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Abstract— Fundamental limits of the cognitive interference
channel(CIC) with two pairs of transmitter-receiver have been
under exploration for several years. In this paper, we study
the discrete memoryless cognitive interference channel (DM-
CIC) in which the cognitive transmitter non-causally knows
the full message of the primary transmitter. The capacity of
this channel is not known in general; it is only known in some
special cases. Inspired by the concept of less noisy broadcast
channel (BC), in this work we introduce the notion of less
noisy cognitive interference channel. Unlike BC, due to the
inherent asymmetry of the cognitive channel, two differentless
noisy channels are distinguishable; these are named theprimary-
less-noisyand cognitive-less-noisychannels. We derive capacity
region for the latter case by introducing inner and outer bounds
on the capacity of the DM-CIC and showing that these bounds
coincide for the cognitive-less-noisy channel. Having established
the capacity region, we prove that superposition coding is the
optimal encoding technique.

I. I NTRODUCTION

A two-user interference channel (IC) is a network consist-
ing of two transmitter-receiver pairs, communicating over
the same channel, and thus interfering each other. In certain
communication scenarios, e.g., cognitive radio, one transmit-
ter (the cognitive transmitter) is able to sense the environment
and obtain side information about the incumbent transmitter
(the primary transmitter). Such a communication channel
is called interference channel with cognition or simply the
cognitive channel. Motivated by cognitive radio’s promise
for increasing the spectral efficiency in wireless systems,the
study of interference channel with cognitive users has been
receiving increasing attention during the past years.

Fundamental limits of the cognitive interference channel,
in which the cognitive transmitter non-causally knows the the
full message of the the primary user, has been studied in [1]–
[12]. This channel was first introduced in [1] where the au-
thors obtained achievable rates by applying Gel’fand-Pinsker
coding [15] to the celebrated Han-Kobayashi encoding [14]
for the IC. The capacity of this channel remains unknown in
general; however, it is known in several special cases, both
in the discrete memoryless and Gaussian channels.

Capacity of the Gaussian cognitive interference channel
(GCIC) is known at low interference [2] and [3], as well
as strong interference [4]. Besides, capacity of Gaussian
cognitive Z-interference channel (GCZIC) in which the
primary receiver is interfered by the cognitive transmitter
is known for several ranges of interference gain [8]–[11].

While at low interference dirty paper coding [13] is capacity-
achieving scheme, at high interference superposition cod-
ing is the optimal technique. For the discrete memoryless
channel, capacity is known for “strong interference” [4],
“weak interference” [3], and “better cognitive decoding” [7]
regimes. Effectively, superposition coding is the capacity-
achieving technique in all above cases although several other
techniques, including rate-splitting, simultaneous coding, and
Gel’fand-Pinsker coding (binning) are used to find achievable
rate regions.

In this paper, we consider thediscrete memorylesscog-
nitive interference channel (DM-CIC). We first introduce
the notion of less noisyDM-CIC and show that there are
two different less noisy cognitive channels: theprimary-less-
noisy and cognitive-less-noisyDM-CIC. In the former, the
primary receiver is less noisy than the secondary receiver,
whereas it is the opposite in the latter.

Afterward, we propose two inner bounds for the DM-CIC;
one based on superposition coding, and another one using
independent coding. Obviously, these inner bounds are also
valid for less noisy DM-CIC; in fact, one of these inner
bounds is more suitable for the primary-less-noisy DM-CIC
whereas the other one is better for the cognitive-less-noisy
DM-CIC. We also prove an outer bound on the capacity of
this channel.

Finally, we show that for the cognitive-less-noisy DM-
CIC the inner and outer bounds coincide, and therefore we
establish the capacity region for this class of DM-CIC. This
proves that superposition coding is the capacity-achieving
scheme in the less noisy DM-CIC, as it is in the less noisy
BC. Although for the primary-less-noisy DM-CIC capacity
remains unknown, corresponding inner bound simplifies to
an achievable region that has already been proved to be
capacity-achieving in the special case of GCZIC [8], [10].

This paper is organized as follows. In Section II, we
introduce the system model and define the less noisy DM-
CIC. In Section III, we propose an outer bound and two inner
bounds for the DM-CIC. Then, in Section IV, we show that
one of the inner bounds is tight for the cognitive-less-noisy
channel, and thus provides capacity for this class of the DM-
CIC. New capacity result is compared with the existing ones
in Section V.
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Fig. 1. The discrete memoryless cognitive interference channel (DM-
CIC) with two transmitters and two receivers.M1,M2 are two messages,
X1,X2 are inputs,Y1, Y2 are outputs, andp(y1, y2|x1, x2) is the transition
probability of channel.

II. PROBLEM SETUP AND DEFINITIONS

The two-user discrete memoryless cognitive interference
channel (DM-CIC) is an interference channel [16] that
consists of two transmitter-receiver pairs, in which one
transmitter (the cognitive user) knows the message of the
other transmitter (the primary one), in addition to its own
message. In what follows, we formally define this channel
and a special class of that.

A. Discrete Memoryless Cognitive Interference Channel

The discrete memoryless cognitive interference channel
(DM-CIC) is depicted in Figure 1. LetM1 and M2 be
two independent messages which are uniformly distributed
on the set of all messages for the first and second users,
respectively. Transmitteri, i ∈ {1, 2}, wishes to transmit
messageMi to receiver i, in n channel use at rateRi.
MessageM2 is available only at transmitter 2, while both
transmitters knowM1. This channel is defined by a tuple
(X1,X2; p(y1, y2|x1, x2);Y1,Y2) whereX1,X2 and Y1,Y2

are input and output alphabets, andp(y1, y2|x1, x2) is chan-
nel transition probability density functions.

The capacity of the DM-CIC is known in “strong inter-
ference” [4], “weak interference” [3], and “better cognitive
decoding” [7] regimes. These capacity results are listed in
Table I, and labeledC1, C2, andC3, respectively. In the first
case, both receivers can decode both messages. In all above
cases, the cognitive receiver has a better condition (more
information) than the primary one, in some sense, as it is
evident from corresponding conditions in Table I.

B. Less Noisy DM-CIC

Since the second transmitter has complete and non-causal
knowledge of both messages, it can act like a BC transmitter.
Particularly, in the absence of the first transmitter this channel
becomes the well-known DM-BC [20]. In the presence of
that, this channel is no longer a BC; however, one can
define conditions, similar to that in the BC, showing that one
receiver is in a “better” condition than the other to decode
the messages, e.g., one receiver isless noisyor more capable
than the other [18], [17].

In [8], [10], the authors extended this notion to the DM-
CIC, and studied the case where the primary receiver is more
capable than the secondary receiver. This led to the capacity
of the GCZIC at very strong interference. In what follows,
we introduce the notion of less noisy cognitive interference
channel, and show that two different less noisy DM-CIC
arises, depending on which receiver is in a better condition.
These are formally defined in the following.

Definition 1. The DM-CIC is said to beprimary-less-noisy
if

I(U ;Y1) ≥ I(U ;Y2) (1)

for all p(u, x1, x2).

Definition 2. The DM-CIC is said to becognitive-less-noisy
if

I(U ;Y2) ≥ I(U ;Y1) (2)

for all p(u, x1, x2).

It is clear that in the first case the primary receiver is less
noisy than the cognitive receiver whereas in the second case
the cognitive receiver is less noisy than the primary receiver.
Therefore, given the channel condition, a DM-CIC can be
primary-less-noisy, cognitive-less-noisy, neither of them or
both.

III. I NNER AND OUTER BOUNDS FOR THEDM-CIC

In this section, we first introduce an outer bound on the
capacity of the DM-CIC; we then derive two achievable
rate regions for this channel. The first achievable region is
based on superposition coding technique; it is inspired by the
capacity-achieving superposition coding in the less noisyand
more capable DM-BC, or the inner bound introduced for the
more capable DM-CIC in [10]. The idea of outer bound also
comes from the capacity of the less noisy DM-BC. However,
we combine two different bounds to find a unified one.

A. A Unified Outer Bound

Inspired by capacity of less noisy BC [18], and definitions
(1) and (2) for less noisy cognitive interference channels,we
present a simple outer bound on the capacity of the DM-CIC.
This outer bound is in fact a combination of two simpler
outer bounds as we describe later in this section. Each outer
bound can be tight in specific cases of less noisy DM-CIC,
as it will be shown later.

The following provides an outer bound on the capacity of
the DM-CIC.

Theorem 1. The union of rate pairs(R1, R2) such that

R1 ≤ I(U ;Y1), (3)

R2 ≤ I(V ;Y2), (4)

R1 +R2 ≤ I(X2;Y2|U) + I(U ;Y1), (5)

R1 +R2 ≤ I(X1;Y1|V ) + I(V ;Y2), (6)

for some joint distributionp(u, v, x1, x2) gives an outer
bound on the capacity region of the DM-CIC.



Proof. The proof of the second and last inequalities follows
the same line of argument as in the outer bound of the more
capable DM-CIC [10, Theorem 2], or similarly the converse
of the more capable BC [17]. The other two inequalities, by
symmetry, follow the same line of proof. The essence of the
proof in (5) and (6) is to use the Csiszar sum identity and
the auxiliary random variablesUi = (M1, Y

i−1
2 , Y n

1,i+1) and
Vi = (M2, Y

i−1
1 , Y n

2,i+1). The choice ofUi, Vi indicates that
they are correlated; hence, the outer bound is over the joint
distributionp(u, v)p(x1, x2|u, v)p(y1, y2|x1, x2).

The symmetry of the outer bound indicates how it consists
of two simpler outer bounds. One including (3) and (5),
and the other including (4) and (6). Each outer bound is
resembling the capacity of less noisy DM-BC [18].

B. New Achievable Rate Regions

We next provide two achievable rate regions for the DM-
CIC. The first achievable region uses superposition encoding
at the cognitive transmitter whereas the second one encodes
independently. The decoding is based on the joint typicality
in both cases.

Theorem 2. The union of rate regions given by

R1 ≤ I(W,X1;Y1),

R2 ≤ I(X2;Y2|W,X1),

R1 +R2 ≤ I(X1, X2;Y2),

(7)

is achievable for the DM-CIC, where the union is over all
probability distributionsp(w, x1, x2).

Proof. The proof of Theorem 2 uses the superposition coding
idea in whichY1 can only decodeM1 while Y2 is intended
to decode bothM1 and M2. Considering the space of all
codewords, one can view the(W,X1) ascloud centers, and
theX2 assatellites[19]. For completeness, the details of the
proof are provided in Section VI-A.

In light of the above discussion, we expect the encoding
scheme in Theorem 2 be more favorable when the second
receiver is in a better situation than the first one, because it
can decode both cloud centers and satellites. If the channel
condition is the reverse, i.e., the first receiver has a better
situation than the second receiver, it makes sense to reverse
the order of encoding. However, at the first transmitter, we
cannot do superposition encoding against the codeword of
the secondary transmitter because the first transmitter does
not know the massage of the cognitive user. As a result, the
input distribution needs to be independent as proposed in the
following theorem.

Theorem 3. The union of rate regions given by

R1 ≤ I(X1;Y1|W,X2),

R2 ≤ I(W,X2;Y2),

R1 +R2 ≤ I(X1, X2;Y1),

(8)

is achievable for the DM-CIC, where the union is over
all probability distributions p(w, x1, x2) that factors as
p(w, x2)p(x1).

Proof. The proof of Theorem 3 uses independent encoding
of X1 and(W,X2); however,Y1 is intended to decode both
messages whereasY2 can only decodeM2. The proof of
Theorem 3 follows a similar footsteps as Theorem 2, but the
input distributions are different. The details of the proofcan
be found in Section VI-B.

IV. T HE CAPACITY OF LESSNOISY DM-CIC

In this section, we simplify the inner bounds in Theorem 2
and Theorem 3, respectively for the cognitive-less-noisy and
primary-less-noisy DM-CIC defined in (1) and (2). Then,
by comparing the fist inner bound with the outer bound in
Theorem 1, we establish capacity region for the cognitive-
less-noisy DM-CIC.

A. The Cognitive-less-noisy DM-CIC

Theorem 4. For the cognitive-less-noisy DM-CIC, the ca-
pacity region is given by the set of all rate pairs(R1, R2)
such that

R1 ≤ I(U ;Y1), (9)

R2 ≤ I(X2;Y2|U), (10)

for somep(u, x2).

Proof. Consider the achievable region in Theorem 2 and
define U = (W,X1). From (2) we know that, for the
cognitive-less-noisy DM-CIC,I(U ;Y1) ≤ I(U ;Y2). Then, it
can be simply verified that, the third inequality in Theorem 2
becomes redundant for this channel. Thus, the achievability
of the rate region in Theorem 4 immediately follows. To
prove the converse, we consider inequalities (3) and (5) from
the outer bound in Theorem 1, which are

R1 ≤ I(U ;Y1),

R1 +R2 ≤ I(X2;Y2|U) + I(U ;Y1).
(11)

Clearly, these two inequalities make an outer bound on
the capacity of any DM-CIC for some joint distributions
p(u, x1, x2)p(y1, y2|x1, x2). An alternative representation of
this outer bound is given by [18], [17],

R1 ≤ I(U ;Y1),

R2 ≤ I(X2;Y2|U),
(12)

which is equal to the achievable region given in Theorem 4.
Hence, the rate region in Theorem 4 is the capacity of the
cognitive-less-noisy DM-CIC. Note that the regions charac-
terized by (11) and (12) are not necessarily equal for fixed
U,X1; however, their convex hull over allp(u, x1) becomes
the same.

We further observe that the auxiliary random variableU
in the capacity region, can be replaced by(W,X1), which
results in the following corollary.

Corollary 1. The capacity region of the cognitive-less-noisy
DM-CIC can be expressed as

R1 ≤ I(W,X1;Y1),

R2 ≤ I(X2;Y2|W,X1),
(13)



for somep(w, x1, x2).

Proof. The achievability of this region is obvious from
Theorem 2 and the condition in (2). To prove the converse,
we use the last two constraints of the outer bound in [3,
Theorem 3.2], which are (note the reversal of indices),

R1 ≤ I(W,X1;Y1),

R1 +R2 ≤ I(X2;Y2|W,X1) + I(W,X1;Y1),
(14)

for some p(w, x1, x2). However, with a similar argument
used in the proof of Theorem 4, the outer bound in (14) can
be alternatively represented as the constraints in (13).

The capacity-achieving technique in Theorem 4 is the
well-known superposition coding, similar to that in the less
noisy BC [18]. Superposition coding has been proved to be
optimal encoding in several other cases, both for the DM-
CIC (see Table I) and the GCZIC [10].

B. The Primary-less-noisy DM-CIC

One may expect a similar result for the primary-less-noisy
DM-CIC, by applying the corresponding condition in (1) to
the rate region in Theorem 3. However, since Theorem 3
holds only for independentx1 andx2, capacity region cannot
be established in general. Instead, we can write

Corollary 2. The union of all rate pairs(R1, R2) satisfying

R1 ≤ I(X1;Y1|V ), (15)

R2 ≤ I(V ;Y2), (16)

over all probability distributionsp(v, x1, x2, y1, y2) that
factors asp(v)p(x2)p(y1, y2|x1, x2) is achievable for the
primary-less-noisy DM-CIC.

Proof. By symmetry, the proof of this theorem follows the
same line of argument as the proof of Theorem 4. To
prove the achievability, defineV = (W,X2) and apply
the condition of the primary-less-noisy DM-CIC in (1) to
Theorem 3; this makes the third inequality of Theorem 3
redundant and completes the proof of the achievability.

Note that, from (4) and (6) a outer bound that resembles
the rate region in Corollary 2 can be built, but this outer
bound is overp(v, x2) which is, in general, larger than the
inner bound in Corollary 2. Nevertheless, in the following
section we discuss that this region can result in capacity
region for a particular channel.

V. COMPARISON AND DISCUSSION

In this section we compare the capacity region obtained
in Theorem 4 with the existing capacity results for the DM-
CIC. Table I summarizes the capacity results for the DM-CIC
in the chronological order.

We show that the capacity of the cognitive-less-noisy DM-
CIC is a subset of the capacity region derived in [3], which
is labeled asC2 in Table I. To this end, we first show that
the condition (2) of the cognitive-less-noisy implies both
conditions required forC2. First, sinceI(U ;Y1) ≤ I(U ;Y2)
holds for anyp(u, x1, x2), it will result in I(X1;Y1) ≤

I(X1;Y2) for U = X1. The other condition is also achieved
by the following lemma.

Lemma 1. If I(U ;Y1) ≤ I(U ;Y2) holds for all joint
distributionsp(u, x1, x2), thenI(U ;Y1|X1) ≤ I(U ;Y2|X1)
for all p(u, x1, x2).

Proof. See Appendix VI-C.

Thus, the condition required forC4 is more demanding
than that ofC2. In other words, if the cognitive receiver,
in a DM-CIC, is less noisy than the primary one, the DM-
CIC will satisfy the “weak interference” conditions. Further,
we observe that, forU = (U,X1) the capacity regions
C4 becomes the same asC2. This is also evident from
Corollary 1.

It is also worth mentioning that, forU = X1, with further
assumption thatI(X2;Y2|X1) ≤ I(X2;Y1|X1), C4 becomes
equivalent toC1. This indicates that we can use superposition
coding to achieve the capacity of the DM-CIC in the “strong
interference” regime. Note that, the capacity region in the
“strong interference” (C1 in Table I), can be reexpressed as

R1 ≤ I(X1;Y1), (17)

R2 ≤ I(X2;Y2|X1). (18)

In this setting,X1 andX2, respectively, can be viewed as
cloud centers and satellites of superposition coding. Origi-
nally, the achievability ofC1 is proved by using the capacity
of compound multiple accesses channels [5] which is based
on transmitting private and common messages.

It should be highlighted that, the technique used to achieve
C3 is also effectively superposition coding although it is
derived (simplified) from a scheme that uses rate-splitting,
binning, and superposition coding collectively. This can be
verified by looking at the simplified encoding in the proof
of the achievability in [7]. Therefore, we can see that all
capacity results in Table I (C1 − C4) can be achieved using
superposition coding.1

Finally, consider the primary-less-noisy DM-CIC. The
condition required for this channel is rather different from
that in all other cases that we know the capacity region, and
listed in Table I. To appreciate this, from Table I, one can
see that in all those cases (C1 − C4) the cognitive receiver
has, in some sense, more information than the primary
one. Nevertheless, in a primary-less-noisy DM-CIC, the
primary receiver is assumed to have more information than
the cognitive receiver, as (1) implies. This condition could
particularly arise in the cognitive Z-interference channel in
which the link from the primary user to the cognitive receiver
is absent. For example, one can verify that the capacity result
for the GCZIC at very strong interference [10, Corollary 4]
is the counterpart of Corollary 2, for Gaussian inputs. This
is also shown independently in [11, Theorem V.2].

1We should emphasis thatC3 is just a different representation ofC2; this
is because the conditions required for these two capacity regions are equal.
This is proved in [21].



TABLE I

SUMMARY OF THE CAPACITY RESULTS FOR THE DISCRETE MEMORYLESS COGNITIVE INTERFERENCE CHANNEL

Label Condition Capacity region Encoding Reference

C1 I(X1,X2;Y1) ≤ I(X1,X2;Y2) R1 + R2 ≤ I(X1, X2; Y1) superposition coding [4]

I(X2;Y2|X1) ≤ I(X2;Y1|X1) R2 ≤ I(X2; Y2|X1)

C2 I(X1;Y1) ≤ I(X1;Y2) R1 ≤ I(U,X1;Y1) superposition coding [3]

I(U ;Y1|X1) ≤ I(U ; Y2|X1) R2 ≤ I(X2;Y2|U,X1)

R1 ≤ I(U,X1;Y1) rate-splitting,*

C3 I(U,X1;Y1) ≤ I(U,X1; Y2) R2 ≤ I(X2; Y2|X1) binning, and [7]

R1 + R2 ≤ I(U,X1;Y1) + I(X2; Y2|U,X1) superposition coding

C4 I(U ;Y1) ≤ I(U ; Y2) R1 ≤ I(U ; Y1) superposition coding Theorem 4

(cognitive-less-noisy DM-CIC) R2 ≤ I(X2; Y2|U)

* It should be emphasized that the technique used to achieveC3 effectively is superposition coding, although it is derived (simplified) from a scheme
that uses rate-splitting, binning, and superposition coding. In fact,C3 is only a different representationC2, as shown in [21]

VI. A PPENDIX

A. Proof of Theorem 2

Proof. We prove this theorem by showing the code construc-
tion, encoding, decoding, and error analysis.

1) Code construction: Fix p(w, x1) and p(x2|w, x1).
Randomly and independently generate2nR1 sequences
(wn(m1), x

n
1 (m1)), m1 ∈ [1 : 2nR1 ] i.i.d. according

to
∏n

i=1 pWX1
(wi, x1i). Next, for each sequence

(wn(m1), x
n
1 (m1)), randomly and conditionally

independently generate2nR2 sequences xn
2 (m1,m2),

m2 ∈ [1 : 2nR2 ], with i.i.d. elements according to∏n

i=1 pX2|WX1
(x2i|wi(m1)x1i(m1)).

2) Encoding: To send messages(m1,m2), the primary
transmitter sends the codewordxn

1 (m1) whereas the sec-
ondary transmitter sends the codewordxn

2 (m1,m2).
3) Decoding: We usejoint typicality for decoding. The

cognitive receiver (Y2) can decode both messages whereas
the other receiver can only decode one of them, namelym1.
Decoder 1 declares that messagem̂1 is sent if it is the unique
message such that(wn(m̂1), x

n
1 (m̂1), y

n
1 ) ∈ T

(n)
ǫ . Likewise,

decoder 2 declares that messageˆ̂m2 is sent if it is the unique
message such that(wn(m1), x

n
1 (m1), x

n
2 (m1, ˆ̂m2), y

n
2 ) ∈

T
(n)
ǫ , for somem1. In other cases, as analyzed below, the

decoders declare error.
4) Error Analysis: Without loss of generality, we assume

that (M1,M2) = (1, 1) is sent in order to analyze the
probability of error. To evaluate the average probability of
error for decoder 1, we define the following error events

E11 = (Wn(1), Xn
1 (1), Y

n
1 ) /∈ T (n)

ǫ ,

E12 = (Wn(m1), X
n
1 (m1), Y

n
1 ) ∈ T (n)

ǫ for m1 6= 1.

Then, by using union bound, the probability of error for
decoder 1 is upper bounded by

P (E1) = P (E11 ∪ E12) ≤ P (E11) + P (E12). (19)

But, P (E11) → 0 asn → ∞, by the law of large numbers
(LLN). Moreover, since form1 6= 1, (Wn(m1), X

n
1 (m1)) is

independent of(Wn(1), Xn
1 (1), Y

n
1 ), by thepacking lemma

[18], P (E12) → 0 asn → ∞ if R1 ≤ I(W,X1;Y1)− δ(ǫ).

To evaluate the average probability of error for decoder 2,
we define the following error events

E21 =(Wn(1), Xn
1 (1), X

n
2 (1, 1), Y

n
2 ) /∈ T (n)

ǫ ,

E22 =(Wn(1), Xn
1 (1), X

n
2 (1,m2), Y

n
2 ) ∈ T (n)

ǫ

for somem2 6= 1,

E23 =(Wn(m1), X
n
1 (m1), X

n
2 (m1,m2), Y

n
2 ) ∈ T (n)

ǫ

for somem1 6= 1,m2 6= 1.

Using union bound, the probability of error for decoder 1 is
bounded as

P (E2) = P (E21 ∪ E22 ∪ E23)

≤ P (E21) + P (E22) + P (E23). (20)

Now, we evaluate the terms in the right-hand side (RHS) of
this inequality whenn → ∞. First, by the LLNP (E21) →
0 asn → ∞. Then, form2 6= 1, Xn

2 (1,m2) is conditionally
independent ofY n

2 given (Wn(1), Xn
1 (1)). Thus, by the

packing lemmaP (E22) → 0 asn → ∞ givenR2 ≤
I(X2;Y2|W,X1) − δ(ǫ). Finally considerE23; for m1 6= 1
and m2 6= 1, (Wn(m1), X

n
1 (m1), X

n
2 (m1,m2)) is inde-

pendent ofY n
2 . Again, by the packing lemmaP (E23) →

0 asn → ∞ if R1 + R2 ≤ I(W,X1, X2;Y2) − δ(ǫ) =
I(X1, X2;Y2) − δ(ǫ); the equality follows sinceW →
X1, X2 → Y2 forms a Markov chain. The proof of achiev-
ability is completed by the above analysis. That is, if (7) is
satisfied, both receivers can decode corresponding messages
with the total probability of error tending to zero. Therefore,
there exists a sequence of good codes for which error
probability goes to 0.

B. Proof of Theorem 3

Proof. We prove this theorem by showing the code construc-
tion, encoding, decoding, and error analysis.

1) Code construction:Fix p(x1) andp(w, x2). Randomly
and independently generate2nR1 sequencesxn

1 (m1), m1 ∈
[1 : 2nR1 ] i.i.d. according to

∏n

i=1 pX1
x1i. Also, for each

x1, randomly and independently generate2nR2 sequences
wn(m1,m2)x

n
2 (m1,m2), m2 ∈ [1 : 2nR2 ], with i.i.d.

elements according to
∏n

i=1 pWX2
wi(m1,m2)x2i(m1,m2).



2) Encoding: To send messages(m1,m2), the primary
and cognitive transmitters, respectively, send the codewords
xn
1 (m1) andxn

2 (m1,m2).
3) Decoding:We usejoint typicality for decoding, where

the primary receiver can decode both messages whereas
the cognitive receiver can only decodem2. Decoder 2
declares that messagêm2 is sent if it is the unique mes-
sage such that(wn(m1, m̂2), x

n
2 (m1, m̂2), y

n
2 ) ∈ T

(n)
ǫ ,

for some m1. Similarly, decoder 1 declares that mes-
sage ˆ̂m1 is sent if it is the unique message such that
(wn( ˆ̂m1,m2), x

n
2 (

ˆ̂m1,m2), x
n
1 (

ˆ̂m1), y
n
2 ) ∈ T

(n)
ǫ . In other

cases, the decoders declare error.
4) Error Analysis: Error analysis is very similar to that

of Theorem 2 and is omitted here.

C. Proof of Lemma 1

Proof. The Lemma is similar to [5, Lemma 5]. We can write

I(U ;Y1|X1) =
∑

x1

p(x1)I(U ;Y1|X1 = x1)

≤
∑

x1

p(x1)I(U ;Y2|X1 = x1)

= I(U ;Y2|X1) (21)

the inequality follows becauseI(U ;Y1) ≤ I(U ;Y2) holds
for all joint distributionsp(u, x1, x2).
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