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Abstract— Network games provide a basic framework for
studying the diffusion of new ideas or behaviors through a
population. In these models, agents decide to adopt a new
idea based on optimizing pay-off that depends on the adoption
decisions of their neighbors in an underlying network. Assum-
ing such a model, we consider the problem of inferring early
adopters or first movers given a snap shot of the adoption state
at a given time. We present some results on solving this problem
in the low temperature regime. We conclude with a discussion
on reducing the complexity of such inference problems for large
networks.

I. INTRODUCTION

Increased digital connectivity has led to an ever increasing
confluence of social, economic and information networks
[16]. This in turn has led to much work on understand-
ing network structures and the processes they enable. One
fundamental example is the diffusion [5], [6] of new ideas
or behaviors through a population, where an individual’s
decision to adopt a new idea or behavior is influenced by her
neighbors in an underlying social network. One of the main
theoretical frameworks for analyzing diffusion processes is
via a network game, i.e., a model in which rational agents
make decisions to maximize a pay-off that depends on the
underlying network structure [3], [4], [7], [8], [13], [15],
[18]; these are also referred to as graphical games [9]. This
line of work has focused on analyzing equilibrium properties
of such games but has largely not considered inference
questions in such settings. In this paper, we focus on inferring
the time history of a given diffusion process given one or
more snap shots of the process. Based on the logistic function
trend of technology adoption [5], the adopters are classified
into the following different types based on when they take-
up the products: first-movers/early adopters, early majority,
late majority and laggards. Thus, an important special case
of the inference problem is to determine the agents which
started the diffusion, i.e. the first movers or early adopters.

In a basic diffusion model, there is one status quo action A
and one new action B. For example, A could be an existing
smart phone operating system and B could be a newly
introduced operating system, which is not fully compatible
with A. Agents decide to adopt the new action or stay with
the status quo based in part on the decisions of their “peers”
(e.g., co-workers, friends, etc.), which are identified as one-
hop neighbors in an underlying social network. For the smart
phone example, this peer influence can model the fact that B
might enable certain applications to be used only with other
users of B. Alternatively, this might simply be the result of
getting favorable reviews of the product from one’s peers.

In a network game model, agents decide to adopt B or stay
with A by choosing the action that maximizes their own
benefit. The influence of an agent’s neighbors is captured by
assuming that the benefit an agent receives from an action
is a function of the number of neighbors who have chosen
that action. When one agent in such a network makes a new
decision, this can lead her neighbors to also change their
decision; the diffusion process is simply the history of these
changes. In many cases, the entire time-history of a diffusion
may not be available, e.g. due to technical limitations, privacy
considerations or simply that one was not recording data
about the given diffusion until some time after it started.
For such cases, we seek to infer the most likely history of
diffusion given one or more snap shots of the process.

A prominent alternative to game theoretic modeling of
diffusion processes is to employ epidemic models [1], [2],
in which the adoption of the new action B is viewed as
the spread of an infection, with uninfected nodes becoming
infected with a probability that depends on the number of
its neighbors that are infected. For an epidemic model, a
problem related to identifying innovators or early adopters is
the influence maximization problem [10], [12]. This problem
does not focus on identifying early adopters for a given
partial history of a diffusion, but rather seeks to identify a
set of users, who if they were first movers would yield the
largest expected spread of the new innovation. Closer to our
work, the problem of estimating the source of an infection in
an epidemic model has been studied in [17], [19], [20]. The
main difference of these models from ours is that they do not
model any strategic choices that agents may make, and so the
resulting diffusion dynamics can be quite different [3], [7],
[15]. For random graphs, best-response dynamics have been
analyzed in [26]. In [21], [22], the complexity of the seed
selection problem or the starting set problem is analyzed,
while in [27], the same problem is considered but with
irreversible or monotone dynamics.

II. COORDINATION GAMES & DIFFUSION

In this paper we present an analysis for a simple network
coordination game. However, the analysis easily extends to
more general network games. For concreteness, we describe
this in terms of a technology adoption scenario, in which a set
of n users are choosing between the status quo technology
A and a new technology B. The users are represented as
nodes in an undirected graph G = (V,E), which models an
underlying social network. An example of such a network
for 8 nodes is shown in Figure 1, which loosely captures a
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key property of realistic network graphs: there a few nodes
with a high degree whereas most nodes have low degrees.

Each user is playing a game in which her strategy set
A = {A,B} is simply the choice of technology. The
users’ pay-offs are given by the sum of per-link pay-off
functions, where each link’s pay-off functions corresponds
to a coordination game between the end-points of the link,
i.e., a game in which the two players receive a better pay-
off when they both either adopt the new technology or stay
with the status quo. More precisely, let u(ai, aj) be the
link pay-off function for any two neighbors i and j, where
ai represents the action of agent i. If we normalize each
player’s link payoffs for adopting different technology to be
zero, then this implies that u(A,B) = u(B,A) = 0. Let
vA = U(A,A) and vB = U(B,B) be the player’s payoffs
when they both adopt technology A or B, respectively. The
coordination game assumption requires that both vA and vB
be greater than zero. Additionally, we assume that the new
technology is superior given that both users adopt it, so that
vB > vA. Given these link payoffs, the total payoff for each
agent i is then given by Ui(ai, a−i) =

∑
j∈N(i) u(ai, aj),

where a−i denotes the actions of all the players other than
i and N(i) denotes the set of neighbors to i in the social
network. For example, in Figure 1, node 1’s pay-off will
depend on her own actions and those of nodes 4, 6 and 8.

In a diffusion scenario all nodes are initially playing the
status quo A, and at some point one or more nodes adopt B.
Subsequently, at random times each node has the opportunity
to change her strategy based on the current actions of their
neighbors. For example, nodes may employ a best response
update, in which they maximize their payoff assuming the
strategies of all other users are fixed. Returning to Figure 1,
if vA = 1 and vB = 1.5, then node 1’s best response will
be to adopt B, when at least two of her neighbors have
adopted B; otherwise node 1’s best response will be to stay
with the status quo A. Note that a node’s best response
only depends vA and vB through their ratio or equivalently
through the parameter h = vB−vA

vB+vA
∈ (0, 1), which will be

a convenient equivalent parameterization of the game. Note
also that the best response is equivalent to choosing state
B only when the number of neighbors who are in state B
exceed a node-dependent threshold. Assuming best response
updates, the “starting set” problem considered in [21], [22]
is closely related to inferring first movers. This problem
seeks to identify the smallest number of nodes that need
to have adopted B in order for the whole network to adopt
B following a sequence of best responses, and is shown to
be NP-hard and also hard to approximate.

Instead of a pure best response, we assume a noisy best
response [8], which allows agents to choose non-optimal
actions with some probability. One reason for choosing such
models is that they account for imperfect decisions made
by people in practice. A second reason is to model certain
learning behaviors of agents. A third reason is simply that
such models have nice mathematical properties and can
approximate true best response dynamics in a limiting sense.

The specific dynamics we consider are noisy best-response

Fig. 1: A social network among 8 users.

dynamics following a logistic response function. This is pa-
rameterized by a non-negative number β defined as follows.
Let the state of the system at time t be given by the vector of
actions chosen by the different nodes, Xt = (at1, a

t
2, . . . , a

t
n).

Given that node i can update her action at time t, the
probability that node i chooses action âi ∈ A is given by

pβ(Xt
−i, âi) =

eβUi(âi,X
t
−i)∑

a∈A e
βUi(a,Xt

−i
)

where Xt
−i represents the vector of the actions of all nodes

other than i; we will denote the transition probability by
pβ(Xt, Xt+1) for a transition from state Xt to Xt+1 where
we allow the two states to be the same. Thus, the dynamics
are such that when β = 0, a node picks an action at
random, but when β ↑ ∞, the preferred action is the one that
maximizes the payoff, i.e., one gets best-response dynamics.
Note that under these dynamics it is possible for a node to
reverse its adoption decision at a given time t, i.e., it could
adopt B and then at a latter time switch back to A.

Each user is assumed to have a timer whose duration
is randomly chosen independent of every other timer and
exponentially distributed with parameter 1. When a user’s
timer expires, then the user changes its action/state and
immediately restarts the timer with an independent and
identically distributed value; note that this implies that only
one user will change her state at any given time. With the
above specification we model the dynamics as a Markov
process with state-space X = AV . This is formulation is well
accepted [3], [4], [7], [8], [13], [15], [18] for analyzing games
over networks; the specific dynamics are called Glauber
dynamics in the Markov-Chain-Monte-Carlo literature [14].
Note that this asynchronous update model introduces ran-
domness even when β = ∞, i.e., when each user chooses
her action based on the best-response calculation.

III. INFERRING HISTORY OF DIFFUSION

Next we state our inference problem more precisely and
discuss some results. Suppose that prior to time 0, the system
is in the ground or initial state corresponding to all users
adopting the status quo; we denote this by X0− = A, where
A is the “all A” state, and Xt denotes the overall state (i.e.,
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current vector of actions) at time t. Suppose further that some
user changes its state at time 0 and at time t we find the
system in a state z in which several users have adopted B.
The problem is to identify the most likely history of adoption
leading to x, and in particular to identify the most likely user
who changed its state at time 0. Denote by ei the state whose
ith component is B while the rest are A. Then the most likely
first mover is given by the maximum likelihood estimate,
î ∈ arg maxi∈V P

t,β
ei (z), where P t,βei (z) is the probability

that the Markov process starting out in state ei at time 0 is
in state x at time t.

This formulation is also applicable in other contexts that
correspond to transitions from one state in the configuration
space to another. For example, consider if the system being
in state x corresponds to a certain state of the market.
Then a transition to a state with a smaller number of B’s
corresponds to a reduction in market share for the company
selling product B. Finding out the first customer to change
her/his state corresponds to locating the most likely customer
to leave, which is of considerable interest, e.g., for reducing
churn for wireless service providers.

Since the Markov process can also be described via its
generator matrix Qβ and since the state space is finite, it
follows that P t,βei (x) is the (ei, x) entry of exp(Qβt), i.e.,
a specific term of the matrix exponential obtained from the
generator. The accurate calculation of the matrix exponential
is a hard problem computationally; for our particular case
the complexity is O(|X |4) which is exponential in n. Addi-
tionally, with the underlying Markov process being ergodic,
it follows that irrespective of the starting state y, P t,βy (x)
converges to the stationary probability of being in state x as
t→∞, which we denote by πβ(x). Therefore the maximum
likelihood estimation procedure must be carried out with
high fidelity. This makes a compelling case for an alternate
solution to this problem. Our approach is to consider the
asymptotic regime of large β while assuming that the time
t of observation stays fixed.1

The underlying Markov model for the diffusion is identical
to models of Glauber dynamics studied in the stastical
physics literature [11], [14], [15]. From the analysis of these
models, it follows that the stationary probability πβ(x) is
proportional to exp(−βH(x)), where

H(x) = −
∑

(i,j)∈E

xixj −
∑
i∈V

hdixi

and di is the degree of node i. Furthermore,
transitions only occur between states x, y ∈ X
that differ in one-coordinate/user with probability
pβ(x, y) = exp(−βG(x, y) + o(β)), where G(x, y) =
max(H(x), H(y)) − H(x). Noting that the probability of
being in state x at time t when starting out from state ei at
time 0 can be obtained by adding together the probabilities
of all paths in state-space (with repeats) that start at ei and
end at x, we define the length of a path w in configuration

1The same asymptotic regime has been considered in the physics litera-
ture [11] for analysis of metastability.

space to be sum of the weights of the edges traversed, i.e.,
W (w) =

∑|w|−1
k=1 G(wk, wk+1) where wt is the node at

head of the edge used at step t and |w| is exactly one more
than the total number of edges traversed. A path from state
x to y that reaches y only at the last step is also denoted
using the following notation: w : x → y. Then a key initial
result that we can prove is the following.

Theorem 1: For a given diffusion process on a social
network defined by logistic best response dynamics with
parameter β,

lim
β→∞

− logP t,βy (x)

β
= inf
w:x→y

W (w)

for every x, y ∈ X , where w is an allowed path in configu-
ration space from x to y.
See Appendix A. The exponential decay of the likelihood
probability in β indicated in the theorem can be used to
determine the behavior of the maximum likelihood estimator.
Let MLt,β(z) be the set of maximum likelihood estimates
of the first movers given the state of the process at time t
being z, i.e.,

MLt,β(z) := arg max
i∈V

P t,βei (z),

then Theorem 1 yields the following important corollary.
Corollary 1: For every t > 0, there exists a large enough

but finite β∗ such that for all β > β∗ we have

arg max
i∈V

P t,βei (z) = MLt,β(z) ⊆ arg min
i∈V

inf
w:ei→z

W (w)

See Appendix B. In other words, for large but finite β, we
can obtain the maximum likelihood estimate by solving a
much simpler shortest path problem in configuration space
where the states are connected via a directed graph with
weights G(x, y). The solution to the shortest path problem
also yields the most likely paths for the state to be x at time
t. When there are multiple solutions to the shortest path
problem, not all solutions necessarily have the maximum
likelihood. Separating such solutions will involve a more
refined analysis of the constant terms in P t,βei (z), which is
for future work.

Note that we have to solve a shortest-path problem on a
directed graph with weights G(a, b) on the edges. Thus, the
estimate for the set of early adopters is

î ∈ arg min
i

inf
w:ei→z

W (w).

In the reversible setting, which holds owing to Glauber
dynamics, one can obtain another estimate (that will coin-
cide) by the following property. From reversibility we get
that

πβ(x)P t,βx (y) = πβ(y)P t,βy (x)

so that

P t,βx (y) = πβ(y)P t,βy (x)/πβ(x).

Thus, in our setting with the Glauber dynamics, we get

lim
β→∞

− logP t,βx (y)

β
= lim
β→∞

− logP t,βy (x)

β
+H(x)−H(y)
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where we further have that

lim
β→∞

− logP t,βy (x)

β
= inf
w:y→x

W (w).

Therefore, the estimate for the set of early adopters is also
given by

î ∈ arg min
i
H(ei) + inf

w:z→ei
W (w),

i.e., one considers the minimum cost path from z to each
ei and amends its cost with a termination cost which is the
cost of state ei. We can solve this problem using the Djikstra
algorithm [24] with complexity O(|X | log(|X |)). Note that
this is less complex than computing the matrix exponential
but is still of exponential complexity in n. Notice also that the
shortest path estimator does not depend on t, the time when
the state is observed, whereas using the matrix exponential
does not have this failing. Thus, our next goal is to develop
an estimator that explicitly depends on t but satisfies the
following two requirements: for large enough β it agrees
with the shortest path estimator and has complexity that is
O(|X | log(|X |)).

A. Approximation by hitting times

We will provide an alternate proof for our main result by
analyzing hitting times. The alternate proof provides further
intuition as to why the shortest path calculation yields an
asymptotically accurate estimate. In addition, we will use
this to achieve our goal of a time-dependent asymptotically
optimal estimator that has lower complexity than using the
matrix exponential.

For two distinct states x, y define τyx to be the first time
the Markov process hits y when it starts in state x, i.e.,

τyx = inf{u ≥ 0 : Xu = y}.

With the above definition, we can write down the following
integral equation

P t,βei (z) =

∫ t

0

P t−u,βz (z)dPu,β(τzei = u),

i.e., in (u, u+ du) the Markov chain hits state s for the first
time and then it returns to state s in t − u time. An upper
bound follows immediately since Pu,βz (z) ≤ 1, namely,

P t,βei (z) ≤
∫ t

0

dPu,β(τzei = u) = P β(τzei ≤ t).

Now we use the proof of [14, Prop. 10.18] and reversibility of
the Markov chain to prove that for all x ∈ X , P t+u,βx (x) ≤
P t,βx (x) for all t ≥ 0 and u ≥ 0; reversibility is key in the
proof, see Lemma 1 in Appendix C. The lower bound this
yields is

P t,βei (z) ≥ P t,βz (z)P β(τzei ≤ t).

The intuition from the upper and lower bounds is that
if one can find an x ∈ {e1, . . . , en} such that the random
variable τzx is made as small as possible (in a stochastic
ordering sense), then we can well approximate the maximum
likelihood estimate î whenever P t,βz (z) is close to 1. We note

that minimizing the random variable τzx is also non-trivial.
Thus, we consider the behaviour of P β(τzx ≤ t) as β ↑ ∞.
Note that t should be much smaller than the mixing time of
the Markov chain for the maximum likelihood problem to
have a non-trivial solution, otherwise P t,βx (z) will be close
to πβ(z) for any feasible x ∈ X ; in general the mixing time
is an increasing function of β. We can, thus, ignoring this
caveat for the case of finite t and use the fact that P tz(z) ≥
e−nt (none of the Poisson clocks tick) to show that

lim
β→∞

− logP t,βei (z)

β
= lim
β→∞

− logP β(τzei ≤ t)
β

,

assuming that both limits exist. We can prove that the
asymptote of P β(τzx ≤ t) is exactly the solution to the
shortest-path problem.

Proposition 1: For a given diffusion process on a social
network defined by logistic best response dynamics with
parameter β,

lim
β→∞

− logP β(τzei ≤ t)
β

= inf
w:x→y

W (w)

for every x, y ∈ X , where w is an allowed path in configu-
ration space from x to y.
See Appendix C. Having established this result, we will
use the intuition of stochastically minimizing the hitting
time to develop an estimator that incorporates the time of
measurement: given t and ei the goal will be to maximize
P β(τzei ≤ t).

B. Approximation by max-product algorithm
The inference problem that we are interested in specifies

that there is a transition at time 0 and at time t the state
of the Markov chain is z. We are, however, not given the
states through which the Markov chain reaches z starting
out at A at time 0−. If we are also given the number of
transitions, say k, that it takes to reach state z, then we
have a hidden Markov model problem. We can then use
the backward Chapman-Kolmogorov equations, i.e., the sum-
product algorithm [25], to determine the distribution of the
state at time 0 (i.e., at the first transition) and then find the
maximizer to obtain the maximum likelihood estimate of
the first adopters. Following the intuition from the previous
results for large enough β that using the most likely path to z
also leads to the maximum likelihood estimator and this also
coincides with stochastically minimizing the hitting time to
z, we will, instead, find the most likely sequence of states to
reach state z and use that to construct the estimate. In more
detail, given k for each i ∈ {1, 2, . . . , n} we find

w∗ei→z(k) ∈ arg max
|w|=k,w:ei→z

k−1∏
t=0

pβ(wt, wt+1),

which can be obtained using the max-product algorithm
[25], i.e., the Viterbi algorithm; denote the maximum by
pβ(w∗ei→z(k)). Then we determine the number of steps that
yield the maximum probability to reach z from ei, i.e.,

k∗(i) ∈ arg max
k∈{0,1,2,... }

tk

Γ(k + 1)
pβ(w∗ei→z(k)).
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It is easy to see that we only need to consider a finite number
of terms in the above so that the maximum exists and this can
be computed: determine the probability of one path from ei
to s, say p̃(ei → s), then there exists a k̃ such that tk

Γ(k+1)

is less than p̃(ei → z) for all k ≥ k̃; the summability of
{ tk

Γ(k+1)}k={0,1,2,... } guarantees this. Then the estimator for
the early adopters is

î ∈

arg max

{
i ∈ {1, . . . , n} :

tk
∗(i)

Γ(k∗(i) + 1)
pβ(w∗ei→z(k

∗(i)))

}
.

The complexity of running the Viterbi algorithm [25] is linear
in the size of the state space, i.e., it is O(|X |). As mentioned
earlier the Viterbi algorithm has to be run a finite number
of times that depends on t and β but not the size of the
state space. The final step of taking the maximum involves
evaluating the probabilities for each ei with i ∈ {1, 2, . . . , n}
which results in the final complexity being O(|X | log(|X |)).
We also have the following result

Proposition 2: For every t, there exists a β∗ such that for
all β ≥ β∗ we have

arg max

{
i ∈ {1, . . . , n} :

tk
∗(i)

Γ(k∗(i) + 1)
pβ(w∗ei→z(k

∗(i)))

}
= arg min

i
inf

w:ei→z
W (w)

We skip the proof as it is carried out in a similar manner to
the proof of Corollary 1.

C. Example

We illustrate these results for the small example in
Figure 1, for which the maximum likelihood estimate
can be calculated exactly. We consider the case of x =
(BAABBABA) and h = {0.55} with the maximum like-
lihood estimates shown in Figure 2. When h assumes the
intermediate value, then the maximum likelihood estimate is
eventually 8, which coincides with the shortest path estimate.
An interesting feature in this example is at the time of
sampling, node 8 is in state A, i.e., even though node 8 is the
likely first mover to B, she changes her state in the future.
Such complex behaviour makes the problem hard to analyze.
In Figure 2 we also point out that node 1 is the maximum
likelihood estimate of the early adopter for intermediate β.
Interestingly, in this case the dynamics are monotone, i.e.,
no node switches back to A once it has adopted B.

IV. CONCLUSIONS

For network games with noisy best response dynamics
with the level of noise being inversely proportional to pa-
rameter β ≥ 0, we formulated an inference problem that
seeks to determine early adopters when a given system state
is observed. Modeling the dynamics as a Markov chain, we
can solve the inference problem by calculating a matrix expo-
nential. Known algorithms for directly solving this maximum
likelihood problem via calculating the matrix exponential
function have complexity O(|X |4), which is of exponential
complexity in the number of players, n. Our results show that

Fig. 2: Maximum likelihood estimate for state x =
(BAABBABA).

in the regime of large β, one can obtain the answer exactly
by solving a shortest path problem. We then showed using
reversibility of the underlying Markov chain that the shortest
path problem can be solved using the Djikstra algorithm
with complexity O(|X | log(|X |)). Using this idea we then
developed an asymptotically optimal algorithm based on
the max-product algorithm. While this yields a considerable
reduction in complexity, it is still of exponential complexity
in n. Thus, in future work we will look at much faster
algorithms to approximately solve the shortest path problem
so that it will scale to large data sets. However, based on the
results on the starting set problem [21], [22], we believe that
an exact solution is computationally intractable. Additionally,
one can consider similar problems when the social network
and the payoffs are unknown and have to be estimated from
data.

APPENDIX I
PROOF OF THEOREM 1

Note that we can look at a discrete-time version of the
continuous-time Markov chain by using uniformization using
a Poisson process at rate n, i.e., we sample the continuous-
time Markov chain at instances of a Poisson process (of fast-
enough rate). Using this random time-change representation
we can then write the following decomposition for the
probability of being in state y at time t when starting from
state x (assume that x 6= y, namely,

P t,βx (y) =
∑

w:x→y
e−nt

(nt)|w|

Γ(|w|+ 1)

|w|−1∏
t=0

1

n
pβ(wt, wt+1)

where w is a path from x to y, |w| the path-length and
pβ(x, y) are transition probabilities for the discrete-time
chain obtained using uniformization, i.e., the probabilistic
rule imposed once a state is picked. When we assume
that the transition probabilities are given by p(a, b) =
exp(−βG(a, b) + o(β)) with β ∈ [0,∞), we get

P t,βx (y) =∑
w:x→y

e−nt
t|w|

Γ(|w|+ 1)
e−β

∑|w|−1

t=0
G(wt,wt+1)+|w|o(β).
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For later use, for a path w : x → y let W (w) =∑|w|−1
t=0 V (wt, wt+1) be the path cost. We are interested in

the case of β → ∞, and would like to prove that we can
approximate P t,βx (y) ≈ C exp(−βI) for some C and I . The
term I is the exponential decay rate of P t,βx (y) in β and is
given by

lim
β→∞

− logP t,βx (y)

β
= I

(Conjecture)
= inf

w=x→y

|w|−1∑
t=0

G(wt, wt+1).

One part of the bound is obvious since

P t,βx (y) ≥ e−nt t|w|

Γ(|w|+ 1)
e−β

∑|w|−1

t=0
G(wt,wt+1)+|w|o(β)

for every path w from x to y. This then yields

lim sup
β→∞

− logP t,βx (y)

β
≤ inf
w=x→y

|w|−1∑
t=0

G(wt, wt+1).

Let W ∗ = infw=x→y
∑|w|−1
t=0 G(wt, wt+1). It is obvious that

W ∗ ∈ [0,∞) and also that there exists at least one path that
has this cost. In fact, for every path w : x → y we can
find a sub-path within that never revisits x by going back to
the last time the discrete-time chain visits x before time |w|.
Furthermore, for paths that never revisit x, one can determine
a loop-free path by ignoring some transitions. Since we
are always ignoring transitions, i.e., certain probabilities, the
probability of a path w is upper-bounded by the probability
of the loop-free path, denote this set by W: starting with
the state visited right after x (say z), find the last time z is
visited and ignore all transitions in between, and then repeat
this procedure, then the finite length of each path ensures that
this procedure terminates. Note that there are only a finite
number of loop-free paths from x to y owing to finiteness
of the state-space. Next for path-length k, there can be at
the most 2n(k−1) paths from x to y, as fixing the end-points
at x and y we have k − 1 degrees of freedom. Using these
definitions we can write down the following (crude) upper
bound

P t,βx (y) ≤
∞∑
k=0

e−nt
2n(k−1)tk

Γ(k + 1)

∑
w∈W

e−βW (w)+|w|o(β)

= 2−ne(2n−n)t
∑
w∈W

e−βW (w)+|w|o(β).

Now the result follows by the principle of the largest term
[23] since W is a finite set.

APPENDIX II
PROOF OF COROLLARY 1

Let A be the adjacency matrix of the graph implied by
pβ(·, ·) where we include the self-transitions as well. Then
the number of paths from x to y of length k are given by
Ak(x, y). We will use this fact to refine our estimates above.
We can write the following when x 6= y

P t,βx (y) =

∞∑
k=1

e−nt
tk

Γ(k + 1)

∑
w:x→y,|w|=k

e−βV (w)+ko(β).

Since the lower bound is the same as before, we get a
better estimate for the upper bound. From the proof, we
can upper bound the probability of each path from x to
y by the probability of a path that only visits nodes only
once. Since there are only finitely many such paths, we
can further upper bound the probability by considering the
largest probability; it is easy to see that this would scale as
e−β infw:x→y W (w)+o(β). Thus, we have

P t,βx (y) ≤ e−β infw:x→y W (w)+o(β)
∞∑
k=1

e−nt
tk

Γ(k + 1)
Ak(x, y).

Denote by Qt = exp(At)e−nt where exp(·) the matrix
exponential function, then

P t,βx (y) ≤ e−β infw:x→y W (w)+o(β)Qt(x, y).

The lower bound then implies that

P t,βx (y) ≥ e−β infw:x→y W (w)+o(β)e−nt
tk
∗

Γ(k∗ + 1)
Ak
∗
(x, y)

where k∗ is the length of the shortest path that takes
the least number of steps. The conclusion then holds by
contradiction. Comparing the upper and lower bounds for
different is, for large enough β the values corresponding
to the shortest path estimate are greater than any others so
that the maximum likelihood estimate has to belong to the
shortest path estimate set. Note that we are not claiming
that the maximum likelihood estimate converges as β →∞,
which is a much harder result to establish.

APPENDIX III
PROOF OF PROPOSITION 1

We first start by proving the following lemma.
Lemma 1: For a finite-state, irreducible and reversibile

Markov chain for all x ∈ X , P t+u,βx (x) ≤ P t,βx (x) for all
t ≥ 0 and u ≥ 0.
By the Chapman-Kolmogorov equations we can write

P t+s,βx (x) =
∑
y,v∈X

P t/2,βx (y)P s,βy (v)P t/2,βv (x).

Multiplying on both sides by πβ(x) we get using reversibility
that

π(x)P t+s,βx (x)

=
∑
y,v∈X

πβ(x)P t/2,βx (y)P s,βy (v)P t/2,βv (x)

=
∑
y,v∈X

P t/2,βy (x)πβ(y)P s,βy (v)P t/2,βv (x)

=
∑
y,v∈X

P t/2,βy (x)P s,βv (y)πβ(v)P t/2,βv (x)

=
∑
y,v∈X

P t/2,βy (x)

√
πβ(y)P s,βy (v)×√
P s,βv (y)πβ(v)P t/2,βv (x)

where once again by reversibility πβ(y)P s,βy (v) =

P s,βv (y)πβ(v) =

√
πβ(y)P s,βy (v)

√
P s,βv (y)πβ(v). Defining
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ϕ(y, v) := P

t/2,β
y (x)

√
πβ(y)P s,βy (v) ≥ 0, we note that the

right side above is nothing but
∑
y,v∈X ϕ(y, v)ϕ(v, y) which

by the Cauchy-Bunyakovsky-Schwarz inequality is upper-
bounded by

∑
y,v∈X ϕ(y, v)2. This then yields, again using

reversibility, that

π(x)P t+s,βx (x)

≤
∑
y,v∈X

ϕ(y, v)2

=
∑
y,v∈X

P t/2,βy (x)P t/2,βy (x)πβ(y)P s,βy (v)

=
∑
y∈X

P t/2,βy (x)P t/2,βy (x)πβ(y)

=
∑
y∈X

πβ(x)P t/2,βx (y)P t/2,βy (x) = πβ(x)P t,βx (x)

which proves our result since πβ(x) > 0 for all x ∈
X . A few remarks are in order: i) in the discrete-
time setting of [14, Prop. 10.18], the result translates to
max(P 2k+1

x (x), P 2k+2
x (x)) ≤ P 2k

x (x) for k = 0, 1, 2, . . .
and using this one can prove that P kx (z) ≥ P (τzx ≤
k)P

2dk/2e
z (z); ii) one can also prove the result using the

eigen-decomposition of reversible transition matrices as sug-
gested in [14, Exer. 12.6]; and (iii) the ordering obtained
is exactly like the lazy chain ordering of [14, Prop. 10.18]
since for finite chains one can take h small enough that
Phx (x) ≥ 1/2 for all x ∈ X .

Let A be a subset of X . We denote by pβA(·, ·) the
transition probability matrix restricted to X \ A. Denote
pβ(x,A) :=

∑
y∈A p

β(x, y) and for x, v ∈ X \ A, let
pβ,kA (x→ v) be the probability of going from state x to state
v in k steps while never visiting A; note that this is the (x, v)
entry of the k-fold product of pβA(·, ·). Then dP (τAx = t)/dt
(i.e., the density of the hitting time random variable) is given
by

dP (τAx = t)

dt

=

∞∑
k=1

e−ntn
(nt)k−1

Γ(k)

∑
v∈X\A

1

nk−1
pβ,k−1
A (x, v)

1

n
pβ(v,A)

=

∞∑
k=1

e−nt
tk−1

Γ(k)

∑
v∈X\A

pβ,k−1
A (x, v)pβ(v,A).

Therefore, we have the following

P (τAx ≤ t)

=

∞∑
k=1

e−nt
1

nk

( ∞∑
l=k

(nt)l

Γ(l + 1)

) ∑
v∈X\A

pβ,k−1
A (x, v)pβ(v,A)

=
∑

v∈X\A

∞∑
k=1

e−nt
1

nk

( ∞∑
l=k

(nt)l

Γ(l + 1)

)
pβ,k−1
A (x, v)pβ(v,A).

Using the same steps as in proof of theorem 1 we have the
following

lim
β↑∞

− log(P (τAx ≤ t))
β

= inf
v∈X\A

inf
w:x→v,w∈(X\A)|w|

V (w) + V (v,A)

= inf
w:x→A

V (w).

Thus, the exponent is the value of the shortest path to A
when starting out in x. Therefore, the estimate will the ei that
minimizes this exponent over all initial states when A = {z}.

ACKNOWLEDGMENT

This research was supported in part by NSF under grant
IIS-1219071.

REFERENCES

[1] M. Granovetter, “Threshold models of collective behaviour,” American
Journal of Sociology, 1978, 83:1420–1443.

[2] M. Morris, “Epidemiology and social networks: Modeling structure
diffusion,” Sociol. Methods Res., 1993, 22:99–126.

[3] G. Ellison, “Learning, local interaction, and coordination,” Economet-
rica, 1993, 61:1047–1071.

[4] M. Kandori, H. Mailath and F. Rob, “Learning, mutation, and long
run equilibria in games,” Econometrica, 1993, 61:29–56.

[5] E. M. Rogers, “Diffusion of Innovations,” Free Press, New York, 1995,
4th ed.

[6] T. W. Valente, “Network Models of the Diffusion of Innovations,”
Hampton, Cresskill, NJ, 1995.

[7] L. Blume, “The statistical mechanics of best-response strategy revi-
sion,” Games and Economic Behavior, Elsevier, 1995, 11(2), pp. 111–
145.

[8] D. Fudenberg and D. Levine, “The Theory of Learning in Games,”
MIT Press, Cambridge, MA, 1998.

[9] M. Kearns, M. Littman and S. Singh, “Graphical models for game
theory,” In Proc. of the 17th Conf. on Uncertainty in AI, 2001.

[10] P. Domingos and M. Richardson, “Mining the network value of
customers,” in Proc. 7th ACM SIGKDD, 2001, pp. 57–66.

[11] A. Bovier and F. Manzo, “Metastability in Glauber dynamics in
the low-temperature limit: Beyond exponential asymptotics,” J. Stat.
Physics, 107:757–779, 2002.
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