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Abstract— This paper considers the problem of covering
an arbitrary point pattern—a set of AT' points in the
interval [0, 7]—with a subset of [0,7] that is drawn
from a predefined codebook. The subset is required to
contain either all or a certain proportion of the points
in the pattern, depending on the problem setting. Also, all

subsets in this codebook must have Lebesgue measure not

exceedingdT where d < 1 is a given constant. The problem
of interest here is to find the trade-off betweend and the

size of the codebook. We find this trade-off asymptotically
asT goes to infinity. When the subset is required to cover

provides a closed-form expression of the rate-
distortion function when the source is a homoge-
neous Poisson process of intensity

Rpois(d, \) = —Alogd, 0<d<1; (1)
shows that the rate-distortion function for any other
random source generating no more tharpoints
per second is at moRpois(d, A);

« shows thatRp.is(d, A) is achievable in the adversar-

all the points, the answer turns out to be the same as in
the case where the points were randomly generated by a
Poisson process of intensity, the latter being obtained in
an earlier work.

ial setting where the source is arbitrary, containing
no more than\ points per second, and where the
codebook could be random; and

o extends all the above results to the Wyner-Ziv
setting [8] where the reconstructor knows some of

Consider a source that generates a “point patterr” the points in th? source. o _
a finite subset of the interval, T]. After observinge, ~ ©ON€ open question from [1] is in the adversarial
we draw a “covering set'—a subsat of [0, 7] which Setting: how many ran_dom bits are needed to generate
must containe—from a beforehand-prepared codeboofhe random codepook in order to cover adversarial point
of such subsets. Clearly there is a trade-off betwe@qtterns ofAT" points? In the present work we answer

the size of the codebook and the sizes (i.e., Lebesgiis question and show that we do not need any random
measures) of the covering sets in the codebook. bits at all: adeterministiccodebook of sizeros(4 )+,

This trade-off was first considered in [1] in the flavoVith any € > 0, is sufficient to cover all sizéd” point

of a continuous-time rate-distortion problem. Here thRatterns. We formulate and prove this result in Section .

rate R is defined as the logarithm of the size of thdn Section Il we also provide a self-contained converse
codebook divided by, and thedistortion d is defined proof for the adversarial setting which is entirely differ-

as the expected Lebesgue measure of the covering g@ifrom the converse proof fpr Poisson sources prpvided
divided by T', provided that it covers all the pointsIn [1]. This converse proof is based on a very simple

in the pattern. Unlike previous works on rate-distortiofonasymptotic lower bound on the codebook size. Both

problems for point processes (mostly Poisson processHY achievability and the converse proofs employ some

[2]-[6], this new model makes reconstruction in a spadd€@s Present in Goblick's thesis [9] and Wyner's paper

different from that of the source. Indeed, the source is&' COvering of the unit:-square [10], but they also
finite subset ofl0, T'], while the reconstruction set is jnCoNtain some new elements. Our result gives further

general uncountably infinite and has a positive Lebeng@”d""tic’n to the fact commented upon in [te Poisson

measure. Despite this asymmetry, this model turns oRfOCeSS is the most difficult to cover. _

to be very natural in that it has a simple solution, and Ve also consider the problem where only a proportion

that it is closely related to the Poisson channel [7]. of the points in the source must be covered, and derive
The work of [1] an expression on the minimum required rate. Namely, if

only b € (d,1] proportion of the points in the pattern
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are to be covered, then the minimum possible as well As Proof of Theorem 1—Achievability

achievable rate i8.D(b]d), where We show existence of a-covering codebook by

D 1—p probabilistic methods (see [11]).
Da(pllg) £ plog = + (1 —p)log T Pac0]] Like [1], we partition the interval0, '] into '/ A parts
e ¢ (2) of equal sizeA.?2 The parts are namely
is therelative entropybetween the two Bernoulli distri-
butions with parameterg and ¢, respectively. This part
is a generalization of the problem in Section Il and i
discussed in Section lII.

IAé{[()?A)a"'v[T*AaT]}a (8)

Since every point pattern i®(\,T) is covered by the

union of at most\T" parts inZ>, we now reduce the

problem of covering elements &f(\, T') to the problem

[I. COVERINGALL POINTS of covering all subsets o> of size \T'.2
We randomly generate a siZd-codeboolkC C {X C

We now formulate the covering-arbitrary-point-[()’T}: 1(X) = dT'} in the following way: each covering

patterns problem. LeP (A, T') denote the set of point set ¥ e C is the union ofdT’/A parts picked uniformly
patterns orf0, 77 that contain no more thak" points: from 74 and is chosen independently of the other

N covering sets irC.
PAT) ={z C[0,T]: |z < AT} ) Fix 22 C 72, |#®| = AT. The probability that a

) ) covering set randomly chosen as above cougtsis
Givend € (0, 1], let the codebook consist of subsets

of [0, 7] of Lebesgue measures not exceedifiy (T/A — )\T)
dT/A — T
CCYCO.T]: p(¥) <dT}, (@) T(TAY ©
(a772)

where p(-) denotes the Lebesgue measure ®nThe _ _ _
codebookC is called \-coveringif every point pattern Since allM covering sets it are chosen independently,
in P(\, T) is covered by at least one codeworddpi.e., the probability that no element iéi coversz* is

if

/A AT \\ M
Vo e PLT), X eC:iaC X, ) A AT
V=AY (10)
Denote (dT//A>
M(X,d,T) £ min{|C|: C is A-covering.  (6) \yhich is upper-bounded by
Our first result is the following: ( T/A - AT)
Theorem 1:For all A > 0 andd € (0,1], exp | - M dT/A — AT (11)
T/A ) :
lim W = —Alogd. @) (dT /A

. . asl—a<e *forall a eR.
Thbe_ proorl: ofdthe ";‘C(;‘_'e_‘é‘?‘b"'t{] pz_;\rt of Theo_rem 1 We next upper-bound the probability that there exists
combines the idea of dividing the intervl, T] into o4 e55t one\T-subset ofZ® that isnot covered by any

small parts as in [1] with the random covering idea agement inc. To this end, we use the union bound and
in [9], [10] (see also [11]) and is given in Section II'A'the fact that the total number off-subsets off2 is
The converse part of Theorem 1 can follow directly from
[1, Theorem 1]. However, we give an entirely new proof T/A (12)
to this converse which, unlike [1, Theorem 1], does not AT )
rely on any special property of the Lebesgue measure,
and is hence applicable to covering point patterns on?We assume\ to be small and ignore the edge effect tifabr dT
general measurable spaces. In the new proof we derfJight not be divisible byA.
icl b d h debook si Note that we do not need to consider subsetEdfof sizes smaller
a nonas_,ymptotlc Ower ound on the codebook siz&y,, AT, as every such subset is contained in a subset of size equal
(Proposition 1) which doesot follow from [1]. to AT



These vyield that the probability of interest is upperB. Proof of Theorem 1—Converse

bounded by We prove the following nonasymptotic lower bound
T/A - \T on |C|, and then the converse part of Theorem 1 follows
T/A <dT/A _ >\T> immediately:
( \T ) exp _MT/—A - (13) Proposition 1: Any \-covering codebook on [0, T
( dT/ A) whose codewords have Lebesgue measures not exceed-
ing dT" must satisfy
If (13) is less than one, then there must exist a deter- 1
ministic C that is A-covering. The condition (13) being IC| > T (20)
less than one is equivalent to
T/A Proof: We first observe_the fpllowing relation
(dT/A) T/A betweenP(\,T) and the AT-dimensional hypercube
M > 1n( ) (14) [0,7)<11AT}: every point in[0, 7]* AT} can be
(T/A - /\T) AT mapped to a point pattern i®(\,T) by collecting all
dT'/A — AT its coordinates. (Note that a point with two or more
We next apply the bound (see, e.g., [12]) identical coordinates is mapped to a point pattern with
onHa(k/n) " less thar\T" points.) We further observe that a point in
——F < ( ) < gndha(k/n) 15) [0,77<1AT} s contained in > {L--ATY with ¥ C
n+1 k [0,7T] if, and only if, all its coordinates lie i, i.e.,
where H,(-) denotes the binary entropy function: if the point pattern it maps to is covered kY. The

codebookC being A-covering is hence equivalent to

| A Th = (o, 7)< AT) 0 (21)
xXecC

Ha(p) & —plogp—(1—p)log(1—p), pe[0,1]. (16)
We obtain that (14) holds whenever

log M > ZHg(d) — (T — /\T) H, (d_ AA) Since by assumption(X) < dT for all X € C, we
A A 1=2AA know that the volume of each term inside the union in

T T 21) is at mostdT)*”. On the other hand, the hypercube
+log (% = AT+1) +log [ ~H,(AA)m2) . (17) ( : , the hyp
8 (A ) o8 (A 2(AA) In ) (27) on the RHS of (21) has volumE*”. Hence, for (21) to

Letting 7' increase to infinity we obtain that a sequencBold, we need

of A-covering codebooks of siz&/r exists if ol > TAT 1 -
. 1OgMT ‘ |_ (dT))‘Tiid)\iT‘ ( )
lim ————
T—o0 T ||
1 d—MA
> { \H2ld) = (A= AA)Hz  —1 ) ) (18) I1l. COVERING SOME POINTS

Let us now generalize the notion of “covering”. What
if, instead of all the\T' points, the codeword is only
required to cover a proportioh of these points? We
formulate this problem as follows.

lim 1 (Hz(d) — (1= AA)H; (d — /\A)) Let the set of point patternB(A,T") be as in (3) and
Alo A 1-XA the codeboolC be as in (4). Fixb € [0,1]. We say a
= —Alogd.  (19) patternz is b-coveredby a covering sef’ if

Since the RHS of (18) is achievable in the limitAgoes
to infinity for every positiveA, so must be its infimum
over A. This infimum is

This proves the achievability part of Theorem 1. | N XC| < (1—b)AT. (23)
Remark 1:A stronger version of Theorem 1 is true: o o

almost all codebooks generated by the random choice &&0debookC is said to be(), b)-coveringif

)\-covering_if We_discount a little in the trade-off between /. P(\T), 3X €C: ais b-covered byX. (24)

rate and distortion (where th3 loss goesitas1" goes

to infinity). Indeed, if we require (13) to be less tharPenote

some positive constant then with probability at least M T — i o ) . >

1 — e the codeboolC is A-covering. For any positive (A;b,d,T) = min{[C]: C'is (A, b)-covering.. (25)

this adds only a term o% loglog(1/¢) to the RHS of  Generalizing Theorem 1, we have the following the-

(17), which goes t@ asT goes to infinity. orem:



Theorem 2:For anyA > 0, b € [0,1] andd € (0,1], at least

. logM (A b,d, T AD;(bl|d), b>d AT —
jm_ 0820, >:{ 2(bl|d) (26) 1SR T (TN g
TS o0 0, b<d. AT 4= \ i dT /A —i

where Dy(-||-) is defined in (2).
N To this end, lety® be any sizeXT subset of 7
Not surprisingly, when we lefi = 1, the RHS of (26) without repetitionswhich contains all the elements that

becomes the RHS of (7). Also note that are in 2. Consider any covering set that coversi
1 elements iny®. We produce anothe\T — 1) covering
Do(b]|d) < blog =, b>d, (27)  sets in the following way: we fix the parts it that lie

outsidey®, and cyclically shift the parts i’ that lie
insidey®. For example, for a covering set that contains
"Bnly) the first and third parts ig?, we first shift it to

ne which contains the second and fourth partg

en shift it to one which contains the third and fifth
parts iny?, etc. Each one of thes®T covering sets
A. Proof of Theorem 2—Achievability (including the original one) covers elements iny~.
(Note, however, that some of thesd’ covering sets
might be the same.) If we uniformly pick one from these
AT covering sets, then the probability that each part
in y2, as well as each part in”, be covered is equal to
1/(AT). This further implies that the expected number of
covered parts iz® equalsi. Hence at least one of these
AT covering sets will cover no less tharparts inz®
(repetitions counted). In particular, if> bAT, then this
covering seth-coversz®. We have thus shown that at

. o A A
F:ontgms this point ta:™. Hence each part .m appears oast a proportion ot /(A\T") of all covering sets which
in £~ as many times as the number of pointgithat lie b-covery® will also b-coverz®. Since, by assumption,

in this part. (Note that, unlike in the covering-all-points A contains no repetitions, the number of covering sets

case, now we must take into account the repetitions ﬁiat b-coversy® is given by (28). This implies that the

parts _ina:A_, n_amely, we must _keep track O_f the numbep mber of different covering sets which covef is at
of points inside each occupied part. This is becau;s(gast (29)

missing at mosk occupied parts does not imply missing
at mostk points in the pattern.) Now a covering s&tb-
coverse if, and only if, it b-coversz?, i.e., if it covers at
leasth\T elements ofc™. Further, a codebook generate
as above i$-covering if, and only if, ith-covers all size- AT

S0 covering a proportiobof every pattern containing?’
points is easier than covering every pattern containi
bAT points.

The proof of Theorem 2 is a generalization of that
Theorem 1, and is given below.

We patrtition the interval0, T into parts of sizeA as
in (8). We then randomly generate a si¥&€odebookC
by choosing each covering set as the uniond@¥/ A
parts picked uniformly ifZ® independently of the other
covering sets in the codebook.

Fix a point patternc € P(\, T) with |z| = \T.* We
mapx to amultisetz® from 72 in the following way:
for each point inz, add the (unique) part if> which

We now obtain that the probability that a uniformly
chosen covering set wib-cover z®, wherex® is any
cfize—)\T multiset fromZ4, is at least

AT multisets fromZ~. 1 Z (AT) (T/ A- AT)
We first consider the case where the elements:df AT A= \ i ) \dT/A —i
are all different from each other. In this case, the total T/A (30)
number of covering sets that are of Lebesgue measure (dT/A)
dT, that are unions of parts i®, and that carb-cover
x is given by Since the covering sets ifi are chosen independently,
AT we further have that the probability that no element of
3 (AT) (T/ A— /\T> (28) C will b-coverz™ is at most
) 7 dT/A —i
i=bA\T M
We next show that, even if contains repetitions, the 1 <X /AT T/A - \T
total number of different codewords thaicover z2 is AT i_zb;T < i > (dT/A - z)
41t is sufficient to consider only those point patterns wetkactly ( T/A )
AT points, as a pattern with fewer points is always subset of a pattern dT / A

with A\T" points.



AT

1 Z AT\ (T/A = AT size Mt exists if
AT A= \ i dT/A —i
< exp = (31)
T/A . log M 1
(73) i 5 (2
d—nA\A
AT\ (T/A — AT —(1-)A) Hy <1_"AA>> 37)
< RY; i dT/A —i
= oxp T/A ’ for somen € [b,1]. Since (37) is achievable for all
AT dT/A positiveA and allp € [b, 1], we conclude that a sequence
i € {bAT,...,\T}. (32) of desired codebooks exists provided
10g MT

We next upper-bound the probability that there exists alim > min lim % (Hz(d) — AMAH,(n)

least one siz&T multiset fromZ2 that isnot covered * > r n€fb1] Al0
by any element of . To this end, we use the unior_1 bound —(1—AA) H, <d — WAA)) (38)
and the fact that the total number of such multisets is 1-2A
(T/A AT - 1). - = nren[})r,ll] Do(n||d) (39)
AT _ {Dz(bHd), b>d, 40)
These yield that the probability that there exists a mul- 0, b<d

tiset that is not covered by any element(bfs at most This completes the proof of the achievability part of

AT\ (T/A = AT Theorem 2.
T/A+ AT — 1 ( i ) (dT/A _ Z) Remark 2:Remark 1 in Section 1I-A applies here
( AT ) exp | -M T/A as well. Indeed, with probability — e for any e > 0 the
AT(dT/A) random choice will produce @\, b)-covering codebook
(34) without any loss in rate asymptotically & goes to

where i can be any integer betwedn\T and AT. If INfinity. _ _

(34) is less than one, then there must exist at least one Reémark 3:The discrete-time problem encountered
deterministic codebook thdtcovers all multisets, and IN our proof of the achievability part of Theorem 2
hence all size\T' point patterns. That (34) be less tharS Similar to a problem of covering binary vectors by

one is equivalent to a constant-weight code with some Hamming-covering
radius. More specifically, in the latter problem, we seek a
\T T/A 1 T/A+XT -1 constant-weight#I'/ A codeC such that, for any weight-
(dT/A) n( AT ) AT binary vector, there exists an element ®fwithin
M > AT\ [T/A =T (39) Hamming distancgl — 2b + d/A)AT from the vector.
( i ) (dT/A _ Z) This problem has been considered in [13].

We again apply the bound (15) to obtain that (35) hold8. Proof of Theorem 2—Converse

whenever Like in Section 1I-B, we map every point i, 7] T

T to a point pattern off0, 7. We consider only the points

log M > log(AT) + - Ha(d) — AT Hz(n) whose coordinates are all different. (The set of points

T d—n\A with identical coordinates has Lebesgue measure zero,
- <A - /\T) - H <1—>\A> and can hence be ignored.) Such a point is mapped to a

T point pattern containing exactlyT" points. If this point
+log(AT + 1) + log <A — AT+ 1) pattern isb-covered by.X', then at leasbAT" coordinates
of the corresponding point must be i, which means

+ log <H2 </\T> . ln 2) (36) the point must be contained in

T/A+ T -1
. ] o XXS % 07T X({l,...,AT}\S). 41
for somen € [b,1]. Letting T' increase to infinity we U [0.7] (41)
. K sC{1,...,A\T}:
obtain that a sequence A, b)-covering codebooks of |s|>bAT



The union (41) can also be written as the union ofhere in the second inequality we used (15). Next, note

nonoverlapping regions as follows:
AT

U U

i=bAT sC{1,...\T}:
|s|=i

XXS % ([O,T] \X)X({l,...,)\T}\S) .

(42)

We now know that, fo€ to be(\, b)-covering, the union
of (42) over allX € C must cover the whole hyper-

that

cube of [0, 7]*{-AT} (except perhaps for the sub-
set containing points with identical coordinates, whoggéombining (49) with (51) and letting increase to
Lebesgue measure is zero). Next note that the volurimdinity proves the converse part of Theorem 2.

of (42) is at most

AT _
> (4 )@y -am

1=bA\T
Therefore we have

(43)

T)\T

AT _
> (4 )@y -am)

i=bA\T

IC| = (44)

1

5 (AZ_T) £l — T

i=bA\T

(((1 —b)AT +1)

(45)

Y

()\T
. max .
i€{bAT,... AT} \ 1

)di(l — d)AT") _1. (46)

This further implies

log [C| > —log((1 — b)AT + 1)

AT ) 1
—log|( . | +ilog—
i d

1
T —1)log ——
+(A z)ogld}

min
i€{bAT,...,AT}

+

(47)

> —log((1 —b)AT + 1)
1 ) 1

(48)

min
i€{bAT,...,.\T}

+(AT — i) log li}
= —log((1=b)AT +1)

min

7
AT - Dz ( | d 49
+ e {bAT, AT} 2 <)\TH ) S

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(20]
(11]
(12]

(13]

. ?
min

D -
i€{bAT,.... AT} 2 ()\T

D

{
> i Dy | —
> inn 2 (5r]) o0
Dy(b||d), b>d
_ [ Da(blld). b>d, (51)
0, b <d.
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