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Abstract—We introduce the two-way Gaussian interference
channel in which there are four nodes with four independent
messages: two-messages to be transmitted over a Gaussian
interference channel in the → direction, simultaneously with
two-messages to be transmitted over an interference channel
(in-band, full-duplex) in the ← direction. In such a two-way
network, all nodes are transmitters and receivers of messages,
allowing them to adapt current channel inputs to previously
received channel outputs. We propose two new outer bounds on
the symmetric sum-rate for the two-way Gaussian interference
channel with complex channel gains: one under full adaptation
(all 4 nodes are permitted to adapt inputs to previous outputs),
and one under partial adaptation (only 2 nodes are permitted
to adapt, the other 2 are restricted). We show that simple non-
adaptive schemes such as the Han and Kobayashi scheme, where
inputs are functions of messages only and not past outputs,
utilized in each direction are sufficient to achieve within a
constant gap of these fully or partially adaptive outer bounds
for all channel regimes.

I. INTRODUCTION

In two-way networks, multiple pairs of possibly interfering
users wish to exchange pairs of messages. While this is a
natural form of communication in wireless networks, from
an information theoretic perspective such two-way networks
are challenging to deal with and as such, most two-way
exchanges are treated as two one-way exchanges. What
makes such two-way communications challenging are the
possibilities that stem from having nodes act as both sources
and destinations of messages. This permits them to adapt
their channel inputs to their past received signals. Such two-
way adaptation or interaction was first considered in the
point-to-point two-way channel by Shannon [1], but capacity
remains unknown in general.

However, encouragingly, the capacity regions of several
specific point-to-point two way channel models is known.
What is common to these models is that the interaction
between ones own signal and that of the other user may
be resolved. For example, in the two-way modulo 2 binary
adder channel where channel outputs Y1 = Y2 = X1⊕X2 for
binary inputs X1, X2 and ⊕ modulo 2 addition, the capacity
region is one bit per user per channel use, as each user is
able to “undo” the effect of the other, something that is not
possible (at least not in one channel use) for the elusive
binary multiplier channel with Y1 = Y2 = X1X2. In the
binary modulo 2 adder channel, information independently
flows in the → and the ← “directions” and nodes need
not interact, or adapt their current inputs to past outputs, to

achieve capacity. In a similar fashion, the capacity of a two-
way Gaussian point-to-point channel is equal to two parallel
Gaussian channels, which may be achieved without the use
of adaptation at the nodes [2]. In general then, one may ask
whether there exist two-way networks rather than point-to-
point channels where capacity may be obtained in a similar
fashion, and where adaptation does not increase the capacity
region.

A. Previous work on two-way deterministic networks.

In our previous work, we have demonstrated several ex-
amples of multi-user two-way channels where, even though
nodes may adapt current inputs to past outputs, this is not
beneficial from a capacity region perspective. In [3], [4] we
considered three multi-user two-way channel models:

• the two-way Multiple Access / Broadcast channel
(MAC/BC) in which there are 4 messages and 3 ter-
minals forming a MAC channel in the → direction (2
messages) and a BC channel in the opposite← direction
(2 messages);

• the two-way Z channel in which there are 6 messages
and 4 terminals forming a Z channel in the → direction
(3 messages) and another Z channel in the opposite ←
direction (3 messages);

• the two-way interference channel (IC) with 4 mes-
sages and 4 terminals forming an IC in the → direction
(2 messages) and another IC in the ← direction (2
messages).

In particular, in [3] we obtained the capacity regions of the
deterministic, binary modulo 2 adder models for all three
channels, where it was shown that adaptation at the nodes
does not increase the capacity regions beyond non-adaptive
schemes. In follow-up work in [4] we considered a slightly
more general class of deterministic channels: the linear deter-
ministic channels in the spirit of [5]. There, we showed that
again, for the two-way MAC/BC and two-way Z channels
that adaptation does not increase the capacity region and
the capacity region is that of two one-way channel models
operating in parallel. For the two-way linear deterministic
interference channel, we showed that if we allow only 2 of the
four nodes to adapt (which we termed “partial adaptation”),
then the capacity region is the same as if none of the 4 nodes
were able to adapt, i.e. partial adaptation is useless from a
capacity perspective.
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For each of these models, let Mjk denote the message
from node j to node k; all messages are independent
and uniformly distributed over Mjk := {1, 2, · · · 2nRjk},
where the ranges of j, k depend on the channel model (all
subsets of {1, 2, 3, 4}) and Rjk is the rate of transmission
from node j to node k. For example, in the two-way
MAC/BC R12 is the rate of message M12 but R13 does
not exist as M13 does not exist.

All channels are assumed to be memoryless and at
each channel use, described by the input/output rela-
tionships in Fig. ??. Let Xj and Yk denote the channel
input of node j and output at node k used to describe
the model (per channel use). Let Xj,i (Yj,i) denote the
channel input (output) at node j at channel use i, and
Xn

j := (X1,1, X1,2, · · ·X1,n). For the binary modulo
2 adder channels the input and output alphabets are
{0, 1}, and ⊕ denotes modulo 2 addition. For the linear
deterministic models, the channel inputs and outputs are
binary vectors, and all addition will be bit-wise and
modulo 2. We furthermore let S denote an N×N lower
shift matrix, where N = max(njk) over the relevant j, k
for each channel model, where njk defines the number
of signal bit levels from transmitter j to receiver k. We
will also consider two other types of channel models:
the “deterministic, invertible and cardinality constrained”
deterministic channel models and the Gaussian two-
way interference channel. We will define those channel
models in the appropriate sections.

A node j is said to employ adaptation or interaction if
the channel input at time i is a function of the previously
received outputs,

Xj,i = fj(Mjk, Y
i−1
j ), (1)

where fj (j, k ∈ {1, 2, 3, 4} according to the channel
model) are deterministic functions. If a node behaves
in a non-adaptive or restricted fashion then its inputs
are functions of its messages only, i.e. Xj,i = fj(Mjk).
If some nodes adapt while the others do not, we refer
to this as partial adaptation, and will specify which
nodes adapt. Thus, unless otherwise noted (in the linear
deterministic and Gaussian interference channel where
there is partial adaptation in some cases), at each time
step 0 ≤ i ≤ n, for n the blocklength, encoding
functions are specified by the mappings Xj,i(Mjk, Y

i−1
j )

(for the appropriate message(s) Mj,k known at node
j – 1 message for the MAC/BC and IC channels, 2
messages for the Z channel). Receiver k uses a decoding
function gk : Yn

k ×Mki → M̂jk to obtain an estimate
M̂jk of the transmitted message Mjk given knowledge
of its own message(s) Mki for suitable i (depends on

model). The capacity region of each channel model is
the supremum over all rate tuples for which there exist
encoding and decoding functions (of the appropriate
rates) which simultaneously drive the probability that
any of the estimated messages is not equal to the true
message, to zero as n→∞.

III. GAUSSIAN TWO-WAY INTERFERENCE CHANNEL

All previous channel models considered were deter-
ministic. We now ask whether we may obtain insight into
whether adaptation is useless / useful in certain noisy
channels. We do so by considering the Gaussian two-
way interference channel, and ask when non-adaptive
schemes such as the celebrated Han and Kobayashi [27]
perform as well, or nearly as well, as adaptive schemes.

We do not construct any inner bounds which employ
adaptation; our focus is on showing when non-adaptive
schemes perform “well”. Rather, we derive an outer
bounds for the Gaussian two-way IC under full adap-
tation (all 4 nodes may adapt) and several under partial
adaptation (only 2 of the 4 may adapt) constraints. We
then show that non-adaptive schemes sometimes achieve
the capacity, or at least to within a constant gap of either
the fully or partially adaptive schemes. We note that
while the converses and the steps are new and exploit
carefully chosen genies, when we evaluate these by
further outer-bounding our outer-bounds, interestingly,
we sometimes re-obtain some of the outer bounds of
the interference channel [5] or the interference channel
with feedback [19]. This in turn is sufficient to achieve
capacity to within a constant gap (which we emphasize,
sometimes is limited to partial adaptation for some of
the weak interference regimes but this will be explicitly
mentioned when it is the case).

A. Channel model, definitions, and partial adaptation
lemma

At each channel use, the Gaussian two-way IC is
described by the input/output relationships

Y1 = g11X1 + g21X2 + g41X4 + Z1

Y2 = g12X1 + g22X2 + g32X3 + Z2

Y3 = g23X2 + g33X3 + g43X4 + Z3

Y4 = g14X1 + g34X3 + g44X4 + Z4,

where gjk, for j, k ∈ {1, 2, 3, 4} are the complex channel
gains. We assume the power constraints E[|Xj |2] ≤
Pj = 1, j ∈ {1, 2, 3, 4}, and independent, identically
distributed complex Gaussian noise Zj ∼ CN (0, 1)
at all nodes j ∈ (1, 2, 3, 4), which may be done

Zj ∼ CN (0, 1)

gjk ∈ C

Full adaptation

Partial adaptation

X1,i = f1(M12, Y
i−1
1 ), X2,i = f2(M21, Y

i−1
2 )

X3,i = f3(M34, Y
i−1
3 ), X4,i = f4(M43, Y

i−1
4 ).

X1,i = f1(M12), X2,i = f2(M21, Y
i−1
2 )

X3,i = f3(M34), X4,i = f4(M43, Y
i−1
4 ),

Fig. 1. The two-way Gaussian interference channel under full and partial
adaptation constraints.

B. Contributions

In all our previous work, we considered deterministic chan-
nel models. We now consider a new (not considered before)
noisy channel model: the two-way Gaussian interference
channel. As a first step, we consider the symmetric two-
way Gaussian IC where all “direct” links are equal and
all “cross-over” links are equal. We derive new, computable
outer bounds for the symmetric sum-rates for this Gaussian
channel model and show that: a) adaptation is useless in
very strong interference for the partially adaptive model,
b) in strong but not very strong interference, non-adaptive
schemes perform to within 1 bit per user per direction of
the fully adaptive capacity region, and c) the particular non-
adaptive Han and Kobayashi scheme of [6] employed in each
direction, achieves to within a constant gap (2 bits per user
per direction maximally) of fully or partially adaptive outer
bounds in all other regimes. In general, when all nodes are
permitted to adapt, we do not believe that a non-adaptive
scheme will achieve to within a constant gap for all regimes
but this is left open. Our emphasis, as with our prior work
[3], [4] is on demonstrating when adaptive schemes do not
increase capacity, and when, even if adaptation is permitted,
it does not significantly increase the capacity region.

C. Related Work

We focus only on work related to the two-way interference
channel rather than two-way channels in general; a more
extensive list of references related to two-way networks may
be found in [3], [4], [7].

The two-way Gaussian interference channel is naturally

related to one-way interference channels with/without feed-
back. The capacity region of the one-way modulo 2 adder
IC is known [8] and is a special example of a more general
class of deterministic IC for which capacity is known [9],
including the one-way linear deterministic IC [10]. The work
here is also related to one-way ICs with perfect output
feedback [11], [12], with rate-limited feedback [13], and
interfering feedback [11], [14]1. In all these channel models
only two messages are present and the “feedback” links,
whether perfect, noisy, or interfering still serve only to further
rates in the forward direction. The tradeoff between sending
new information versus feedback on each of the links is
not addressed. The only other example of such a 4-message
two-way interference channel besides our prior work [3],
[4], [15] is in Section VI of [14], where an example of a
linear deterministic scheme in a specific regime is provided
which shows that, at least for one particular asymmetric
linear deterministic two-way IC with weak interference in
the → and strong interference in the ← direction, that
adaptation can significantly improve the capacity region over
non-interaction. The general capacity region of the linear
deterministic two-way IC (with 4 messages) remains open
in general despite the example in [14] and the results in
[4]. This is the first work to consider the two-way Gaussian
interference channel.

II. CHANNEL MODEL

A graphical depiction of the two-way Gaussian interfer-
ence channel is provided in Fig. 1. There are 4 nodes:
transmitters 1 and 3 send messages M12 and M34 to receivers
2 and 4, respectively, forming an IC in the → direction.
Similarly, transmitters 2 and 4 send messages M21 and
M43 to receivers 1 and 3 respectively, forming another
IC in the ← direction. All messages Mjk from node j
to node k are independent and uniformly distributed over
Mjk := {1, 2, · · · 2nRjk} (for appropriate j, k) and Rjk is
the rate of transmission from node j to node k.

All channels are assumed to be memoryless and at each
channel use, are described by

Y1 = g11X1 + g21X2 + g41X4 + Z1

Y2 = g12X1 + g22X2 + g32X3 + Z2

Y3 = g23X2 + g33X3 + g43X4 + Z3

Y4 = g14X1 + g34X3 + g44X4 + Z4,

where gjk, for j, k ∈ {1, 2, 3, 4} are the complex channel
gains. Let Xj and Yk denote the channel input of node j and
output at node k used to describe the model (per channel
use). Let Xj,i (Yj,i) denote the channel input (output) at
node j at channel use i, and Xn

j := (X1,1, X1,2, · · ·X1,n).
We assume the power constraints E[|Xj |2] ≤ Pj = 1, j ∈
{1, 2, 3, 4}, and independent, identically distributed complex

1We will refer to the 4 message two-way IC considered here as the “two-
way IC” and the 2 message channel of [14] – considered in all sections but
Section VI – as the “two-way interference channel with interfering feedback”
to emphasize that the rates are flowing in one direction.



Gaussian noise Zj ∼ CN (0, 1) at all nodes j ∈ (1, 2, 3, 4),
which may be done without loss of generality.

We say that the two-way Gaussian interference channel
operates under “full adaptation” if we allow

X1,i = f1,i(M12, Y
i−1
1 ), X2,i = f2,i(M21, Y

i−1
2 ) (1)

X3,i = f3,i(M34, Y
i−1
3 ), X4,i = f4,i(M43, Y

i−1
4 ), (2)

for fj,i deterministic encoding functions for 1 ≤ i ≤ n
(n is the blocklength). Similarly, it operates under “partial
adaptation” if we only allow the following:

X1,i = f1,i(M12), X2,i = f2,i(M21, Y
i−1
2 ) (3)

X3,i = f3,i(M34), X4,i = f4,i(M43, Y
i−1
4 ), (4)

i.e. nodes 1 and 3 are “restricted” [1]. By symmetry, we may
alternatively allow nodes 2 and 4 to be restricted and 1, 3 to
be fully adaptive; whether allowing 1, 2 or 1, 4 to be restricted
and the complement fully adaptive remains an open problem.
Receiver k uses a decoding function Yn

k ×Mki → M̂jk to
obtain an estimate M̂jk of the transmitted message Mjk given
knowledge of its own message(s) Mki for suitable i (based
on Fig. 1). The capacity region is the supremum over all rate
tuples for which there exist encoding and decoding functions
(of the appropriate rates) which simultaneously drive the
probability that any of the estimated messages is not equal
to the true message, to zero as n→∞.

Furthermore, we define SNR12 = |g12|2, SNR21 =
|g21|2, SNR34 = |g34|2, SNR43 = |g43|2, and INR14 =
|g14|2, INR41 = |g41|2, INR23 = |g23|2, INR32 = |g32|2.
Note that we have kept the “self-interference” terms such
as g11X1 in the expression of Y1 (for example). In this
Gaussian model, it is clear that since node 1 knows X1 we
may equivalently remove this self-interference term due to
the additive nature of the channel and hence including it
is unnecessary. However, we leave it in our expressions to
emphasize the fact that we can cancel or subtract out a node’s
“self-interference” in all converses. We speculate that this is
one of the reasons two-way channels of this form, as seen in
the Gaussian two-way channel as well [2], are easier to deal
with.

Symmetric capacity. We are interested in the symmetric ca-
pacity when all the SNRs equal a given SNR, and all the INRs
equal a given INR. For full adaptation, due to the symmetry,
we consider the per-user rates Rsym = R12+R34

2 = R21+R43

2 .
Under partial adaptation, there is only partial symmetry
(nodes 1 and 3 are fixed, while 2 and 4 are not). Hence,
we will consider the per user rates Rsym→ = R12+R34

2 and
Rsym← = R21+R43

2 for the→ and← directions respectively.

III. OUTER BOUNDS

We now present two outer bounds for the two-way Gaus-
sian IC under full and partial adaptation respectively. These
bounds are either within a constant gap, or sufficient to show
the capacity depending on different regimes. We will derive
general outer bounds, imposing symmetry only in the final
step.

We note that while the converses and the steps are new
and exploit carefully chosen genies, when we evaluate these
by further outer-bounding our outer-bounds, interestingly, we
sometimes re-obtain some of the outer bounds of the interfer-
ence channel [6] or the interference channel with feedback
[12]. This in turn is sufficient to achieve capacity to within a
constant gap (which we emphasize, sometimes is limited to
partial adaptation for some of the weak interference regimes
but this will be explicitly mentioned when it is the case).

We first prove a Lemma relevant in partial adaptation
which is central to many of our converses.

Lemma 1: Under partial adaptation (3) – (4), for some
deterministic functions f5 and f6,

X2,i = f5(M12,M21,M34, Z
i−1
2 ) ⊥M43, ∀i (5)

X4,i = f6(M43,M34,M12, Z
i−1
4 ) ⊥M21, ∀i (6)

where ⊥ denotes independence.
Proof: Note that X2,i = f2(M21, Y

i−1
2 ) and Y i−1

2 =
g12X

i−1
1 + g22X

i−1
2 + g32X

i−1
3 + Zi−1

2 . Since Xi−1
1 and

Xi−1
3 are functions only of M12 and M34 respectively,

we may conclude that there exists a function f∗ such
that X2,i = f∗(M21,M12,M34, X

i−1
2 , Zi−1

2 ). Iterating this
argument, and noting that X2,1 is only a function of M21, we
obtain the lemma. The result for X4,i follows similarly. That
X2,i is independent of M43 follows since M43 is independent
of all the arguments inside f∗.

Theorem 2: Outer bound: full adaptation. For the two-
way Gaussian symmetric IC under full adaptation, any
achievable symmetric rate Rsym = R12+R34

2 = R21+R43

2 ,
achievable by each user, satisfies,

Rsym ≤
1

2
log
(
1 + SNR+ INR+ 2

√
SNR× INR

)

+
1

2
log

(
1 +

SNR

1 + INR

)
(7)

Proof: It is sufficient to consider R12 + R34 due to
symmetry. This bound is inspired by the corresponding sum-
rate bound in the linear deterministic model [4], i.e., we add
asymmetric genie Y n

2 at node 4. Notice the genie Zn
1 in the

conditioning of both terms as well.

n(R12 +R34 − ε) ≤ I(M12;Y
n
2 |M21,M43, Z

n
1 )

+ I(M34;Y
n
4 , Y

n
2 |M12,M21,M43, Z

n
1 )

(a)
= I(M12;Y

n
2 |M21,M43, Z

n
1 ) + I(M34;Y

n
2 |M21,M12,M43, Z

n
1 )

+

n∑
i=1

[H(g34X3,i + Z4,i|M21,M12,M43, Y
i−1
4 , Xi

4, Y
n
2 , X

n
2 ,

Zn
1 , X

i
1)]−H(Zn

4 )

(b)

≤
n∑

i=1

[H(Y2,i|Y i−1
2 ,M21, X2,i)−H(Y2,i|Y i−1

2 ,M12,M21,

M43, Z
n
1 ) +H(Y2,i|Y i−1

2 ,M12,M21,M43, Z
n
1 )−H(Z2,i)

+H(g34X3,i + Z4,i|X4,i, g32X3,i + Z2,i, X
i
1, X

n
2 )−H(Z4,i)]

(c)

≤
n∑

i=1

H(g12X1,i + g32X3,i + Z2,i|X2,i)−H(Z2,i)

+H(g34X3,i + Z4,i|X4,i, g32X3,i + Z2,i)−H(Z4,i) (8)



In step (a), Xi
1 in the conditioning of the third term is

constructed from (M12, X
n
2 , X

i
4, Z

n
1 ). In step (b), we used

conditioning reduces entropy, the second and the third term
cancelled each other and g32X3,i + Z2,i in the conditioning
of the fifth term is decoded from Y n

2 . In step (c), we only
keep the self-interference X4,i and drop the terms Xi

1, X
n
2 in

the conditioning of the third term. We could leave these and
express the outer bound in terms of correlation coefficients
between the inputs (which in general may be correlated due to
full adaptation). However, in subsequent steps we will seek
to maximize, or outer bound this outer bound to obtain a
simple analytical expression, which amounts to setting certain
correlation coefficients to 0, or equivalently, dropping the
terms Xi

1, X
n
2 in the conditioning. Further evaluation yields

(7), for details please refer to [7, pg.41].

Remark 3: Sum-rate bound: Note that the final, evaluated
symmetric, normalized sum-rate bound in (7) has the same
form as the IC with perfect output feedback outer bound [12,
upper bound on (7)], though they are arrived at using slightly
different genies.

Theorem 4: Outer bound: partial adaptation. For the two-
way Gaussian IC under partial adaptation (3) – (4), in
addition to the bounds in Theorem 2, any achievable rates
(R12, R21, R34, R43), and Rsym→ = R12+R34

2 and Rsym← =
R21+R43

2 must also satisfy,

R12 ≤ log(1 + SNR12) (9)
R21 ≤ log(1 + SNR21) (10)
R34 ≤ log(1 + SNR34) (11)
R43 ≤ log(1 + SNR43) (12)

Rsym→ ≤ log

(
1 + INR+ SNR− INR× SNR

1 + INR

)
(13)

Rsym← ≤
{

log
(
1 + INR+ SNR

INR

)
, if SNR ≤ INR3

log
(
1 + (

√
SNR+

√
INR)2

1+INR

)
, if SNR > INR3

(14)

Proof: For the single-rate bounds, it is sufficient to show
the first two due to symmetry (notice that we must treat the→
and ← directions separately however due to the asymmetry
of partial adaptation).

n(R12 − ε) ≤ I(M12;Y
n
2 |M21,M34)

≤ H(Y n
2 |M21,M34)−H(Y n

2 |M21,M34,M12, X
n
1 , X

n
2 , X

n
3 )

(a)

≤
n∑

i=1

[H(Y2,i|Y i−1
2 ,M21, X2,i,M34, X3,i)−H(Z2,i)]

≤
n∑

i=1

[H(g12X1,i + Z2,i)−H(Z2,i)]

≤
n∑

i=1

[log(1 + SNR12)]

n(R21 − ε) ≤ I(M21;Y
n
1 |M12,M43,M34, Z

n−1
4 )

≤ H(Y n
1 |M12,M34,M43, Z

n−1
4 )

−H(Y n
1 |M12,M34,M43, Z

n−1
4 ,M21, X

n
1 , X

n
2 , X

n
4 )

(b)

≤
n∑

i=1

[H(Y1,i|M12,M34,M43, Z
n−1
4 , Y i−1

1 , X1,i, X4,i)

−H(Z1,i)]

≤
n∑

i=1

[H(g21X2,i + Z1,i)−H(Z1,i)]

≤
n∑

i=1

[log(1 + SNR21)]

where (a) follows from the definition of partial adaptation
and (b) follows similarly, and by Lemma 1.

For the → direction of the symmetric rate, due to space
constraints, we refer the reader to the in-detail converse on
pg. 28 of [7]; the key starting and ending steps are as follows:

n(R12 +R34 − ε) ≤ I(M12;Y
n
2 , g14X

n
1 + Zn

4 ,M21,M43)

+ I(M34;Y
n
4 , g32X

n
3 + Zn

2 ,M21,M43)

≤
n∑

i=1

[H(g12X1,i + g32X3,i + Z2,i|g14X1,i + Z4,i, X2,i)

+H(g34X3,i + g14X1,i + Z4,i|g32X3,i + Z2,i, X4,i)

−H(Z2,i)−H(Z4,i)] (15)

In the first step, we have given (g14X
n
1 +Zn

4 ) and (g32X
n
3 +

Zn
2 ) as side information; in the intermediate steps ( [3, pg.

28]), we have used the definition of partial adaptation and
cancellation of certain negative entropy terms.

To obtain (13) we continue to outer bound (15) in terms
of SNR and INR, using the fact that Gaussians maximize
entropy subject to variance constraints. Specifically, one may
intuitively see that, if one defines λjk = E[XjX

∗
k ], that one

may express (15) in terms of λ12, λ13, λ14, λ34, λ23. One also
notices from the conditional entropy expression in (15) that
taking λ14 = λ23 = λ12 = λ34 = 0, and since λ13 = 0
(naturally, by partial adaptation) will maximize the outer
bound. This may alternatively be worked out by calculating
the conditional covariance matrices directly (as we will show
for the next bound on R←). In this case then, for each i, we
may bound

H(g12X1 + g32X3 + Z2|g14X1 + Z4, X2)−H(Z2)

≤ H(g12X1 + g32X3 + Z2|g14X1 + Z4)−H(Z2)

≤ log 2πe(Var(g12X1 + g32X3 + Z2|g14X1 + Z4))

− log 2πe(Var(Z2))

≤ log

(
1 + SNR+ INR− SNR× INR

1 + INR

)
,

which together with the symmetric expressions for the second
and fourth terms in (15) yield (13).

For the← direction, we again defer the reader to [3, pg.29]



due to space constraints, but we are similarly able to obtain:

n(R21 +R43 − ε) ≤ I(M21;Y
n
1 , g23X

n
2 + Zn

3 ,M12,M34)

+ I(M43;Y
n
3 , g41X

n
4 + Zn

1 ,M12,M34)

≤
n∑

i=1

[H(g21X2,i + g41X4,i + Z1,i|g23X2,i + Z3,i, X1,i)

+H(g43X4,i + g23X2,i + Z3,i|g41X4,i + Z1,i, X3,i)

−H(Z1,i)−H(Z3,i)] (16)

There are some slight differences in the converse, compared
to the previous outer bound due to the partial adaptation
constraints (and hence more care must be taken when con-
structing X2,i, X4,i).

We again proceed to outer bound (16) to obtain (14). It is
sufficient to evaluate the first and third terms in (16) due to
symmetry. We could outer bound (16) in terms of the condi-
tional covariance matrices and then proceed to select values
of the correlation coefficients (complex) λjk := E[XjX

∗
k ]

which maximize this outer bound. A more intuitive method
is to note that again, the conditional entropies in (16) will
be maximized if λ14 = λ32 = 0, and λ12 = λ34 = 0,
which may also be obtained by dropping X1,i, X3,i in the
conditioning terms. At that point, we are only left with the
coefficient λ24 = E[X2X

∗
4 ], (which in contrast to the →

bound is not automatically 0 due to the possible adaptation
in the ← direction. Furthermore, setting it to zero cannot be
argued intuitively as we see a tradeoff.) yielding the following
bound for Rsym← = R21+R43

2 by symmetry:

Rsym← ≤ H(g21X2 + g41X4 + Z1|g23X2 + Z3)−H(Z1)

≤ log 2πe (Var(g21X2 + g41X4 + Z1|g23X2 + Z3))

− log 2πe(Var(Z1))

≤ log
(
1 + INR+ SNR+ 2|λ24| cos θ

√
SNR× INR

−SNR× INR+ INR2|λ24|2 + 2
√
SNRINR3/2|λ24| cos θ

1 + INR

)

(17)

where θ is the angle of g21g∗41λ24. To maximize (17), we take
the partials of the expression with respect to |λ24| and θ and
set these to 0. For these to equal 0 for all SNR and INR we
must have θ = 0 and |λ24| =

√
SNR×INR
INR2

(discussed next). Note
that we must constrain |λ24| ∈ [0, 1]. In the interval |λ24| ∈[
0,
√
SNR×INR
INR2

]
one may verify that the function is increasing

in |λ24|. Thus, if
√
SNR×INR
INR2

≤ 1, (|λ24| =
√
SNR×INR
INR2

, θ =
0) maximizes (17); this happens if SNR ≤ INR3, and yields
the first bound in (14). Otherwise, for SNR > INR3, (λ24 =
1, θ = 0) maximizes (17), yielding the second equation in
(14).

Remark 5: The sum-rate bound for Rsym→ of (13) has the
same form as Etkin, Tse and Wang’s outer bound for one-
way Gaussian interference channel [6, (12)] which is useful in
weak interference. The sum-rate bound for Rsym← is quite
different, and we note that it may be verified that (14) is

always at least as large as (13), as one might expect given
the partial adaptation constraints on nodes in the→ direction,
but none on the nodes in the ← direction.

IV. CAPACITY TO WITHIN A CONSTANT GAP

We now demonstrate that these outer bounds, derived
for the fully adaptive or partially adaptive models, may
be achieved to within a constant gap or capacity by non-
adaptive schemes – i.e. simultaneous decoding or the Han
and Kobayashi scheme operating in the two directions inde-
pendently. We break our analysis into three sub-sections: 1)
very strong interference, 2) strong interference, and 3) weak
interference. The overall finite gap results are summarized in
Table I.

A. Very Strong Interference: INR ≥ SNR(1 + SNR)

We first show that a non-adaptive scheme may achieve
the capacity for the two-way Gaussian IC under a partially
adaptive model in very strong interference. For the symmetric
two-way Gaussian IC, define “very strong interference” as
the class of channels for which INR ≥ SNR(1 + SNR), as in
[6, below equation (21)]. It is well known that the capacity
region of the one-way Gaussian IC in very strong interference
is that of two parallel Gaussian point-to-point channels [16],
which may be achieved by having each receiver first decode
the interfering signal, treating its own as noise, subtracting
off the decoded interference, and decoding its own message.
Given that the interference is so strong, this may be done
without a rate penalty. We ask whether the same is true for the
two-way Gaussian IC with partial adaptation. The answer is
affirmative and the capacity region is given by the following
theorem:

Theorem 6: The capacity region for the two-way Gaussian
interference channel with partial adaptation in very strong
interference is the set of rate pairs (R12, R21, R34, R43), such
that (9)–(12) are satisfied.

Proof: Each node may ignore its ability to adapt, and
rather transmit using a CN (0, 1) Gaussian random code.
Each receiver may cancel its own self-interference, and then
proceed to decode first the single interfering term before de-
coding its own message. This standard non-adaptive scheme
may achieve the outer bound in (9)–(12) in Theorem 4.

Interestingly, the capacity region of the two-way Gaussian
interference channel with partial adaptation in very strong
interference, is equivalent to the capacity regions of two
one-way Gaussian interference channels with very strong
interference in parallel and is achieved using a non-adaptive
scheme. This allows us to conclude that partial adaptation is
useless in this symmetric and very strong interference regime.

B. Strong Interference: SNR ≤ INR ≤ SNR(1 + SNR)

In this regime, we are able to show that a non-adaptive
scheme may achieve capacity to within a constant gap of
any fully adaptive scheme (in contrast to any partially adap-
tive scheme in the last subsection). A symmetric two-way



Gaussian IC, as in [6], is said to be in “strong interference”
when INR ≥ SNR.

The capacity region of one-way Gaussian interference
channel in strong interference is given by [17], and for sym-
metric channels, the capacity region when the interference is
strong but not very strong, i.e. SNR ≤ INR ≤ SNR(1 + SNR),
may be written as

Rsym =
R12 +R34

2
≤ 1

2
log(1 + SNR+ INR). (18)

We note that this rate is achievable for the two-way Gaussian
IC by using the simultaneous non-unique decoding scheme
for the interference channel in strong interference [8], [17],
[18]) in the → and ← directions, and noting that any self-
interference may be canceled. This is a non-adaptive scheme.

We will show that this non-adaptive scheme which
achieves (18) in each direction (i.e. Rsym =(18)) also
achieves to within 1 bit (per user, per direction) of our
fully adaptive outer bound (7) in strong but not very strong
interference.

Theorem 7: The capacity region for two-way symmetric
Gaussian interference channel with full adaptation in strong
(but not very strong) interference is within 1 bit to (18) (per
user, per direction).

Proof:

(7)− (18)
(a)

≤ 1

2
log 2(1 + SNR+ INR) +

1

2
log

(
1 +

SNR

1 + INR

)

− 1

2
log(1 + SNR+ INR)

(b)

≤ 1

2
+

1

2
log

(
1 +

INR

INR

)
= 1

In step (a), we use the fact that 1 + SNR + INR +
2
√
SNR× INR ≤ 2(1 + SNR + INR). Step (b) follows from

the condition of strong interference INR ≥ SNR. Notice that
the bound (7) is valid for the symmetric assumptions of full
adaptation; we thus conclude that the non-adaptive schemes’
gap to the fully adaptive outer bound for each user, for each
direction is at most 1 bit.

C. Weak Interfererence: INR ≤ SNR

In the following we demonstrate that the well known Han
and Kobayashi scheme employed in parallel in the→ and←
directions may achieve to within a constant number of bits
of the fully or partially adaptive (depends on the channel
regimes, or relative SNR and INR values) capacity region for
the two-way Gaussian IC.

Theorem 8: A non-adaptive scheme may achieve to within
a 2 bit per user per direction of partially adaptive capacity
region for the two-way Gaussian IC in weak interference.
In some channel regimes, this non-adaptive scheme also
achieves to within a constant gap of any fully adaptive
scheme.

Proof: As for the one-way IC [6], we break our proof
into two regimes: INR ≥ 1 or INR < 1.

1) INR ≥ 1: Outer bounds have already been derived.
Consider now using the specific choice of the Han and
Kobayashi (HK) strategy utilized for the symmetric one-way
IC as in [6, (4)] in each direction. That is, view nodes 1,2
as transmitters and 3,4 as receivers in the → direction and
employ the particular choice of the HK scheme where private
messages are encoded at the level of the noise, and similarly
for the ← direction consider nodes 3,4 as transmitters and
1,2 as receivers. Due to the additive nature of the channel and
each node’s ability to first cancel out their self-interference,
one may achieve the following rates per user, per node for
each direction when INR ≥ 1 for the symmetric two-way
Gaussian IC:

RHK = min

{
1

2
log(1 + INR+ SNR) +

1

2
log

(
2 +

SNR

INR

)
− 1,

log

(
1 + INR+

SNR

INR

)
− 1

}
=: min{RHK1, RHK2}. (19)

If the first term in (19) is active we show a constant gap
to the outer bound (7),

(7)−RHK1

≤ 1

2
log 2(1 + SNR+ INR)− 1

2
log(1 + INR+ SNR)

+
1

2
log

(
1 +

SNR

INR

)
− 1

2
log

(
2 +

SNR

INR

)
+ 1

≤ 1

2
log(2) +

1

2
log(1) + 1 = 1.5

Since our bound (7) is derived assuming full adaptation,
we may conclude that this gap holds for both Rsym→ and
Rsym← (i.e. holds for Rsym).
If the second term in (19) is active, we use outer bound
(13) for the forward direction, to bound the gap for Rsym→
as

(13)−RHK2

= log

(
INR(1 + INR)2 + SNR× INR

INR(1 + INR)2 + SNR(1 + INR)

)
+ 1

≤ log(1) + 1 = 1

Since our bound (13) has the same form as the ETW
bound [6], the capacity of the two-way Gaussian interference
channel with partial adaptation in the forward direction is also
to within 1 bit of the specific HK rate (19) when INR ≥ 1.

We use outer bound (14) for the backward direction, to
bound the gap for Rsym←, noting that we need to consider
both cases separately. If the first term in (14) is relevant
(SNR ≤ INR3), one may easily conclude that (14)−RHK2 =
1.

If the second term in (14) is relevant (SNR ≥ INR3):

(14)−RHK2

(a)

≤ log

(
2(INR+ SNR× INR+ 2INR2 + SNR+ INR3)

INR+ SNR× INR+ 2INR2 + SNR+ INR3

)
+ 1

= log(2) + 1 = 2

where (a) follows the fact that 1 + SNR + INR +
2
√
SNR× INR ≤ 2(1 + SNR + INR), and additional details

may be found in [7, pg.34].



Interference Constant Gaps per user per direction (bits)
Very Strong 0 (partial)

Strong 1 (full)
INR < 1 1 (full)

HK1 active 1.5 (full)
Weak INR ≥ 1 → 1 (partial)

HK2 active ← SNR ≤ INR3 1 (partial)
SNR > INR3 2 (partial)

TABLE I
CONSTANT GAPS BETWEEN NON-ADAPTIVE SYMMETRIC HAN AND

KOBAYASHI SCHEMES IN EACH DIRECTION AND PARTIALLY OR FULLY
ADAPTIVE OUTER BOUNDS.

2) INR < 1: In this case, a symmetric version of the HK
scheme may be obtained from [6, (69)], for which each of
the four users may achieve the following rate:

RINR<1 ≤ log

(
1 +

SNR

1 + INR

)
(20)

This achieves to within 1 bit of the outer bound (7):

(7)−RINR<1

≤ 1

2
log

(
2(1 + SNR+ INR)(1 + INR)

1 + SNR+ INR

)

(a)

≤ 1

2
log(4) = 1

where (a) we use the condition of INR < 1. Since (7)
was obtained for full adaptation, we can conclude that the
capacity of the two-way Gaussian IC is to within 1 bit to the
HK region when INR < 1 for both directions.

We summarize the constant gaps in Table I.

V. CONCLUSION

We have introduced the two-way Gaussian interference
channel; obtained outer bounds under full and partial adapta-
tion constraints, and shown that simple non-adaptive schemes
(including the Han and Kobayashi scheme) achieve to within
a constant gap for the symmetric sum-rate of these fully
or partially adaptive outer bounds. We do not believe that
in general, non-adaptive schemes will achieve to within a
constant gap of capacity for general non-symmetric and fully
adaptive two-way Gaussian ICs, this is an interesting question
which is the topic of ongoing work.
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