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Abstract— Fundamental limits of the cognitive interference
channel(CIC) with two pairs of transmitter-receiver have been
under exploration for several years. In this paper, we study
the discrete memoryless cognitive interference channel (-
CIC) in which the cognitive transmitter non-causally knows
the full message of the primary transmitter. The capacity of
this channel is not known in general; it is only known in some
special cases. Inspired by the concept of less noisy broadta
channel (BC), in this work we introduce the notion of less
noisy cognitive interference channel. Unlike BC, due to the

While at low interference dirty paper coding [13] is capgcit
achieving scheme, at high interference superposition cod-
ing is the optimal technique. For the discrete memoryless
channel, capacity is known for “strong interference” [4],
“weak interference” [3], and “better cognitive decodind] [
regimes. Effectively, superposition coding is the capacit
achieving technique in all above cases although severat oth
techniques, including rate-splitting, simultaneous nggdand

Gel'fand-Pinsker coding (binning) are used to find achiévab

inherent asymmetry of the cognitive channel, two differentless .
rate regions.

noisy channels are distinguishable; these are named thpgimary-
less-noisyand cognitive-less-noisghannels. We derive capacity
region for the latter case by introducing inner and outer bounds
on the capacity of the DM-CIC and showing that these bounds
coincide for the cognitive-less-noisy channel. Having eslished
the capacity region, we prove that superposition coding ishte
optimal encoding technique.

In this paper, we consider thdiscrete memorylessog-
nitive interference channel (DM-CIC). We first introduce
the notion ofless noisyDM-CIC and show that there are
two different less noisy cognitive channels: thdmary-less-
noisy and cognitive-less-noisfpM-CIC. In the former, the
primary receiver is less noisy than the secondary receiver,
whereas it is the opposite in the latter.

A two-user interference channel (IC) is a network consist- ; d . bounds for th .
ing of two transmitter-receiver pairs, communicating over Afterward, we propose two inner bounds for the DM-CIC;

the same channel, and thus interfering each other. In pertdin€ based on superposition coding, and another one using
communication scenarios, e.g., cognitive radio, one titas independent coding. Obviously, these inner bounds are also
ter (the cognitive transmitter) is able to sense the enviremt V@i (l;or_ less noisy B:\A}GCA in fact, OTe of these inner
and obtain side information about the incumbent transmitt@Oun s is more suitable for the primary-less-noisy DM-CIC

(the primary transmitter). Such a communication Channgyhereas the other one is better for the cognitive-less;_/nois
is called interference channel with cognition or simply th M-CIC. We also prove an outer bound on the capacity of

cognitive channelMotivated by cognitive radio’s promise thiS channel.
for increasing the spectral efficiency in wireless systetmes, Finally, we show that for the cognitive-less-noisy DM-

St”dY _Of ir_1terfere_nce chan_nel With cognitive users has be@fic the inner and outer bounds coincide, and therefore we
receving Increasing attention dun_ng the past years. establish the capacity region for this class of DM-CIC. This

. Fundamental Il_n_nts of the cognitive interference Channebroves that superposition coding is the capacity-achigvin
in which the cognitive transmitter non-causally knowsﬂmt scheme in the less noisy DM-CIC, as it is in the less noisy
full message of the the primary user, ha§ been studied in [1¢ Although for the primary-less-noisy DM-CIC capacity
[12]. This channel was first introduced in [1] where the auzemains unknown, corresponding inner bound simplifies to
thors obtained achievable rates by applying Gel'fand#&ins 5, achievable region that has already been proved to be

coding [15] to the celebrated Han-Kobayashi encoding H‘Hapacity-achieving in the special case of GCZIC [8], [10].
for the IC. The capacity of this channel remains unknown in

general; however, it is known in several special cases, bothThis paper is organized as follows. In Sectioh I, we
in the discrete memoryless and Gaussian channels. introduce the system model and define the less noisy DM-

Capacity of the Gaussian cognitive interference chann€lC. In Sectiori ll, we propose an outer bound and two inner
(GCIC) is known at low interference [2] and [3], as wellbounds for the DM-CIC. Then, in Sectign]lV, we show that
as strong interference [4]. Besides, capacity of Gaussiame of the inner bounds is tight for the cognitive-less-nois
cognitive Z-interference channel (GCZIC) in which thechannel, and thus provides capacity for this class of the DM-
primary receiver is interfered by the cognitive transmitteCIC. New capacity result is compared with the existing ones
is known for several ranges of interference gain [8]-[11]in Section V.

I. INTRODUCTION
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In [8], [10], the authors extended this notion to the DM-

. . . CIC, and studied the case where the primary receiver is more
My Encoder 1 Xi B b Decoder 1M1, capable than the secondary rgceiver. This led to the cgpacit
= of the GCZIC at very strong interference. In what follows,
= we introduce the notion of less noisy cognitive interfeeenc
n S n - channel, and show that two different less noisy DM-CIC
]\/[2 X2 5 )/2 ]\12 . . . . .. "
—— Encoder 2 = Decoder 2——— arises, depending on which receiver is in a better condition
These are formally defined in the following.
Definition 1. The DM-CIC is said to bgrimary-less-noisy
if
Fig. 1. The discrete memoryless cognitive interferencenchi (DM- I(U;Yl) > I(U;YQ) (1)

CIC) with two transmitters and two receiverdf,, My are two messages,
X1, X, are inputsYi, Yz are outputs, angd(y1, y2|z1, z2) is the transition for all p(u T 172)
probability of channel. e ’

Definition 2. The DM-CIC is said to beognitive-less-noisy
if

Il. PROBLEM SETUP AND DEFINITIONS I(U;Ys) > 1(U; Y1) 3

The two-user discrete memoryless cognitive interferencéor all p(u, z1, z2).

channel (DM-CIC) is an interference channel [16] tha

consists of two transmitter-receiver pairs, in which on(l:to'iss Clti:\;tthha; cI:rc]) tzﬁi\tgitegzizrtwhgrrgzgriyn :ﬁgeé\;ro: dk(e:zze
transmitter (the cognitive user) knows the message of t y g

other transmitter (the primary one), in addition to its ow Re cognitive receiver is less noisy than the primary remeiv

message. In what follows, we formally define this channe herefore, given the cr_lz_;mnel cond_ltlon,_a DM-CIC can be
and a special class of that. primary-less-noisy cognitive-less-noisyneither of them or

both.
A. Discrete Memoryless Cognitive Interference Channel I I NNER AND OUTER BOUNDS FOR THEDM-CIC

The discrete memoryless cognitive interference channel In this section. we first introduce an outer bound on the

(DM.CIC) is depicted in F|gur§]1. LeMl. and M? b_e capacity of the DM-CIC; we then derive two achievable
two independent messages which are uniformly distribute : . ' . o

. rate regions for this channel. The first achievable region is
on the set of all messages for the first and second use

respectively. Transmittef,i € {1,2}, wishes to transmit E)a(sed_on super_poanon codlqg techm_que:, itis |nsp|red_1byt
oo capacity-achieving superposition coding in the less naigy
messageM; to receiveri, in n channel use at ratd;. . .
. : . . more capable DM-BC, or the inner bound introduced for the

MessageMs is available only at transmitter 2, while both . .

- . . ; more capable DM-CIC in [10]. The idea of outer bound also
transmitters know);. This channel is defined by a tuple comes from the capacity of the less noisy DM-BC. However
(leXQ;p(y17y2|IlaI2);y17y2) WhereleXQ and ylayQ '

are input and output alphabets, an@:, yo|z1, 72) is chan- we combine two different bounds to find a unified one.
nel transition probability density functions. A. A Unified Outer Bound

The (,:’apaci‘ty of the DM-CIC 'S known |n 'strong in.t(_er- Inspired by capacity of less noisy BC [18], and definitions
ference ,[,4]’ weak interference” [3], and "better cogméi ) and [2) for less noisy cognitive interference channets,
decoding” [7] regimes. These capacity results are listed iasent a simple outer bound on the capacity of the DM-CIC.
Tablel], and labeled:, C;, andC;, respectively. In the first ;s outer bound is in fact a combination of two simpler
case, both receivers can decode both messages. In all abgygsr hounds as we describe later in this section. Each outer
cases, the cognitive receiver has a better condition (MOKR ;nd can be tight in specific cases of less noisy DM-CIC,
information) than the primary one, in some sense, as it 5‘3 it will be shown later.
evident from corresponding conditions in Table I. The following provides an outer bound on the capacity of
B. Less Noisy DM-CIC the DM-CIC.

Since the second transmitter has complete and non-cau$hieorem 1. The union of rate pair§R;, R2) such that
knowledge of both messages, it can act like a BC transmitter.

Particularly, in the absence of the first transmitter thisrotel By < I(U; 1), )
becomes the well-known DM-BC [20]. In the presence of Ry < I(V;Ya), (4)
that, this channel is no longer a BC; however, one can Ry + Ry < I(X2;Y2|U) + I(U; Y1), (5)
define conditions, similar to that in the BC, showing that one Ri+ Ry < I(X;VA|V) + I(V; Ya), (6)

receiver is in a “better” condition than the other to decode

the messages, e.g., one receiveess noisyor more capable for some joint distributionp(u, v, z1,z2) gives an outer
than the other [18], [17]. bound on the capacity region of the DM-CIC.



Proof. The proof of the second and last inequalities follows?roof. The proof of Theorenil3 uses independent encoding

the same line of argument as in the outer bound of the mooé X; and (I, X»); however,Y; is intended to decode both

capable DM-CIC [10, Theorem 2], or similarly the conversenessages wherea$ can only decodell,. The proof of

of the more capable BC [17]. The other two inequalities, bifrheoreni B follows a similar footsteps as Theofédm 2, but the

symmetry, follow the same line of proof. The essence of thieput distributions are different. The details of the preah

proof in (8) and[(B) is to use the Csiszar sum identity antle found in Sectiof VI-B. O

the auxiliary random variables; = (M, Y, ™', Y, ,,) and )

Vi = (M2, Y71, Y3, ,). The choice oU;, V; indicates that l_v' TH? CAPACI_TY O_F LES_SNOISY DM C_:IC

they are correlated; hence, the outer bound is over the joint! this section, we simplify the inner bounds in Theoiem 2

distributionp(u, v)p(x1, 22|, v)p(y1, ya|z1, T2). 0 ar!d Theorerﬁ]S,. respectively for.the c_ogmtlve-less-nomy a

primary-less-noisy DM-CIC defined iriJ(1) anfl (2). Then,

The symmetry of the outer bound indicates how it consistsy comparing the fist inner bound with the outer bound in

of two simpler outer bounds. One includingl (3) ahd (5)Theoren(]L, we establish capacity region for the cognitive-
and the other including’[4) andl(6). Each outer bound igss-noisy DM-CIC.

resembling the capacity of less noisy DM-BC [18]. - ]
A. The Cognitive-less-noisy DM-CIC
Theorem 4. For the cognitive-less-noisy DM-CIC, the ca-

We next provide two achievable rate regions for the DMpacity region is given by the set of all rate paif®:, R,)
CIC. The first achievable region uses superposition engodigch that

at the cognitive transmitter whereas the second one encodes

B. New Achievable Rate Regions

independently. The decoding is based on the joint typicalit Ry < I(U; 1), 9)
in both cases. Ry < I(X9;Y5|U), (10)
Theorem 2. The union of rate regions given by for somep(u, 2).
Ry < I(W, X1; Y1), Proof. Consider the achievable region in TheorEin 2 and
Ry < I(X2; Ya|W, X)), 7) defineU = (W, X;). From [2) we know that, for the

. cognitive-less-noisy DM-CICI (U; Y1) < I(U;Y2). Then, it

Ri+4+ Ro < I(X71, X903 Y5 . i e L

_ _ 1 Ry S T(X, X V), o can be simply verified that, the third inequality in Theofdm 2
is achievable for the DM-CIC, where the union is over allpecomes redundant for this channel. Thus, the achievabilit
probability distributionsp(w, 1, z2). of the rate region in Theoref 4 immediately follows. To

Proof. The proof of Theorerfll2 uses the superposition coding©ve the converse, we consider inequalitiés (3) &hd (3 fro
idea in whichY; can only decodé/; while Y is intended h€ outer bound in Theorem 1, which are
to decode bothM/; and M,. Considering the space of all R, <I(U; Y1),

codewords, one can view th{&V, X;) ascloud centersand Ri + Rs < I(Xa; Ya|U) + I(U; Y2). (11)
the X, assatellites[19]. For completeness, the details of the N -
proof are provided in Sectidi VIA.  Clearly, these two inequalities make an outer bound on

the capacity of any DM-CIC for some joint distributions

In light of the above discussion, we expect the encoding(u, x1,22)p(y1, y2| 21, T2). An alternative representation of
scheme in Theorem] 2 be more favorable when the secofls outer bound is given by [18], [17],

receiver is in a better situation than the first one, because i R < LUV
can decode both cloud centers and satellites. If the channel 1< I(Ush),
condition is the reverse, i.e., the first receiver has a bette Ry < I(X2; Y2|U),

situation than the second receiver, it makes sense to EeVe{ghich is equal to the achievable region given in Theorém 4.
the order of encoding. However, at the first transmitter, Weience, the rate region in Theordm 4 is the capacity of the
cannot do superposition encoding against the codeword ghgnitive-less-noisy DM-CIC. Note that the regions charac

the secondary transmitter because the first transmittes dagrized by [Tll) and{12) are not necessarily equal for fixed

not know the massage of the cognitive user. As a result, the x,: however, their convex hull over afi(u, z;) becomes
input distribution needs to be independent as proposecin tthe same.

(12)

following theorem. 0O
Theorem 3. The union of rate regions given by We further observe that the auxiliary random variable
Ry < I(X1:Y1|W, X3), in the capacity region, can be replaced B, X ), which
Ry < I(W, Xa: Y3) ®) results in the following corollary.
Ri+ Ry < I(X1, X0 1), Corollary 1. The capacity region of the cognitive-less-noisy

DM-CIC can be expressed as
is achievable for the DM-CIC, where the union is over P

all probability distributions p(w, z1, ) that factors as Ry < I(W, X1; Y1), (13)
p(waxQ)p(xl)' R2 SI(X27}/2|VV7X1)7



for somep(w, x1, x2). I1(X;;Y3) for U = X;. The other condition is also achieved

Proof. The achievability of this region is obvious from by the following lemma.

Theoren{2 and the condition ial(2). To prove the conversgemma 1. If I(U;Y;) < I(U;Y:) holds for all joint

we use the last two constraints of the outer bound in [3istributionsp(u, z1,z2), then I(U; Y1|X1) < I(U; Y2|X1)
Theorem 3.2], which are (note the reversal of indices),  for all p(u,z1,2).

Ry < I(W, X1; Y1), (14) Proof. See AppendiX VI-C. O
Ry + Ry < I(X2; Yo |W, Xu) + I(W, X1; Y1),
Thus, the condition required faf, is more demanding

for some p(w, z1,x2). However, with a similar argument ) i .
used in the proof of Theoref 4. the outer bound (14) Catrr]1an that ofC2. In other words, if the cognitive receiver,

g . in a DM-CIC, is less noisy than the primary one, the DM-
be alternatively represented as the constraints in (13].] CIC will satisfy the “weak }i/nterferencep" concxi/itions. Fueth

The capacity-achieving technique in Theoréin 4 is theve observe that, fol/ = (U, X;) the capacity regions
well-known superposition coding, similar to that in thesesC, becomes the same &%. This is also evident from
noisy BC [18]. Superposition coding has been proved to b@orollary[d.
optimal encoding in several other cases, both for the DM- It is also worth mentioning that, fd¥ = X, with further
CIC (see Tabléll) and the GCZIC [10]. assumption thaf (X2; 2| X1) < I(X2;Y1]|X4), C4 becomes
. . equivalent taC; . This indicates that we can use superposition
B. The Primary-less-noisy DM-CIC coding to achieve the capacity of the DM-CIC in the “strong

One may expect a similar result for the primary-less-noisyterference” regime. Note that, the capacity region in the

DM-CIC, by applying the corresponding condition [d (1) to“strong interference”, in Table[), can be reexpressed as
the rate region in Theorei 3. However, since Theokém 3

holds only for independent; andxs, capacity region cannot Ry <I(X1; Y1), a7)
be established in general. Instead, we can write Ry < I(X2; 2| X1). (18)

Corollary 2. The union of all rate pair§R1, R2) satisfying ) ) ) )
In this setting,X; and X5, respectively, can be viewed as

Ry < I(Xy;11|V), (15) cloud centers and satellites of superposition coding. iOrig
Ry < I(V:Ya), (16) nally, the achievability of’; is proved by using the capacity
of compound multiple accesses channels [5] which is based
over all probability distributionsp(v, x1,2,y1,y2) that  on transmitting private and common messages.
factors asp(v)p(x2)p(y1, y2l1,22) is achievable for the ¢ should be highlighted that, the technique used to achieve
primary-less-noisy DM-CIC. Cs is also effectively superposition coding although it is

Proof. By symmetry, the proof of this theorem follows thederived (simplified) from a scheme that uses rate-splitting
same line of argument as the proof of TheorBi 4. THiNNing, and superposition coding collectively. This can b
prove the achievability, defind = (W, X,) and apply Verified by looking at the simplified encoding in the proof
the condition of the primary-less-noisy DM-CIC iRl (1) to©f the achievability in [7]. Therefore, we can see that all
Theorem[B; this makes the third inequality of Theorgim apacity results in Tablé IC{ — C4) can be achieved using
redundant and completes the proof of the achievabiligi Superposition coding.
Finally, consider the primary-less-noisy DM-CIC. The
Note that, from[(#) and_{6) a outer bound that resembles,ngition required for this channel is rather differentrfro
the rate region in Corollary]2 can be built, but this outef,a¢ i a|| other cases that we know the capacity region, and
bound is overp(v, z2) which is, in general, larger than the jisteq in Tablelll. To appreciate this, from Talile I, one can
inner bound in CoroIIar[]Z.. Neve_rtheless, in the. foIIowmgSee that in all those case€, (— C) the cognitive receiver
section we dlscyss that this region can result in capacifyas in some sense, more information than the primary
region for a particular channel. one. Nevertheless, in a primary-less-noisy DM-CIC, the
V. COMPARISON AND DISCUSSION primary receiver is assumed to have more information than

. . . . . the cognitive receiver, a§](1) implies. This condition ebul
In this section we compare the capacity region obtalneﬁl 9 §1(1) imp

. . o ) articularly arise in the cognitive Z-interference chanine
in Theoren# with the existing capacity results for the DM~ y g

. . hich the link from the primary user to the cognitive receive
.CIC' Table | summarizes the capacity results for the DM'CI% absent. For example, one can verify that the capacitjtresu
in the chronological order.

We show that the capacity of the cognitive-less-noisy DMfor the GCZIC at very strong interference [10, Corollary 4]
; : : oAl s th t t of Corollafyi 2, for G ian inputs. Thi
CIC is a subset of the capacity region derived in [3], Whlcr|1S e counterpart of Corollaiyl 2, for Gaussian inputs S

is labeled ag’, in Table[]. To this end, we first show that 's also shown independently in [11, Theorem V.2].

the condition of the cognitive-less-noisy implies both
[DZ) 9 y P 1we should emphasis théy is just a different representation 6%; this

conditions reqUired fo€s. F!rSt' _SinceI(Uf Yl) < I(U; Y?) is because the conditions required for these two capadifipne are equal.
holds for anyp(u,x1,22), it will result in I(X;;Y;) <  Thisis proved in [21].



TABLE |
SUMMARY OF THE CAPACITY RESULTS FOR THE DISCRETE MEMORYLESS@GNITIVE INTERFERENCE CHANNEL

| Label | Condition | Capacity region Encoding | Reference |
C1 I(X1,X2; Y1) < I(X1,X2;Y2) Ri+ Ra < I(X1, X2; Y1) superposition coding| [4]
I(X2; Y| X1) < I(Xo2;Y1|X1) Ry < I(X2;Y2|X1)
Co I(X1;71) < I(X1;Y2) Ry <I(U,X1;Y1) superposition coding [3]
I(UsY1]X1) < I(U; Y2|X4) Ro < I(X2; Y2|U, X1)
Ry < I(U, X1; Y1) rate-splitting],
Cs I(U, X1;Y1) < I(U, X1; Y2) Ry < I(X2;Y2|X1) binning, and [7]
Ri1+ Ro < I(U,X1;Y1) + I(X2;Y2|U, X1) | superposition coding
Cy I(U; Y1) < I(U; Ya) R1 < I(U;Y7) superposition coding Theoreni#
(cognitive-less-noisy DM-CIC Ry < I(X2;Y2|U)

* It should be emphasized that the technique used to acliigweffectively is superposition coding, although it is dedysimplified) from a scheme
that uses rate-splitting, binning, and superposition mgdin fact,Cs is only a different representatiafy,, as shown in [21]

VI. APPENDIX To evaluate the average probability of error for decoder 2,
A. Proof of Theorerf]2 we define the following error events
Proof. We prove this theorem by showing the code construc- Ea; =(W™(1), X7(1), X3(1,1),Y5") ¢ T,
tion, encoding, decoding, and error analysis. Boy =(W™(1), XT(1), X3(1,my), YJ") € 7;(71)

1) Code construction: Fix p(w,z1) and p(as|w,x1).
Randomly and independently genera®&’* sequences
(w"(my), 2 (m1)), mi € [ : 2*] iid. according B2z =(W"(m1), X7'(m1), X3 (m1,ma),Y3") € T
to [, pwx,(wi,z1;). Next, for each sequence for somem; # 1, mo # 1.

(w™(mq), z7(m1)), randomly and conditionally
independently generate2"?2 sequences x4 (m1,m2),
my € [1 : 2"B2] with iid. elements according to
H%1 léxzwla& (I%dwi(mdl)xu(ml)l( \ the pr P(Es) = P(E1 U Eg U Esg)

ncoding: To send messagesn;, ms), the primary
transmitter sends the codeword (mm;) whereas the sec- < P(Ba1) + P(By) + P(Es). (20)
ondary transmitter sends the codewaft{m,, ms). Now, we evaluate the terms in the right-hand side (RHS) of

3) Decoding: We usejoint typicality for decoding. The this inequality whem — co. First, by the LLN P(Fs;) —
cognitive receiver X3) can decode both messages whereasasn — oo. Then, forms # 1, X5 (1, ms) is conditionally
the other receiver can only decode one of them, namely independent ofY3* given (W"(1), X7*(1)). Thus, by the
Decoder 1 declares that messaiggeis sent if it is the unique packing lemmaP(F22) — 0asn — oo givenRy <
message such théw™ (my), 27 (1h1), y}) € 7" | Likewise, I(X2;Y2|W, X1) — 6(¢). Finally considerEss; for mq # 1
decoder 2 declares that messageis sent if it is the unique and my # 1, (W™ (mq), X} (m1), X3 (m1,mz)) is inde-
message such thetw” (m,), =7 (m1), z3(m1,ma),y%) € pendent ofYy'. Again, by the packing lemm#(Es3) —
74" for somem,. In other cases, as analyzed below, thd asn — oo if Ri + Ry < I(W, X1, X2;Y2) — 6(e) =
decoders declare error. I1(X1,X5;Ys) — 6(e); the equality follows sincelV —

4) Error Analysis: Without loss of generality, we assume X1, X2 — Y5 forms a Markov chain. The proof of achiev-
that (M, M) = (1,1) is sent in order to analyze the ability is completed by the above analysis. That is[If (7) is
probability of error. To evaluate the average probabilify osatisfied, both receivers can decode corresponding message
error for decoder 1, we define the following error events Wwith the total probability of error tending to zero. Thenefp

there exists a sequence of good codes for which error

By = (W™(1), X7(1),Y7") ¢ T, probability goes to 0. O

Fio = (W"(ml),X{L(ml),Yl") € 7;(71) for mi 75 1.

for somemsy # 1,

Using union bound, the probability of error for decoder 1 is
bounded as

B. Proof of Theorerhl3

Then, by using union bound, the probability of error forproof. We prove this theorem by showing the code construc-
decoder 1 is upper bounded by tion, encoding, decoding, and error analysis.
_ 1) Code constructionFix p(z1) andp(w, z2). Randomly

P(Ey) = P(E11 U Ey2) < P(E1) + P(Erz).  (19) and independently generaﬂéf(%1 )sequer(lces:?)(ml), my €
But, P(E;;) — 0 asn — oo, by the law of large numbers [1 : 27%1] ii.d. according toH?:leI:cu. Also, for each
(LLN). Moreover, since form # 1, (W™(my), X7*(m1)) is a1, randomly and independently gener&&?: sequences
independent of W (1), X7*(1), Y{*), by thepacking lemma  w™(mq, ma)x%(my,ms), mo € [1 : 27F2] with iid.
[18], P(E12) — 0 asn — oo if Ry < I(W,X1;Y1) —d(e). elements according tp["_, pw x,w; (m1, ma)xa;(m1, ms).



2) Encoding: To send messagesni, m2), the primary

and cognitive transmitters, respectively, send the codgsvo

% (mq) andzf (mq, ms).
3) Decoding: We usejoint typicality for decoding, where

[5] I. Maric, R. Yates, and G. Kramer, “Capacity of interfeoe channels
with partial transmitter cooperation|EEE Transactions on Information
Theory vol. 53, no. 10, pp. 3536-3548, October 2007.

[6] I. Maric, A. Goldsmith, G. Kramer, and S. Shamai (ShitzZpn the
capacity of interference channels with one cooperatingstratter,”

the primary receiver can decode both messages whereasEuropean Transactions Telecommunicatiomsl. 19, no. 4, pp. 405

the cognitive receiver can only decode,. Decoder 2
declares that messag®, is sent if it is the unique mes-
sage such thafw™(mq,7a), 25 (m1,7he),yy) € 7,

for some m;. Similarly, decoder 1 declares that mes-
sagern; is sent if it is the unique message such thalf!

(wn (’nﬁflla m2)7 'rg(ﬁllv mQ)a I?(ﬁll)a 1/3) € 7;(71) In other
cases, the decoders declare error.

4) Error Analysis: Error analysis is very similar to that
of Theoren P and is omitted here. O

C. Proof of Lemmé&l1l

Proof. The Lemma is similar to [5, Lemma 5]. We can write

IU;Y1|X1) = > p(a)I(Us V1| Xy = 21)

< ZP(Il)I(U;Y2|X1 =)

— I(U; Y] X1) (21)

the inequality follows becaus&U;Y;) < I(U;Y>) holds
for all joint distributionsp(u, z1, 2). O
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