

×

(

1 +
M log log M

ǫ
+ 1 + 6M(4C2(p))

2/C1(p)

M logM + log 1
ǫ

)

=

(

M logM

C1(p)
+

log 1
ǫ

C1(p)

)

(1 + o(1)),

whereo(1) → 0 as ǫ → 0 or M → ∞ and (a) holds since1
ρ̃
= 1 + 1

max{logM,log 1
ǫ
}
≤ 2.

For threshold function classHT and from Theorem 2 and Proposition 3,

E[τ ∗ǫ ] ≤
logM +max{log logM, log 1

ǫ
}+ 4C2(p)

C(p)

≤

(

logM

C(p)
+

log 1
ǫ

C(p)

)

×

(

1 +
log logM + 4C2(p)

log M
ǫ

)

=

(

logM

C(p)
+

log 1
ǫ

C(p)

)

(1 + o(1)),

whereo(1) → 0 as ǫ → 0 or M → ∞.
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For rich function classHR and from Theorem 2 and Proposition 3,

E[τ ∗ǫ ] ≤
logM +max{log logM, log log 1

ǫ
}

C(p)
+

log 1
ǫ

ρ̃C1(p)
+

3(4C2(p))
2

C(p)ρ̃C1(p)

(a)

≤
logM + log log M

ǫ

C(p)
+

log 1
ǫ
+ 1

C1(p)
+

6(4C2(p))
2

C(p)C1(p)

≤

(

logM

C(p)
+

log 1
ǫ

C1(p)

)

×

(

1 +
C1(p) log log

M
ǫ
+ C(p) + 6(4C2(p))

2

C(p) log M
ǫ

)

=

(

logM

C(p)
+

log 1
ǫ

C1(p)

)

(1 + o(1)),

whereo(1) → 0 as ǫ → 0 or M → ∞ and (a) holds since1
ρ̃
= 1 + 1

max{logM,log 1
ǫ
}
≤ 2.

It follows from Proposition 1 that

E[τ ∗ǫ ] ≥
logM

C(p)

(

1−
2

log 4
ǫ

− ǫ log
1

ǫ

)

−
2

C(p)
+

log 1
ǫ

C1(p)

(

1−
2 log log 2

ǫ
+ logC2(p) + 4

log 1
ǫ

)

≥

(

logM

C(p)
+

log 1
ǫ

C1(p)

)

×

(

1− ǫ log
1

ǫ
−

2 log log 2
ǫ
+ logC2(p) + 4 + 2C1(p)/C(p)

log 1
ǫ

)

=

(

logM

C(p)
+

log 1
ǫ

C1(p)

)

(1− o(1)), (52)

whereo(1) → 0 as ǫ → 0.

IV T ECHNICAL LEMMAS

In this appendix, we provide some preliminary lemmas and facts. These lemmas are technical

and only helpful in proving the main results of the paper.

Lemma 1. Consider stopping times defined earlier with scalarsι ≥ ǫ > 0. We have

E[τ̃ ∗ι ] (1−
ǫ

ι
) ≤ E[τ ∗ǫ ] ≤ E[τ̃ ∗ǫ ].

Proof: Under any query scheme with the stopping rule (9):

Pe = E[1 −max
i∈Ω

ρi(τ̃ǫ)] ≤ ǫ,

hence, by construction,

E[τ ∗ǫ ] ≤ E[τ̃ ∗ǫ ]. (53)
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On the other hand, let us considerE[τ̃ ∗ι ] for any ι > ǫ. Let τǫ be a stopping time at which the

probability of error satisfiesPe ≤ ǫ. Under any query scheme,

E[τǫ] ≥ E
[

τǫ|max
j∈Ω

ρj(τǫ) ≥ 1− ι
]

P
(

max
j∈Ω

ρj(τǫ) ≥ 1− ι
)

(a)

≥ E
[

τǫ|max
j∈Ω

ρj(τǫ) ≥ 1− ι
]

(

1− ι−1
E
[

1−max
j∈Ω

ρj(τǫ)
]

)

(b)

≥ E
[

τǫ|max
j∈Ω

ρj(τǫ) ≥ 1− ι
] (

1−
ǫ

ι

)

≥ E[τ̃ ∗ι ]
(

1−
ǫ

ι

)

(54)

where (a) follows from Markov inequality and (b) follows from the definition ofτǫ which implies

thatPe = E[1−max
j∈Ω

ρj(τǫ)] ≤ ǫ. From (54),

E[τ̃ ∗ι ] (1−
ǫ

ι
) ≤ E[τ ∗ǫ ]. (55)

Lemma 3. Any functionalV : P(Ω) → R+ that satisfies the following:

V (ρ) ≤







0 if max
j∈Ω

ρj ≥ 1− ι

1 + minx∈X E[V (Φx(ρ, Y ))] otherwise
,

provides a uniform lower bound for the optimal value function V ∗
ι .

Proof: To prove the above fact, we have to slightly modify the state space and introduce new

notations. We assume that after taking the retire-declare action, the system goes to the termination

state, denoted byF , and remains in that state for the rest of the time. The state space is modified

to S = P(Ω) ∪ {F} to include the termination state. Forx ∈ X ∪ {d1, d2, . . . , dM}, s ∈ S, let

cx(s) =



































1 if s = ρ ∈ P(Ω), x ∈ X

∞ if s = ρ ∈ P(Ω),max
j∈Ω

ρj < 1− ι, x ∈ {d1, . . . , dM}

0 if s = ρ ∈ P(Ω),max
j∈Ω

ρj ≥ 1− ι, x ∈ {d1, . . . , dM}

0 if s = F

.

The Bayes operator is modified as follows:

Φ
x(s, y) =



















Φ
x(ρ, y) if s = ρ ∈ P(Ω), x ∈ X

F if s = ρ ∈ P(Ω), x ∈ {d1, . . . , dM}

F if s = F

.
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Using the notations above, condition (35) is rewritten as

V (F ) = 0,

V (s) ≤ min
x∈X∪{d1,...,dM}

{cx(s) + E[V (Φx(s, Y ))]} , ∀s ∈ S − {F}. (56)

Let S0, S1, S2, . . . be a sequence of random variables denoting the belief statesat timest =

0, 1, 2, . . . starting from belief states, i.e.,

S0 = s,

Sn = Φ
X(n−1)(Sn−1, Y ), ∀n, n > 0.

Using (56) iteratively forN times, we obtain

V (s) ≤ Eπ∗ [cX(0)(s)] + Eπ∗ [V (ΦX(0)(s, Y ))]

= Eπ∗ [cX(0)(S0)] + Eπ∗ [V (S1)]

≤ Eπ∗ [

1
∑

n=0

cX(n)(Sn)] + Eπ∗ [V (S2)]

≤ Eπ∗ [
N−1
∑

n=0

cX(n)(Sn)] + Eπ∗ [V (SN)],

where subscriptπ∗ implies that actions are selected according to an optimal policy π∗.3 Taking

the limit asN → ∞, we obtain

V (s)
(a)

≤ Eπ∗ [
∞
∑

n=0

cX(n)(Sn)] + lim
N→∞

Eπ∗ [V (SN)]

(b)
= V ∗

ι (s) + lim
N→∞

Eπ∗ [V (SN )]

= V ∗
ι (s) + lim

N→∞
Eπ∗ [V (F )1{SN=F} + V (SN)1{SN 6=F}]

= V ∗
ι (s) + lim

N→∞
Eπ∗ [V (SN)1{SN 6=F}]

= V ∗
ι (s),

where(a) follows from the monotone convergence theorem and(b) follows from the definition

of V ∗
ι .

3The existence of an optimal policy follows from [25, Corollary 9.12.1] and since|L| < ∞.
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Lemma 4. For any i ∈ Ω,
∣

∣

∣

∣

log
ρi(t + 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

≤ logC2.

Proof:
∣

∣

∣

∣

log
ρi(t + 1)

1− ρi(t+ 1)
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log
ρi(t)fhi(X(t))(Y (t))

∑

j 6=i

ρj(t)fhj(X(t))(Y (t))
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

log
fhi(X(t))(Y (t))

∑

j 6=i

ρj(t)

1−ρi(t)
fhj(X(t))(Y (t))

∣

∣

∣

∣

∣

≤ max
x∈X

sup
y∈Y

log
fhi(x)(y)

minj 6=i fhj(x)(y)

≤ logC2.

Lemma 5. For any i ∈ Ω,

|ρi(t+ 1)− ρi(t)| ≤ ρi(t)(1− ρi(t))(C2 − 1).

Proof:

|ρi(t+ 1)− ρi(t)| = ρi(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

fhi(X(t))(Y (t))
M
∑

j=1

ρj(t)fhj(X(t))(Y (t))

− 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ρi(t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

(1− ρi(t))fhi(X(t))(Y (t))−
∑

j 6=i

ρj(t)fhj(X(t))(Y (t))

M
∑

j=1

ρj(t)fhj(X(t))(Y (t))

∣

∣

∣

∣

∣

∣

∣

∣

∣

= ρi(t)(1− ρi(t))

∣

∣

∣

∣

∣

∣

∣

fhi(X(t))(Y (t))−
∑

j 6=i

ρj(t)

1−ρi(t)
fhj(X(t))(Y (t))

ρi(t)fhi(X(t))(Y (t)) + (1− ρi(t))
∑

j 6=i

ρj(t)

1−ρi(t)
fhj(X(t))(Y (t))

∣

∣

∣

∣

∣

∣

∣

≤ ρi(t)(1− ρi(t))









max
{

fhi(X(t))(Y (t)),
∑

j 6=i

ρj(t)

1−ρi(t)
fhj(X(t))(Y (t))

}

min
{

fhi(X(t))(Y (t)),
∑

j 6=i

ρj(t)

1−ρi(t)
fhj(X(t))(Y (t))

} − 1









≤ ρi(t)(1− ρi(t))

(

max
k,l∈L

sup
y∈Y

fk(y)

fl(y)
− 1

)
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= ρi(t)(1− ρi(t))(C2 − 1).

Lemma 6. For any δ ∈ (0, 1
2
], if max

i∈Ω
ρi(t) ≥ 1− δ, then

|U(ρ(t))− U(ρ(t− 1))| ≤ C2 (3 + δ log(M − 1)) .

Proof: Without loss of generality assumeρî(t) ≥ 1− δ. We obtain

|−U(ρ(t− 1)) + U(ρ(t))|

=

∣

∣

∣

∣

∣

M
∑

i=1

ρi(t− 1) log
ρi(t− 1)

1− ρi(t− 1)
−

M
∑

i=1

ρi(t) log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

M
∑

i=1

ρi(t− 1)

(

log
ρi(t− 1)

1− ρi(t− 1)
− log

ρi(t)

1− ρi(t)

)

+

M
∑

i=1

(ρi(t− 1)− ρi(t)) log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

≤ max
i∈Ω

∣

∣

∣

∣

log
ρi(t− 1)

1− ρi(t− 1)
− log

ρi(t)

1− ρi(t)

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

M
∑

i=1

(ρi(t− 1)− ρi(t)) log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

∣

(a)

≤ logC2 +

M
∑

i=1

|ρi(t− 1)− ρi(t)| ·

∣

∣

∣

∣

log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

(b)

≤ logC2 + C2

M
∑

i=1

ρi(t)(1− ρi(t))

∣

∣

∣

∣

log
ρi(t)

1− ρi(t)

∣

∣

∣

∣

≤ logC2 + C2ρî(t)(1− ρî(t))

∣

∣

∣

∣

log
ρî(t)

1− ρî(t)

∣

∣

∣

∣

+ C2

∑

i 6=î

ρi(t) log
1

ρi(t)

(c)

≤ logC2 + C2 + C2

(

∑

i 6=î

ρi(t)

)

log
M − 1
∑

i 6=î

ρi(t)

≤ logC2 + C2 + C2(δ log(M − 1) + 1)

(d)

≤ C2 (3 + δ log(M − 1)) ,

where (a) and (b) follow respectively from Lemmas 4 and 5; and(c) follows from Jensen’s

inequality and the fact that

z(1− z)| log
z

1− z
| ≤ 1, z ∈ [0, 1];

and (d) holds sinceC2 ≥ 1 and hencelogC2 ≤ C2.
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Fact 2 (Lemma 10 in [18]). Assume that the sequence{ξ(t)}, t = 0, 1, 2, . . . forms a submartin-

gale with respect to a filtration{F(t)}. Furthermore, assume there exist positive constantsK1,

K2, andK3 such that

E[ξ(t+ 1)|F(t)] ≥ ξ(t) +K1 if ξ(t) < 0,

E[ξ(t+ 1)|F(t)] ≥ ξ(t) +K2 if ξ(t) ≥ 0,

|ξ(t+ 1)− ξ(t)| ≤ K3 if max{ξ(t+ 1), ξ(t)} ≥ 0.

Consider the stopping timeυ = min{t : ξ(t) ≥ B}, B > 0. Then we have the inequality

E[υ] ≤
B − ξ(0)

K2

+ ξ(0)1{ξ(0)<0}

(

1

K2

−
1

K1

)

+
3K2

3

K1K2

.

Fact 3 (Lemma 1 in [18]). For any two distributionsP and Q on a setY and γ ∈ [0, 1],

D(P‖γP + (1− γ)Q) is decreasing inγ.
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