IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 7, NO. 2, APRIL 2013 305

Learning in Hierarchical Social Networks

Zhenliang Zhang, Student Member, IEEE, Edwin K. P. Chong, Fellow, IEEE, Ali Pezeshki, Member, IEEE,
William Moran, Member, IEEE, and Stephen D. Howard, Member, IEEE

Abstract—We study a social network consisting of agents orga-
nized as a hierarchical M -ary rooted tree, common in enterprise
and military organizational structures. The goal is to aggregate in-
formation to solve a binary hypothesis testing problem. Each agent
at a leaf of the tree, and only such an agent, makes a direct measure-
ment of the underlying true hypothesis. The leaf agent then gener-
ates a message and sends it to its supervising agent, at the next level
of the tree. Each supervising agent aggregates the messages from
the M members of its group, produces a summary message, and
sends it to its supervisor at the next level, and so on. Ultimately, the
agent at the root of the tree makes an overall decision. We derive
upper and lower bounds for the Type I and Type II error proba-
bilities associated with this decision with respect to the number of
leaf agents, which in turn characterize the converge rates of the
Type I, Type 11, and total error probabilities. We also provide a
message-passing scheme involving non-binary message alphabets
and characterize the exponent of the error probability with respect
to the message alphabet size.

Index Terms—Bayesian learning, convergence rate, decentral-
ized detection, tree structure, hypothesis testing, social learning.

I. INTRODUCTION

E consider a binary hypothesis testing problem and

an associated social network that attempts (jointly)
to solve the problem. The network consists of a set of agents
with interconnections among them. Each of the agents makes
a measurement of the underlying true hypothesis, observes the
past actions of his neighboring agents, and makes a decision to
optimize an objective function (e.g., probability of error). In
this paper, we are interested in the following questions: Will
the agents asymptotically learn the underlying true hypothesis?
More specifically, will the overall network decision converges
in probability to the correct decision as the network size
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(number of agents) increases? If so, how fast is the convergence
with respect to the network size? In general, the answers to
these questions depend on the social network structure. There
are two structures primarily studied in the previous literature.

» Feedforward structure: Each of a set of agents makes a
decision in sequence based on its private measurement and
the decisions of some or all previous agents. For example,
we usually decide on which restaurant to dine in or which
movie to go to based on our own taste and how popular they
appear to be with previous patrons. Investors often behave
similarly in asset markets.

+ Hierarchical tree structure: Each agent makes a decision
based on its private measurement and the decisions of its
descendent agents in the tree. This structure is common
in enterprises, military hierarchies, political structures, on-
line social networks, and even engineering systems (e.g.,
sensor networks).

The problem of social learning as described above is closely
related to the decentralized detection problem. The latter con-
cerns decision making in a sensor network, where each of the
sensors is allowed to transmit a summarized message of its mea-
surement (using a compression function) to an overall decision
maker (usually called the fusion center). The goal typically is
to characterize the optimal compression functions such that the
error probability associated with the detection decision at the
fusion center is minimized. However, this problem becomes in-
tractable as the network structure gets complicated. Much of
the recent work studies the decentralized detection problems in
the asymptotic regime, focusing on the problems of the conver-
gence and convergence rate of the error probability.

A. Related Work

The literature on social learning is vast spanning various dis-
ciplines including signal processing, game theory, information
theory, economics, biology, physics, computer science, and sta-
tistics. Here we only review the relevant asymptotic learning
results in the two aforementioned network structures.

1) Feedforward Structure: Suppose that a set of agents
make decisions sequentially about the underlying truth 6,
which equals one of two hypotheses. The first agent makes a
measurement of § and generates a binary decision d;, which is
observed by all the other agents. The second agent makes its
decision d, based on its own measurement and d; . Recursively,
the decision dy of the Nth agent is based on its own mea-
surement and the decisions observed from agents 1 to V — 1.
Banerjee [3] and Bikchandani ef al. [4] show that in the case
where the agent signals only allow bounded private belief;
i.e., the likelihood-ratio of each signal is bounded, if the first
two agents make the same decision, then the rest of the agents
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would simply copy this decision ignoring their own measure-
ments, even if their own measurements indicate the opposite
hypothesis. This interesting phenomenon is also known as
herding. Moreover, we have limy_,o. P(dxy = 6) < 1, which
means that the agent decisions do not converge in probability
to the underlying true hypothesis as the number of agents
goes to infinity; i.e., the agents cannot learn asymptotically.
Smith and Sorensen [5] show that if the agent signals allow
unbounded private beliefs; i.e., the likelihood-ratio of each
signal can be greater than any constant, then these agents
learn asymptotically. In other words, the agent decisions
converge in probability to the underlying true hypothesis:
limy oo P(dy = 6) = 1. Krishnamurthy [6], [7] studies
this problem from the perspective of quickest time change
detection. A similar scenario where agents make decisions
sequentially but each agent only observes the decision from
its immediate previous agent (also known as tandem network)
is considered in [8]-[12]. Veeravalli [11] shows that the error
probability converges sub-exponentially with respect to the
number N of agents in the case where the private measure-
ments are independent and identically Gaussian distributed.
Tay et al. [12] show that the error probability in general con-
verges sub-exponentially and derive an upper bound for the
convergence rate of the error probability. Djuric and Wang [13]
investigate the evolution of social belief in these structures.
Lobel et al. [14] derive a lower bound for the convergence
rate of the error probability in the feedforward structure where
each agent observes a decision randomly from all the previous
agents.

2) Hierarchical Tree Structure: In many relevant situations,
the social network structure is very complicated, wherein each
individual makes its decision not by learning from all the past
agent decisions, but from only a subset of agents that are di-
rectly connected to this individual. For complex network struc-
tures, Jadbabaie e al. [15] study the social learning problem
from a non-Bayesian perspective. Acemoglu et al. [16] provide
some sufficient conditions for agents to learn asymptotically
from a Bayesian perspective. Cattivelli and Sayed [17] study
this problem using a diffusion approach. However, analyzing
the convergence rate on learning for complex structures remains
largely open.

Recent studies suggest that social networks often exhibit hi-
erarchical structures [18]-[28]. These structures naturally arise
from the concept of social hierarchy, which has been observed
and extensively studied in fish, birds, and mammals [18]. Hier-
archical structures can also be observed in networks of human
societies [19]; for example, in enterprise organizations, military
hierarchies, political structures [22], and even online social net-
works [26].

In the special case where the tree height is 1, this structure
is usually referred as the star configuration [29]-[46]. With the
assumption of (conditional) independence of the agent measure-
ments, the error probability in the star configuration converges
exponentially with respect to the number N of agents. Tree
networks with bounded height (greater than 1) are considered
in [47]-[55]. In a tree network, measurements are summarized
by leaf agents into smaller messages and sent to their parent

agents, each of which fuses all the messages it receives with its
own measurement (if any) and then forwards the new message
to its parent agent at the next level. This process takes place
throughout the tree, culminating at the root where an overall
decision is made. In this way, information from each agent is
aggregated at the root via a multihop path. Note that the infor-
mation is ‘degraded’ along the path. Therefore, the convergence
rate for tree networks cannot be better than that of the star con-
figuration. More specifically, under the Bayesian criterion, the
error probability converges exponentially fast to 0 with an error
exponent that is worse than the one associated with the star con-
figuration [51].

The error probability convergence rate in trees with un-
bounded height was considered in [56] and [57]. We study in
[56] the error probability convergence rate in balanced binary
relay trees, where each nonleaf agent in this tree has two child
agents and all the leaf agents are at the same distance from the
root. Hence, this situation represents the worst-case scenario in
the sense that the minimum distance from the root to the leaves
is the largest. We show that if each agent in the tree aggregates
the messages from its child agents using the unit-threshold
likelihood-ratio test, then we can derive tight upper and lower
bounds for the total error probability at the root, which char-
acterize the convergence rate of the total error probability.
Kanoria and Montanari [57] provide an upper bound for the
convergence rate of the error probability in M -ary relay trees
(directed trees where each nonleaf node has indegree A and
outdegree 1), with any combination of fusion rules for all
nonleaf agents. Their result gives an upper bound on the rate
at which an agent can learn from others in a social network.
To elaborate further, the authors of [57] provide the following
upper bound for the convergence rate of the error probability
Py with any combination of fusion rules:

logy Py' = O (NlogM i ) : (1)

They also provide the following asymptotic lower bound for the
convergence rate in the case of majority dominance rule with
random tie-breaking: log, Py' = Q(N108a LM+1)/2]) 'In the
case where M is odd, the majority dominance rule achieves the
upper bound in (1), which shows that the bound is the optimal
convergence rate. However, in the case where M is even, there
exists a gap between these two bounds because of the floor func-
tion in the second bound. In this case, [57] leaves two questions
open:

Q1. Does the majority dominance rule achieve the upper

bound in (1)?

Q2. Do there exist other strategies that achieve the upper

bound in (1)?
In our paper, for the case where M is even, we answer the first
question definitively by showing that the majority dominance
rule does not achieve the upper bound in (1). For the second
question, we provide a strategy that is closer to achieving the
upper bound in (1) than the majority dominance rule.

Our paper also differs from (and complements) [57] in a

number of other ways. For example, our analysis also in-
cludes non-asymptotic results. Moreover, we also consider the
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Bayesian likelihood-ratio test! (the fusion rule for Bayesian
learning) as an alternative fusion rule, not considered in [57].
These differences should become clear as we clarify the contri-
butions of this paper in the next section.

B. Contributions

In this paper, we consider the learning problem in social net-
works configured as M -ary relay trees. Each agent at the leaf
level, and only such an agent, takes a direct measurement of the
underlying truth and generates a message, which is sent to its
parent agent. Each intermediate agent in the tree receives mes-
sages from its child agents and aggregates them into a new mes-
sage, which is again sent to its parent agent at the next level. This
process takes place at each nonleaf agent culminating at the root,
where a final decision is made. In this way, the information from
the leaf agents is aggregated into a summarized form at the deci-
sion maker at the root. This hierarchical structure is of interest
because it represents the worst-case scenario in the sense that
the leaf agents are maximally far away from the decision maker
at the root.

In the study of social networks, M -ary relay trees arise nat-
urally. First, as pointed out before, many organizational struc-
tures are well described in this way. Also, it is well-known that
many real-world social networks, including email networks [58]
and the Internet [59], are scale-free networks; i.e., the prob-
ability P(¢) that £ links are connected to a agent is P(¢) ~
cf~7, where ¢ is a normalization constant and the parameter
v € (2,3). In other words, the number of links does not de-
pend on the network size and is bounded with high probability.
Moreover, Newman et al. [60] show that the average degree in a
social network is bounded or grows very slowly as the network
size increases. Therefore, to study the learning problem in so-
cial networks, it is reasonable to assume that each nonleaf agent
in the tree has a finite number of child agents, in which case the
tree height grows unboundedly as the number of agents goes to
infinity.

In this paper, we study two ways of aggregating informa-
tion: the majority dominance rule (a typical non-Bayesian rule)
and the Bayesian likelihood-ratio test. Our contributions are as
follows:

1) In both cases, we have derived non-asymptotic bounds for
the error probabilities with respect to the number of leaf
nodes V. These bounds in turn characterize the asymptotic
decay rates of the error probabilities.

2) Suppose that the majority dominance rule with random
tie-breaking is applied throughout the tree. In the case
where M is even, we derive the exact convergence rate of
the error probability: log, Py! = ©(N'ogu L(MF1/2]y
Therefore, we show that the majority dominance rule with
random tie-breaking does not achieve the upper bound in
(1). (In the case where M is odd, our asymptotic decay
rate is consistent with the result in [57].)

3) Suppose that the Bayesian likelihood-ratio tests is applied.
We show that the convergence rate of the error probability

IBy the Bayesian likelihood-ratio test, we mean a likelihood-ratio test in
which the threshold is given by the ratio of the prior probabilities.

307

is logy, Py' = Q(N'&u LM+1D/21)  Therefore, the con-
vergence rate in this case is not worse than that in the ma-
jority dominance case. Hence in the case where M is odd,
the Bayesian likelihood-ratio test also achieves the upper
bound in (1).

4) In the case where M is even, we study an alterna-
tive majority dominance strategy, which achieves a
strictly faster convergence rate than the majority domi-
nance rule with random tie-breaking. The convergence
rate of the total error probability using this strategy is
log, Pyt = ©(Ne&u VM (M+2)/2y The ypper bound in
(1) involves an arithmetic mean of M + 2 and M. In con-
trast, the above rate involves the geometric mean of M + 2
and M . Therefore, the gap between this rate and the upper
bound in (1) is small and almost negligible when M is
large. We also show that the Bayesian likelihood-ratio test
achieves this convergence rate under certain conditions.

5) We propose a message-passing scheme involving non-bi-
nary message alphabets. We derive explicit convergence
rates of the total error probabilities in the following cases:
any combination of fusion rules, majority dominance rule
with random tie-breaking, Bayesian likelihood-ratio test,
and alternative majority dominance strategy. We also de-
rive tight upper and lower bounds for the average message
size as explicit functions of the spanning factor M.

II. PROBLEM FORMULATION

We consider the problem of binary hypothesis testing be-
tween Hy and H, with Py and P; as the probability measures
associated with the two hypotheses. The social network is or-
ganized as an M -ary relay tree shown in Fig. 1, in which leaf
agents (circles) are agents making independent measurements
of the underlying true hypothesis. Only these leaves have di-
rect access to the measurements in the tree structure. These leaf
agents then make binary decisions based on their measurements
and forward their decisions (messages) to their parent agents at
the next level. Each nonleaf agent, with the exception of the root,
is a relay agent (diamond), which aggregates M binary mes-
sages received from its child agents into one new binary mes-
sage and forwards it to its parent agent again. This process takes
place at each agent, culminating at the root (rectangle) where the
final decision is made between the two hypotheses based on the
messages received. We denote the number of leaf agents by IV,
which also represents the number of measurements. The height
of the tree is log,,; N, which grows unboundedly as the number
of leaf agents goes to infinity.

We assume that the decisions at all the leaf agents are in-
dependent given each hypothesis, and that they have identical
Type I error probability (also known as false alarm probability,
denoted by «) and identical Type II error probability (also
known as missed detection probability, denoted by ). In this
paper, we answer the following questions about the Type I and
Type 1I error probabilities:

* How do they change as we move upward in the tree?

* What are their explicit forms as functions of N?

* Do they converge to 0 at the root?

+ Ifyes, how fast will they converge with respect to N ?
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Fig. 1. An M -ary relay tree with height k. Circles represent leaf agents making
direct measurements. Diamonds represent relay agents which fuse A binary
messages. The rectangle at the root makes an overall decision.

For each nonleaf agent, we consider two ways of aggregating
M binary messages:

 In the first case, each nonleaf agent simply aggregates M
binary messages into a new binary decision using the ma-
jority dominance rule (with random tie-breaking), which
is a typical non-Bayesian fusion rule. This way of aggre-
gating information is common in daily life (e.g., voting).
For this fusion rule, we provide explicit recursions for the
Type I and Type II error probabilities as we move towards
the root. We derive bounds for the Type I, Type II, and
total error probabilities at the root as explicit functions of
N, which in turn characterize the convergence rates.

* In the second case, each nonleaf agent knows the error
probabilities associated with the binary messages received
and it aggregates M binary messages into a new binary
decision using the Bayesian likelihood-ratio test, which is
locally optimal in the sense that the total error probability
after fusion is minimized. We derive an upper bound for the
total error probability, which shows that the convergence
speed of the total error probability using this fusion rule is
at least as fast as that using the majority dominance rule.

III. ERROR PROBABILITY BOUNDS AND ASYMPTOTIC
CONVERGENCE RATES: MAJORITY DOMINANCE

In this section, we consider the case where each nonleaf agent
uses the majority dominance rule. We derive explicit upper and
lower bounds for the Type I, Type II, and total error probabilities
with respect to /V. Then, we use these bounds to characterize the
asymptotic convergence rates.

A. Error Probability Bounds

We divide our analysis into two cases: oddary tree (M odd)
and evenary tree (M even). In each case, we first derive the
recursions for the Type I and Type II error probabilities and
show that all agents at level k£ have the same error probability
pair (ag, 8% ). Then, we study the step-wise reduction of each
kind of error probability. From these we derive upper and lower
bounds for the Type I, Type II, and the total error probability at
the root.

1) Oddary Tree: We first study the case where the
degree of branching M is an odd integer. Consider an

agent at level %, which aggregates M Dbinary messages
e (- ué Lo w1t fromits child agents at level
k — 1, where uk e {0, 1} for all £. Suppose that u* is the
output binary message after fusion, which is again sent to the
parent agent at the next level. The majority dominance rule,

when M is odd, is simply
it M ub > M2,

Uk = { 17
0 0, if S ukt < My2.

Suppose that the binary messages {uf '}, have identical
Type I error probability « and identical Type II error probability
3. Then, the Type I and Type II error probability pair (o', ')
associated with the output binary message u” is given by:

M

a —IF’U HPO 71t = )
M M—-1
+< )Po ~1=0) H[P’O =1)+--
(M— 1)/2

M
' ((M - 1)/2) II Po(wi™ =0)
s=1
(1’\/[—‘,-1)/2

X H [FD() (uffl = 1)
= (o),

where f(a) := oM 44 (1) ) @M (1 -
and

YA -1)/2

M

HIF’1 ub 1l = )
+<M>P1 1—1 H Pl U’t =

M (M+1)/2
“(arp) TL Pt =)
(M—1)/2 -
X H Pl (uffl = 0)
t=1
- 1.

We assume that all the binary messages from leaf agents have
the same error probability pair (e, 5). Hence, all agent deci-
sions at level 1 will have the same error probability pair after
fusion: (aq, F1) = (f{@o), f(Bo)). By induction, we have

(f(akj), f(,Bk)) k= 07 1, cee ,1ngw N — 1,

where (v, 85 ) represents the error probability pair for agents at
the Ath level of the tree. Note that the recursions for a. and [
are identical. Hence, it suffices to consider only the Type I error
probability ay, in deriving the error probability bounds. Before

proceeding, we provide the following lemma.
Lemma 1: Let hi(z) = 2% + (‘Wl/[):p"""l(l —z)+ -+
(w) (1—x)*, where & and M are integers. Suppose that 0 < & <
M . Then, h}" is a monotone decreasing function of z € (0, 1).

)_|_...

(@ky1: Bry1) =
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Proof: We use induction in M to prove the claim. First we
note that A} (z) = 1 for all M. Suppose that M = 2. Then,
we have h?(x) = 2 — z. Suppose that M = 3. Then, we have
h3(x) = 3 — 22 and h3(x) = 22 — 3z + 3. Clearly, in these
cases hil are monotone decreasing functions of - € (0,1).

Now suppose that h;, are monotone decreasing functions of
x € (0,1)forallj = 2,...;om—1landk =1,....5 — 1.
We wish to show that h}* are monotone decreasing functions of
x € (0,1) forallk = 1,....,m — 1. We know that the binomial
coefficients satisfy

<m> (m — 1) (m — 1)
=1 + .
7 21— 1 7
_ m—1 + m—2 n m— 2 _
S\i—1 i—1 i N
_(m—1 N m — 2 n N k n k
C\i-1 i—1 i—1 i)
We apply the above expansion for all the coefficients in A} (z):

R (x) = oF + (T)xkl(l —w) 4t (k>(1 _ )

o (e (oot

n (mo— 1)$k1(1 )+
+ (T:__ll)(l — )k
=1+4+(1- Jd)h}iil(b],) + +(1- i)h;njl(x)
m—1
=1+{1-x) z h{;i(l)
=k

By the induction hypothesis, hi_l are monotone decreasing for
all j = k,...,m — 1. Moreover, it is easy to see that s
are positive for all j = k,...,m — 1. Therefore, because the
product of two positive monotone decreasing functions is also
monotone decreasing, h} is a monotone decreasing function of
2 € (0, 1). This completes the proof. [

Next we will analyze the step-wise shrinkage of the Type I
error probability after each fusion step. This analysis will in turn
provide upper and lower bounds for the Type I error probability
at the root.

Proposition 1: Consider an M-ary relay tree, where
M is an odd integer. Suppose that we apply the majority
dominance rule as the fusion rule. Then, for all £ we have

(M+1)/2 M
1 < agqr /oy, < ((M—l)/2)'

Proof: Consider the ratio of oy and (yngH)/Q:
ak+1/a,(gM+1)/2 _ ai)iwfl)/Q i (’\1[) ](:W 3)/2( — ) +

S+ ((Mﬂ)m)(l — )M -D/2_ First, we derive the lower

bound of the ratio. We know that 1 = (cv, + 1 — ey, )M ~1)/2 =

M-1)/2 M- p M-3)/2 M—
al(c )/ +((w 11)/2)%2 )/ (1—ak)+--~+(§§§,B§§)(1—
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)M =1/2 Moreover, it is easy to see that (*}) > ((M;I)/Q)
for all & = 1,2,...,(M — 1)/2. Consequently, we have

w1/, (MH)/ 2 > 1. Next, we derive the upper bound of the
ratio By Lemma 1, we know that the ratio r;41/ a(u+1)/ 2

is monotone) /1ncreas1ng as «yg — 0. Hence, we have
(M+1)/2 M

/oy < ((M—i)/Q)' -

The bounds in Proposition 1 hold for all a, € (0,1).

Furthermore, the upper bound is achieved at the limit as
ar — 0:limg, g aps1 /oy (M+1)/2 ((U 1)/2) Using the
above proposition, we now derive upper and lower bounds for
log, a,:l.

Theorem 1: Consider an M -ary relay tree, where M is an
odd integer. Let Ay; = (M + 1)/2. Suppose that we apply the
majority dominance rule as the fusion rule. Then, for all k& we
have A%, (logy ot — log, (M)) <logy a b < A logy ot

Proof: From the 1nequa11tles in Proposition 1, we have

_ (M+1)/2 _ A M

Qg1 = CroYy = cpo,™, where ¢ € [1,((M 1)/2)]
. by ATt An®

From these we obtain op = cp_1c,™...cg" 0” s

where ¢; € [1,((M¥1)/2)] for all i, and logy, ' =

—logy cp—1—Aar logy cr_o— */\f;:v;]' log, (:g—l—)\ﬁ,f log, aal.
Since log, c; € [0, log, ((Miii)/z)]’ we have
logy ;! < M logy ag . Moreover, we obtain

—log, ( Myi)m) — Aulogy ((Myl)ﬂ)

— Ay logy ((A,fili)p) + My logy ot
~(Mr = 1/ — 1) log, ( Miwl)/g) + Ajplogy ot >
/\i’fhl (10g2 (151 10g2 ((Mi/l)/g)) = /\ﬁf (108'2 0451
log, ( )\Wfl )) [

The bounds for log, 3, ! are similar and they are omitted for
brevity. Note that our result holds for all finite integer k. In
addition, our approach provides explicit bounds for both Type
I and Type II error probabilities respectively. From the above
results, we immediately obtain bounds at the root simply by
substituting £ = log,, IV into the bounds in Theorem 1.

Corollary 1: Let Prn be the Type I error probability at
the root of an M-ary relay tree, where M is an odd integer.
Suppose that we apply the majority dominance rule as the fu-
sion rule. Then, we have N'°8x 4 (log, ag " — log, (17 )) <
log, Pr 1\, < N'ogu A Jog, 0451.

2) Evenary Tree: We now study the case where M is even
and derive upper and lower bounds for the Type I error proba-
bilities. The majority dominance rule in this case is

log, a;l >

1, if Zt 1uf 1>M/2,

Wk 1w.p. Py, if ZM t =M/2,
¢ Owp.1— P, if Z Lubt = M/2,
0, if 2;”1 ubt < MJ2,

where P, € (0,1) denotes the Bernoulli parameter for tie-
breaking. We first assume that the tie-breaking is fifty-fifty; i.e.,
P, = 1/2. We will show later that this assumption can be re-
laxed. The recursions for the Type I and Type II error probabil-
ities are as follows:

M

S ICICRR

X = PO
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M1
HPU =1+

M/2

=0) 1:[1 Po (uf * =1)

-
M/2
“3lana) I

H Py (¢

= glar-1),
where gles 1) = oy + o+ (DY)l -
ay_1)M/? and
O = |F°1 71 = HIF’1 ut = )
M-1
M i
+(1>P1 HPl upt=0) 4
LMY Ty <) Mﬁzp (uft = 0)
2 M/2 s=1 ' ) t=1 ' !

= g(Bk—1)-

Next we study the step-wise reduction of each type of error
probability when each nonleaf agent uses the majority domi-
nance rule. Again it suffices to consider «y, since the recursions
are the same.

Proposition 2: Consider an M-ary relay tree, where M
is an even integer. Suppose that we apply the majority
dominance rule as the fusion rule. Then, for all & we have
1< akH/O‘iy/ = (\1/2)/2

The proof is given i Appendix A. The upper bound is

achieved at the limit as o, — 0; i.e., lim,, g o/k+1/akw/2 =

(U/Q)/ 2.

In deriving the above results, we assumed that the
tie-breaking rule uses P, = 1/2. Suppose now that the
tie is broken with Bernoulli distribution with some arbi-
trary probability P, € (0,1). Then, it is easy to show that
P, < agi1/ 042/[/ 2 < 2M  The bounds above are not as tight as
those in Proposition 2. However, the asymptotic convergence
rates remain the same as we shall see later. Next we derive
upper and lower bounds for the Type I error probability at each
level k.

Theorem 2: Consider an M -ary relay tree, where M is an
even integer. Let Ay = M /2. Suppose that we apply the ma-
jority dominance rule as the fusion rule. Then, for all £ we have
M (logy ag b — log, (M )) < logy oyt < Ak logy ag .

The proof is given in Appendix B. Similar to the oddary tree
case, we can provide upper and lower bounds for the Type [ error
probability at the root.

Corollary 2: Let Ppn be the Type 1 error probability at
the root of an M -ary relay tree, where M is an even integer.
Suppose that we apply the majority dominance rule as the fu-
sion rule. Then, we have N'°&x A (log, aal — log, (\A[I)) <
log, Ppi < N2 log, gt

Remark 1: Notice that the above result is only useful when
M > 4. For the case where M = 2 (balanced binary relay
trees), we have ap 1 = af + ap(l — ap) = ap and By =
B2+ Bk (1—Bi) = By; that s, the Type I and Type I error prob-
abilities remain the same after fusing with the majority domi-
nance rule.

Remark 2: We have provided a detail analysis in [56] of the
convergence rate of the total error probability in balanced binary
relay trees (M = 2) using the unit-threshold likelihood-ratio
test at every nonleaf agent. We show explicit upper and lower
bounds for the total error probability at the root as function of the
number N of leaf agents, which in turn characterizes the con-
vergence rate v/ V. Moreover, we show that the unit-threshold
likelihood-ratio test, which is locally optimal, is close-to glob-
ally optimal in terms of the reduction in the total error proba-
bility (see [61] for details).

Remark 3: Notice that the bounds in Corollaries 1 and 2 have
the same form. Therefore, the odd and even cases can be unified
if we simply let Ays = [(M 4 1)/2].

In the next section, we use the bounds above to derive upper
and lower bounds for the total error probability at the root in the
majority dominance rule case.

3) Total Error Probability Bounds: In this section, we pro-
vide upper and lower bounds for the total error probability P
at the root. Let my and 71 be the prior probabilities for the two
underlying hypotheses. It is easy to see that Py = moFPr n +
w1 Pps, v, where Py and Pyr n correspond to the Type I and
Type II error probabilities at the root. With the bounds for each
type of error probability in the case where the majority domi-
nance rule is used, we provide bounds for the total error proba-
bility as follows.

Theorem 3: Consider an M -ary relay tree, let Ayr = (M +
1)/2]. Suppose that we apply the majority dominance rule as the
fusion rule. Then, we have N'°2x A+ (log, max{cg, B} 1 —
log, (M)) < logy Pyt < NYsmMu(mplogyag ' +
w1 logs By )

Proof: From the definition of Pp; that is, Py =
moPr N + w1 Py N, we have Py < HlaX{PF’N7 P]V[J\T}.
In addition, we know that «; and (3; have the same re-
cursion. Therefore, the maximum between the Type I
and Type II error probabilities at the root corresponds
to the maximum at the leaf agents. Hence, we have
N8 M (log, max{ag, Bo} ~* — log, ( M )) < logy Py

By the fact that log, z~ ! is a convex function, we have
logy Py' < (mology Pp iy + m1logy P\} ). Therefore, we
have log, P 1 < N'0Bw Am (7o log, vy ' 7y log, By ., m

These non asymptotic results are useful. For example, if we
want to know how many measurements are required such that
Pn < e, the answer is simply to find the smallest /V that satisfies
the inequality in Theorem 3; i.e.,

, M
N'ogar Aw (log2 max{ vy, /30}*1 — log, ()\ )) > log, e L.
M

Hence we have

1 log N M
N> log, € _ ‘
log, max{ag, Gy}~ — log, (Aw)

The growth rate for the number of measurements is
O((logs e‘l)log”’ M).

B. Asymptotic Convergence Rates

In this section, we study the convergence rates of error prob-
abilities in the asymptotic regime as N — oc. We use the fol-
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lowing notation to characterize the scaling law of the asymptotic
decay rate. Let 7 and A be positive functions defined on positive
integers. We write j(N) = O(h(N)) if there exists a positive
constant ¢; such that j(N) < ¢ h(N) for sufficiently large N.
We write j(N) = Q(h(N)) if there exists a positive constant
¢o such that j(N) > coh(N) for sufficiently large V. We write
J(N) = O(R(N)) I j(N) = O(h(N)) and j(N) = Q(h(N)).

From Corollaries 1 and 2, we can easily derive the decay rates
of the Type I and Type II error probabilities. For example, for
the Type I error probability, we have the following.

Proposition 3: Consider an M-ary relay tree, let
[(M + 1)/2]. Suppose that we apply the ma-
jority dominance rule as the fusion rule. Then, we have
logy Pp = O(N'08u Aar),

Proof- To analyze the asymptotic rate, we may assume that
o 1s sufficiently small. More specifically, we assume that gy <
/(M ) In this case, the bounds in Corollaries 1 and 2 show that
log, P N = O(No8wm Av ), ]

Remark 4: Note that log,; A\a; is monotone increasing with
respect to M. Moreover, as M goes to infinity, the limit of
log s Aag is 1. That is to say, when M is very large, the decay
is close to exponential, which is the rate for star configuration
and bounded-height trees. In terms of tree structures, when M is
very large, the tree becomes short, and therefore achieves sim-
ilar performance to that of bounded-height trees.

Remark 5: From the fact that the Type I and Type II error
probabilities follow the same recursion, it is easy to see that
the Type II error probability at the root also decays to 0 with
exponent N10&a A

Next, we compute the decay rate of the total error probability.

Corollary 3: Consider an M -ary relay tree, let Ay = | (M +
1)/2]. Suppose that we apply the majority dominance rule as the
fusion rule. Then, we have log, PATI = O(N'ogw Av ),

For the total error probability at the root, we have similar
arguments with that for individual error probabilities. For
large M, the decay of the total error probability is close to
exponential.

A M =

IV. ERROR PROBABILITY BOUNDS AND ASYMPTOTIC
CONVERGENCE RATES: BAYESIAN LIKELIHOOD-RATIO TEST

In this section, we consider the case where the Bayesian like-
lihood-ratio test is used as the fusion rule. We derive an upper
bound for the total error probability, which in turn characterizes
the convergence rate. We show that the convergence rate in this
case is at least as fast or faster than that with the majority dom-
inance rule.

Theorem 4: Let IP 5 be the total error probability at the root
in the case where the Bayesian likelihood-ratio test is used as
the fusion rule in M -ary relay trees. We have

logy P!

M
S N M (log2 L' log, <2(M.4) max(?ro,m))) '

min(mg, w1 ) >

Proof: In the case where the majority dominance
rule is used, from Propositions 1 and 2, it is easy to show

that 1/2 < ((Jzk_,_l—l—ﬁk_,_l)/(ozk”+ﬁ>“4) < 2(>\’\I)
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Since z*¥ is a convex function for all M > 2, we have
(ap™ +6“)/9 > ((cu + Br)/2)*, which implies the
followmg. 27 AL < (@)™ 4 B (e, + Be)) < 1.
Hence, we obtain 27+ < (ayy1 + Big1)/((ar + Bi)*) <
2(;\M ). From these bounds and the fact that min(mo, 71 )(as +
Be) < moay + mfr < 111ax(7r0,7r1)(0zk + k), we have

AM min(wg,m TR 18— 2( max (o, 7 )
Zmax(rrg,vr(l)o/\’Ml) — .(;Di:iilﬁk)lt\l\; — r/\n:il'(q'g,ﬂ'l)A - Note
that mgary, + 710k is the total error probability for agents at
level k& and we denote it by L.

The Bayesian likelihood-ratio test is the optimal rule in
the sense that the total error probability is minimized after
fusion. Let LEET be the total error probability after fusing with
the Bayesian likelihood-ratio test. We have LLL_fIT L)‘ ML
Ly /LY < (2( M ) max(7, 7))/ (min(mg, 71)*# ). Using
a similar approach és that used in proving Theorem 1, we can
derive the following lower bound for log, ]Pg,rl:

) 2(;\‘{[) max(mp, 71)
— 10g- .
82 min{my, w1 )* M

|

From the above bound, we immediately obtain the following.

Corollary 4: Consider an M-ary relay tree, and let
Av = [(M + 1)/2]. Suppose that we apply the Bayesian
likelihood-ratio test as the fusion rule. Then, we have
log2 ]]_)er — Q(Nlog M AM )

Note that in the case where the majority dominance rule is
used, the convergence rate is exactly ©( N8 21} Therefore,
the convergence rate for the Bayesian likelihood-ratio test is at
least as good as that for the majority dominance rule.

log, IP

> Nlogu Aw <log2 L

V. ASYMPTOTIC OPTIMALITY OF FUSION RULES

In this section, we discuss the asymptotic optimality of the
two fusion rules considered in our paper by comparing our
asymptotic convergence rates with those in [57], in which
it is shown that with any combination of fusion rules, the
convergence rate is upper bounded as

logy Pyt = O (Nl(‘gw = 1) . )

A. Oddary Case

In the oddary tree case, if each nonleaf agent uses the majority
dominance rule, then the upper bound in (2) is achieved; i.c.,
logy Pyt = O(Nesa l(MF+D/2]y — g(Nlogwu (M+1)/2) This
result is also mentioned in [57]. Tay ef al. [51] find a similar
result in bounded-height trees; that is, if the degree of branching
for all the agents except those at level 1 is an odd constant, then
the majority dominance rule achieves the optimal exponent.

Now we consider the case where each nonleaf agent uses the
Bayesian likelihood-ratio test. Since the convergence rate for
this fusion rule is at least as good as that for the majority dom-
inance rule, it is evident that the Bayesian likelihood-ratio test,
which is only locally optimal (the total error probability after
each fusion is minimized), achieves the globally optimal con-
vergence rate. This result is also of interest in decentralized de-
tection problems, in which the objective is usually to find the
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globally optimal strategy. In oddary trees, the myopically op-
timal Bayesian likelihood-ratio test, which is relevant to so-
cial learning problems because of the selfishness of agents, is
essentially globally optimal in terms of achieving the optimal
exponent.

Remark 6: Suppose that each nonleaf agent uses the
Bayesian likelihood-ratio test and we assume that the two
hypotheses are equally likely. In this case, the output mes-
sage is given by the unit-threshold likelihood-ratio test:

H
(I, Pa(uf 1)) /(T Po(uf ")) Z 1. If the Type T and
Type 1II error probabilities at level 0 arne equal; i.e., ag = [y,
then the unit-threshold likelihood-ratio test reduces to the
majority dominance rule. The bounds for the error probabilities
in this case and those in the majority dominance rule case are
identical.

B. Evenary Case

In the evenary tree case, our results show that with the ma-
jority dominance rule, we have

logy Py' = © (J\fl‘”wt‘”e+ 1J) =0 (Nlogw —) )
This characterizes the explicit convergence rate of the total error
probability (cf. [57], in which there is a gap between the upper
and lower bounds for log, Pg,l). It is evident that the majority
dominance rule in this evenary tree case does not achieve the
upper bound in (2). However, the gap between the rates de-
scribed in (2) and (3) becomes smaller and more negligible as
the degree M of branching grows.

In the case of binary relay trees (M = 2), the gap is most sig-
nificant because the total error probability does not change after
fusion with the majority dominance rule. In contrast, we have
shown in [56] that the likelihood-rate test achieves convergence
rate vVN. For M > 4, we have shown that the convergence rate
using the Bayesian likelihood-ratio test is at least as good as that
using the majority dominance rule.

Now we consider the case where the alternative majority
dominance strategy (tie is broken alternatively for agents at con-
secutive levels) is used throughout the tree. In this case we have

ap = o+ (V) M0 = e )+ ()P0 -

g, 1)\1/2 and gy = all + (‘Y)a;’}jfl(l — )+ o+
(M%_l)ay/zﬂ(l — ay)M/271 Using Lemma 1, it is easy to
show that

Qg M )
1< < ( and
= M2 =
ak7/1 M/2

K41 M
et < () @
k

Theorem 5: Consider an M -ary relay tree, where M is an
even integer, and let Ap; = M /2. Suppose that we apply the
alternative majority dominance strategy Then, for even k we
have A72(Axr + 1)k/2(log2 gt —logy (7)) < logy o <
M2 + 1)%2 log, og

Proof: The case where M = 2 is easy to show using
the recursion for «ay and the proof is omitted. Now let us
consider the case where M > 4. From the inequalities in (4),

Anr+1 A Aar (A +1
M+ M kw A+ ), where

we have a1 = cpo = cpcp™

ce—1 and ¢ € [1, (\/[/2)] From these we obtain oy =
An  Am(An+1) )\M” (Aa+1)k/2-1 AMU (A +1)%/2

Ck—1C, " 2Ck 3 -Gy Qg )
where ¢; € [1, (‘}/2)] for all i, and log, ;' = —logy ci—1 —
- Aum k/2 (A + )k/2 1108,2 co + )\1\,1":/2()\M +

)¥/2logy ag . Since logyc; € [0, log, (\%Q)], we have
log, ozkfl < )\Mk/z()\M + 1)k/2 logy ag

log, ¢; < log, (A%Q). Hence,

L Moreover, we have

M
log, oz,?l > —log, ()\ )(1 + A+ Au(Aw + 1)

M
WA WER IS
+ 22 (Mg + 1) logy ag . (%)
Next we use induction to show that
AP O+ M2

< A2 00+ 1R (6)

1+ + AP +1)+

Suppose that & = 2. Then, we have 1 + Apy < Apr(Apr + 1),
which holds because Ay; > 2. Suppose that (6) holds when
k = ko. We wish to show that it also holds when k = kg + 1,
in which case we have

L4 Aag 4 -+ A2 (0 4 1)ke/21
+/\§2/2( Mg +1)k0/2+)\k0/2+1(/\ﬁ/l +1)k0/2
< 22K gy + 1)F0/2 o MR 1)Ro/2
< 2)\;2/2“()\” +1)k0/2 < )\ko/2+1()\]w _I_l)k-o/2+1_

Therefore, we have proved (6). Substituting this result in (5), we
obtain the desired lower bound. [ |

The bounds for log, 5, ! are similar and they are omitted for
brevity.

Corollary 5: Let Pr n be the Type I error probability at the
root of an M -ary relay tree, where M is an even integer. Sup-
pose that we apply the alternative majority dominance strategy.
Then, we have N'°&x VMM+2)/2(Jg0, o1 — log, (M)) <
logQ PI;}V < Nlogu N M(M+2)/2 10g2 050—

Coro?lary 6: Let Py be the total error probability at the root
of an M -ary relay tree, where M is an even integer. Suppose
that we apply the alternative majority dominance strategy. Then,
we have log, Py 3 = O(N'°8x \/M(M“)/Z) and log, Py' =
@(NlogM \/m/?f)

Note that when M = 2, log, Py' = ©(VN). Therefore,
the decay rate with this strategy is identical with that using the
Bayesian likelihood-ratio test. This is not surprising because we
show in [56] that the Bayesian likelihood-ratio test is essentially
either ‘AND’ rule or ‘OR’ rule depending on the values of the
Type I and II error probabilities. We also show that the same rule
will repeat no more than two consecutive times. Therefore, the
decay rate in this case is the same as that using the alternative
majority dominance strategy.

For the case where M > 4, suppose that ag and Fy are
sufficiently small and sufficiently close to each other. Then,
it is easy to show that the Bayesian likelihood-ratio test is
majority dominance rule with tie-breaking given by the values
of the Type I and II error probabilities. Moreover, we can
show that the same tie-breaking will repeat no more than two




ZHANG et al.: LEARNING IN HIERARCHICAL SOCIAL NETWORKS

N

SN 10g2 P,

lim lo
N—-ox
_O o
N w
‘ :

=}
pry
T

Fig. 2. Plot of error exponents versus the spanning factor 1. Dashed (red)
line represents the alternative majority dominance strategy. Dotted (blue) line
represents the majority dominance rule with random tie-breaking. Solid (black)
line represents the upper bound on exponent in (2).

consecutive times. In this case, the error probability decays as
@(NlogM \/m/z) .

Recall that the upper bound for the decay rate of the total
error probability with all combinations of fusion rules is
O(N'esm (M+1/2)) * which involves an arithmetic mean of
M + 2 and M. In contrast, the decay rate using the alternative
majority dominance strategy and Bayesian likelihood-ratio
test involves the geometric mean of M + 2 and M, which
means that these two strategies are almost asymptotic optimal,
especially when M is large.

The convergence rate of the total error probability using the
alternative majority dominance strategy is better that that the
random tie-breaking case. For illustration purposes, in Fig. 2 we
plot the exponent for the decay rate of the total error probability
versus the spanning factor M in these two cases. For compar-
ison purposes, we also plot the exponent in the upper bound
(2). We can see from Fig. 2 that alternative majority dominance
strategy achieves a larger exponent than that of the majority
dominance rule with random tie-breaking. Moreover, the gap
between the exponents in the alternative majority dominance
strategy case and the upper bound (2) is small and almost neg-
ligible.

VI. NON-BINARY MESSAGE ALPHABETS

In the previous sections, each agent in the tree is only allowed
to pass a binary message to its supervising agent at the next
level. A natural question is, what if each agent can transmit a
‘richer’ message? In this section, we provide a message-passing
scheme that allows general message alphabet of size D (non-
binary). We call this M -ary relay tree with message alphabet
size D an (M, D)-tree. We have studied the convergence rates of
(M, 2)-trees by investigating how fast the total error probability
decays to 0. What about the convergence rate when D is an
arbitrary finite integer?

We denote by u* the output message for each agent
at the kth level after fusing M input messages uf?fl =

313
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M

Fig. 3. A message-passing scheme for non-binary message alphabets in an
M -ary relay tree.

{ub ™t bt b 1) from its child agents at the (k — 1)th
level, where u¥ = € {0,1,...,D} forallt € {1,2,...,M}.

Case I: First, we consider an (M, D)-tree with height kg, in
which there are M*° leaf agents, and the message alphabet size
is sufficiently large; more precisely,

D> MRy, (7)

For our analysis, we need the following terminology:

Definition: Given anonleaf agent in the tree, a subtree leaf of
this agent is any leaf agent of the subtree rooted at the agent. An
affirmative subtree leaf is any subtree leaf that sends a message
of ‘1” upward.

Suppose that each leaf agent still generates a binary message
u® € {0,1} and sends it upward to its parent agent. Moreover,
each intermediate agent simply sums up the messages it receives
from its immediate child agents and sends the summation to its
parent agent; that is, u* = t\il uf ~1. Then we can show that
the output message for each agent at the kth level is an integer
from {0,1,...,M*} forall k € {0,1,...,ky — 1}. Moreover,
this message essentially represents the number of its affirmative
subtree leaf.

Because of inequality (7), at each level & in the tree, the mes-
sage alphabet size D is large enough to represent all possible
values of u* (k € {0,...,ko — 1}). In particular, the root (at
level kg) knows the number of its affirmative subtree leaves. In
this case, the convergence rate is the same as that of the star
configuration, where each leaf agent sends a binary message to
the root directly. Recall that in the star configurations, the total
error probability decays exponentially fast to 0.

Case II: We now consider the case where the tree height is
very large; i.e., (7) does not hold. As shown in Fig. 3, we apply
the scheme described in Case I; that is, the leaf agents send bi-
nary compressions of their measurements upward to their parent
agents. Moreover, each intermediate agent simply sends the sum
of the messages received to its parent agent:

M
k _ k—1
U, = E (T
=1

From the assumption of large tree height, it is easy to see that
the message alphabet size is not large enough for all the relay

®
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agents to use the fusion rule described in (8). With some abuse
of notation, we let &y to be the integer ky = [log, (D —1)] +1
(here, kg is not the height of the tree; it is strictly less than the
height). Note that M* ~! + 1 <D < M* 1.

From the previous analysis, we can see that with this scheme,
each agent at the kgth level knows the number of its affirma-
tive subtree leaves. Therefore, it is equivalent to consider the
case where each agent at level kg connects to its M*° subtree
leaves directly (all the intermediate agents in the subtree can be
ignored). However, we cannot use the fusion rule described in
(8) for the agents at kgth level to generate the output messages
because the message alphabet size is not large enough. Hence,
we let each agent at level ko aggregate the M * binary messages
from its subtree leaves into a new binary message (using some
fusion rule). By doing so, the output message from each agent at
the koth level is binary again. Henceforth, we can simply apply
the fusion rule (8) and repeat this process throughout the tree,
culminating at the root. We now provide an upper bound for the
asymptotic decay rate in this case.

Theorem 6: The convergence rate of the total error proba-
bility for an (M, D)-tree is equal to that for an (M*0, 2)-tree,
where kg = |logy, (D — 1)] + 1. In particular, let Py be the
total error probability at the root for an (M, D)-tree. With any

combination of fusion rules at level £k97 £=1,2,..., we have
log, Py' = O(N?), where p := ln&[ﬂ;kjl) - loi‘f 2

Proof: Consider an (M, D)-tree with the scheme described
above. It is easy to see that equivalently we can consider a tree
where the leaf agents connect to the agents at the kgth level
directly. In addition, because of the recursive strategy applied
throughout the tree, it suffices to consider the tree where the
agents at the £kgth level connect to the agents at the (£ + 1)kgth
level directly for all non-negative integers £. Therefore, the con-
vergence rate of an (M, D)-tree is equal to that of the corre-
sponding (M*o 2)-tree.

In the asymptotic regime, the decay rate in
(M,2)-trees is bounded above as follows [57]:
log, Py!' = O(N'esw (M+1)/2) " Therefore, the decay
rate for (MP*0,2)-trees is also bounded above as

log, Py! = O(N'"8arko (M%H)/z), which upon sim-
plification gives the desired result. ]

Suppose that each agent at level £k for all £ uses the majority
dominance rule. Then, we can derive the convergence rate for
the total error probability as follows.

Theorem 7: Consider (M, D)-trees where the majority dom-
inance rule is used. Let kg = [log,; (D — 1}]| + 1. We have
log, Py! = ©(N?), where

it M is odd,

if M is even.

In M*o

In(M*041)  log,, 2
— ko °
o 1— log,, 2

k(] ?

Proof: By Theorem 6, the performance of (M, D)-trees
is equal to that of (M*o,2)-trees, where kg = |log (D —
1)] + 1. For the asymptotic rate, we have log, Py b=
O(N108 k0 LM fo+1)/2 ), which upon simplification gives the
desired result. ]

Remark 7: Notice that limas o In(M* +1)/In M* =1,
which means that the even and odd cases in the expression for
o are similar when M is large.

Remark 8: From Theorem 7, we can see that with larger
message alphabet size, the total error probability decays more
quickly. However, the change in the decay exponent is not sig-
nificant because k¢ depends on D logarithmically. Furthermore,
if M is large, then the change in the performance is less sensi-
tive to the increase in D.

Remark 9: Comparing the results in Theorems 6 and 7, we
can see that the majority dominance rule achieves the optimal
exponent in the oddary case and it almost achieves the optimal
exponent in the evenary case.

For the Bayesian likelihood-ratio test, we have the following
result.

Theorem 8: The convergence rate using the likelihood-ratio
test is at least as good as that using the majority dominance rule;
ie,log, IPyt = Q(N9).

In the case where M is even, we can derive the decay rate
using the alternative majority dominance strategy.

Theorem 9: The convergence rate using the alternative ma-
jority dominance strategy is log, Py' = Q(N?), where o =
l<1+ln(M""0 +2))  logy, 2
2 In MFo ko

Theorem 8 and 9 follow by applying the same arguments as
those made in proofs of Corollary 4 and Theorem 6 and the
proofs are omitted for brevity.

The message-passing scheme provided here requires message
alphabets with maximum size D. However, most of the agents
use much ‘smaller’ messages. For example, the leaf agents gen-
erate binary messages. It is interesting to characterize the av-
erage message size used in our scheme. Because of the recur-
sive strategy, it suffices to calculate the average message size
in a subtree with height £y — 1 since the message sizes in our
scheme repeat every kg levels. The message size (in bits) for
agents at level t € {0,1,...,ky — 1} is logy(M* + 1) and the
number of agents at level ¢ is M*~*. Hence, the average size
b(ko) in bits used in our scheme is

_ MM Mlogy(MR! 4 1)
b(ko) = Mko ¥ Mka-1 4 1+ M
1o Mbo—tlog,(M* + 1)

Ly M

We have log, (M*+1) > log, M* = tlog, M andlog,(M*+1)
< logs(2M*') = 1+ tlog, M forall ¢ > 1. Hence, the average
size in bits is lower bounded as

bko) > Mko 4 MFo—Ylog, M + -+ M(ko — 1)logy M
Mko & MEo-1 1 ... L M
Mo
T Mko £ Mbo1 4 ... 4 M
logy M(M?*(MYo—t — 1) — M(M — 1)(ky — 1))
(Mk*o + Mko—1 ... 4+ M)(M — 1)?
_ Mbo — Mkl Mlog, M
Mko — 1 M-1
Mkro=1 1 — M(M —1)(kg — 1)

X YO .
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Fig. 4. (a) Average message size (dashed red line) in M = 10 case. (b) Av-
erage message size (dashed red line) in M/ = 20) case. The blue lines represent
the bounds in (9).

In addition, it is upper bounded as

_ Mlogy M M* =1 —1 - M(M — 1)(ky — 1)
b(ko) < 1
ko) < M1 Mo — 1
logy, M
<1 o2
T

Recall that, with sufficiently large kg, the error probability
convergence rates are close to exponential. However, from the
above bounds the average message size in terms of bits in our
scheme is still very small, specifically for sufficiently large kq
we have

logy, M
M-1

log, M1~
— — <blky) <1
M1 St S g

1+ )

Fig. 4 shows plots of the average message sizes b(kg) versus
ko in the M = 10 and 20 cases. Note that as M increases, the
average message size becomes smaller and the bounds in (9)

become tighter.

VII. CONCLUDING REMARKS

We have studied the social learning problem in the context
of M -ary relay trees. We have analyzed the step-wise reduc-
tions of the Type I and Type II error probabilities and derived
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upper and lower bounds for each error probability at the root
as explicit functions of N, which characterize the convergence
rates for Type I, Type II, and the total error probabilities. We
have shown that the majority dominance rule is not better than
the Bayesian likelihood-ratio test in terms of convergence rate.
We have studied the convergence rate using the alternative ma-
jority dominance strategy. Last, we have provided a message-
passing scheme which increases the convergence rate of the total
error probability. We have shown quantitatively how the con-
vergence rate varies with respect to the message alphabet sizes.
This scheme is very efficient in terms of the average message
size used for communication.

Many interesting questions remain. Social networks usually
involve very complex topologies. For example, the degree of
branching may vary among different agents in the network. The
convergence rate analysis for general complex structures is still
wide open. Another question involves the assumption that the
agent measurements are conditionally independent. It is of in-
terest to study the scenario where these agent measurements are
correlated. This scenario has been studied in the star configu-
ration [62]-[64] but not in any other structures yet. Yet another
question is related with the assumption that the communications
and agents are perfectly reliable. We would like to study the
rate of learning in cases where communications and agents are
non-ideal [65].

APPENDIX A

PROOF OF PROPOSITION 2

Proof: We consider the ratio of ajy; and 042'1/ z,

Ozk+1/O/M/2 = WM ﬂf)al(cM—z)p(l on) +
(1/2)(A%2)(1 — a3)M/2_ First, we show the lower

bound of the ratio. We know that (a + 1 — ak)M/Q =

4 (ol R+ () 1) <

and () > (M/z) for all k = 1,2,...,M/2. More-
over, we have (x}fz) /2 > (:Zg) = 1. In consequence,
1/2 M/2

we have apy1/ay, > 1. Notice that cpy1/cy
?LAI/Z(OA]‘,)/Z + hM/?fl(ak)/Z By Lemma 1, the ratio
is monotone increasing as «; — (. Hence, we have

akH/afy/Z < (1/2)(§}§2> "

APPENDIX B
PROOF OF THEOREM 2

Proof: From the inequalities in Proposition 2, we have

c;a,}j/z ckaiM, where ¢ € [l, (zu/z)/2]
At AnrkTt )\w'

From these we obtain «y Cr—10,"5 ... ) ag™
e [, (w/z)/2] for all ¢, and logr, a, !
— Aurlogycp_o f” ! log, co +
. : b
Since logyc; € [0 log,2 (ij2) — U W
have logya,! < A% log,agy'. Moreover, we obtain
logy gt > Ak (logy ag M ]

Qpt1

where ¢;

— logy cx—1 )
Ak logs ag

— log, (M/Z) )-
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