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Abstract— This paper considers the problem of covering
an arbitrary point pattern—a set of λT points in the
interval [0, T ]—with a subset of [0, T ] that is drawn
from a predefined codebook. The subset is required to
contain either all or a certain proportion of the points
in the pattern, depending on the problem setting. Also, all
subsets in this codebook must have Lebesgue measure not
exceedingdT where d ≤ 1 is a given constant. The problem
of interest here is to find the trade-off betweend and the
size of the codebook. We find this trade-off asymptotically
as T goes to infinity. When the subset is required to cover
all the points, the answer turns out to be the same as in
the case where the points were randomly generated by a
Poisson process of intensityλ, the latter being obtained in
an earlier work.

I. I NTRODUCTION

Consider a source that generates a “point pattern”x—
a finite subset of the interval[0, T ]. After observingx,
we draw a “covering set”—a subsetX of [0, T ] which
must containx—from a beforehand-prepared codebook
of such subsets. Clearly there is a trade-off between
the size of the codebook and the sizes (i.e., Lebesgue
measures) of the covering sets in the codebook.

This trade-off was first considered in [1] in the flavor
of a continuous-time rate-distortion problem. Here the
rate R is defined as the logarithm of the size of the
codebook divided byT , and thedistortion d is defined
as the expected Lebesgue measure of the covering set
divided by T , provided that it covers all the points
in the pattern. Unlike previous works on rate-distortion
problems for point processes (mostly Poisson processes)
[2]–[6], this new model makes reconstruction in a space
different from that of the source. Indeed, the source is a
finite subset of[0, T ], while the reconstruction set is in
general uncountably infinite and has a positive Lebesgue
measure. Despite this asymmetry, this model turns out
to be very natural in that it has a simple solution, and
that it is closely related to the Poisson channel [7].

The work of [1]
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• provides a closed-form expression of the rate-
distortion function when the source is a homoge-
neous Poisson process of intensityλ:1

RPois(d, λ) = −λ log d, 0 < d ≤ 1; (1)

• shows that the rate-distortion function for any other
random source generating no more thanλ points
per second is at mostRPois(d, λ);

• shows thatRPois(d, λ) is achievable in the adversar-
ial setting where the source is arbitrary, containing
no more thanλ points per second, and where the
codebook could be random; and

• extends all the above results to the Wyner-Ziv
setting [8] where the reconstructor knows some of
the points in the source.

One open question from [1] is in the adversarial
setting: how many random bits are needed to generate
the random codebook in order to cover adversarial point
patterns ofλT points? In the present work we answer
this question and show that we do not need any random
bits at all: adeterministiccodebook of size2RPois(d,λ)+ε,
with any ε > 0, is sufficient to cover all size-λT point
patterns. We formulate and prove this result in Section II.
In Section II we also provide a self-contained converse
proof for the adversarial setting which is entirely differ-
ent from the converse proof for Poisson sources provided
in [1]. This converse proof is based on a very simple
nonasymptotic lower bound on the codebook size. Both
the achievability and the converse proofs employ some
ideas present in Goblick’s thesis [9] and Wyner’s paper
on covering of the unitn-square [10], but they also
contain some new elements. Our result gives further
validation to the fact commented upon in [1]:the Poisson
process is the most difficult to cover.

We also consider the problem where only a proportion
of the points in the source must be covered, and derive
an expression on the minimum required rate. Namely, if
only b ∈ (d, 1] proportion of the points in the pattern

1Unless otherwise stated, all logarithms in this paper are base-two.



are to be covered, then the minimum possible as well as
achievable rate isλD2(b‖d), where

D2(p‖q) , p log
p

q
+ (1− p) log

1− p

1− q
, p, q ∈ [0, 1]

(2)
is the relative entropybetween the two Bernoulli distri-
butions with parametersp andq, respectively. This part
is a generalization of the problem in Section II and is
discussed in Section III.

II. COVERING ALL POINTS

We now formulate the covering-arbitrary-point-
patterns problem. LetP(λ, T ) denote the set of point
patterns on[0, T ] that contain no more thanλT points:

P(λ, T ) , {x ⊆ [0, T ] : |x| ≤ λT}. (3)

Given d ∈ (0, 1], let the codebookC consist of subsets
of [0, T ] of Lebesgue measures not exceedingdT :

C ⊆ {X ⊆ [0, T ] : µ(X ) ≤ dT}, (4)

where µ(·) denotes the Lebesgue measure onR. The
codebookC is calledλ-covering if every point pattern
in P(λ, T ) is covered by at least one codeword inC, i.e.,
if

∀x ∈ P(λ, T ), ∃X ∈ C : x ⊆ X . (5)

Denote

M(λ, d, T ) , min{|C| : C is λ-covering}. (6)

Our first result is the following:
Theorem 1:For all λ > 0 andd ∈ (0, 1],

lim
T→∞

log M(λ, d, T )
T

= −λ log d. (7)

The proof of the achievability part of Theorem 1
combines the idea of dividing the interval[0, T ] into
small parts as in [1] with the random covering idea as
in [9], [10] (see also [11]) and is given in Section II-A.
The converse part of Theorem 1 can follow directly from
[1, Theorem 1]. However, we give an entirely new proof
to this converse which, unlike [1, Theorem 1], does not
rely on any special property of the Lebesgue measure,
and is hence applicable to covering point patterns on
general measurable spaces. In the new proof we derive
a nonasymptoticlower bound on the codebook size
(Proposition 1) which doesnot follow from [1].

A. Proof of Theorem 1—Achievability

We show existence of aλ-covering codebook by
probabilistic methods (see [11]).

Like [1], we partition the interval[0, T ] into T/∆ parts
of equal size∆.2 The parts are namely

I∆ ,
{
[0,∆), . . . , [T −∆, T ]

}
, (8)

Since every point pattern inP(λ, T ) is covered by the
union of at mostλT parts inI∆, we now reduce the
problem of covering elements ofP(λ, T ) to the problem
of covering all subsets ofI∆ of sizeλT .3

We randomly generate a size-M codebookC ⊆ {X ⊆
[0, T ] : µ(X ) = dT} in the following way: each covering
setX ∈ C is the union ofdT/∆ parts picked uniformly
from I∆ and is chosen independently of the other
covering sets inC.

Fix x∆ ⊆ I∆, |x∆| = λT . The probability that a
covering set randomly chosen as above coversx∆ is(

T/∆− λT

dT/∆− λT

)
(

T/∆
dT/∆

) . (9)

Since allM covering sets inC are chosen independently,
the probability that no element inC coversx∆ is1−

(
T/∆− λT

dT/∆− λT

)
(

T/∆
dT/∆

)


M

(10)

which is upper-bounded by

exp

−M

(
T/∆− λT

dT/∆− λT

)
(

T/∆
dT/∆

)
 , (11)

as1− a ≤ e−a for all a ∈ R.
We next upper-bound the probability that there exists

at least oneλT -subset ofI∆ that isnot covered by any
element inC. To this end, we use the union bound and
the fact that the total number ofλT -subsets ofI∆ is(

T/∆
λT

)
. (12)

2We assume∆ to be small and ignore the edge effect thatT or dT
might not be divisible by∆.

3Note that we do not need to consider subsets ofI∆ of sizes smaller
than λT , as every such subset is contained in a subset of size equal
to λT .
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These yield that the probability of interest is upper-
bounded by

(
T/∆
λT

)
exp

−M

(
T/∆− λT

dT/∆− λT

)
(

T/∆
dT/∆

)
 . (13)

If (13) is less than one, then there must exist a deter-
ministic C that is λ-covering. The condition (13) being
less than one is equivalent to

M >

(
T/∆
dT/∆

)
(

T/∆− λT

dT/∆− λT

) ln
(

T/∆
λT

)
. (14)

We next apply the bound (see, e.g., [12])

2nH2(k/n)

n + 1
≤

(
n

k

)
≤ 2nH2(k/n), (15)

whereH2(·) denotes the binary entropy function:

H2(p) , −p log p−(1−p) log(1−p), p ∈ [0, 1]. (16)

We obtain that (14) holds whenever

log M >
T

∆
H2(d)−

(
T

∆
− λT

)
H2

(
d− λ∆
1− λ∆

)
+ log

(
T

∆
− λT + 1

)
+ log

(
T

∆
H2(λ∆) ln 2

)
. (17)

Letting T increase to infinity we obtain that a sequence
of λ-covering codebooks of sizeMT exists if

lim
T→∞

log MT

T

>
1
∆

(
H2(d)− (1− λ∆)H2

(
d− λ∆
1− λ∆

))
. (18)

Since the RHS of (18) is achievable in the limit asT goes
to infinity for every positive∆, so must be its infimum
over ∆. This infimum is

lim
∆↓0

1
∆

(
H2(d)− (1− λ∆)H2

(
d− λ∆
1− λ∆

))
= −λ log d. (19)

This proves the achievability part of Theorem 1.
Remark 1:A stronger version of Theorem 1 is true:

almost all codebooks generated by the random choice are
λ-covering if we discount a little in the trade-off between
rate and distortion (where th3 loss goes to0 asT goes
to infinity). Indeed, if we require (13) to be less than
some positive constantε, then with probability at least
1 − ε the codebookC is λ-covering. For any positiveε
this adds only a term of1T log log(1/ε) to the RHS of
(17), which goes to0 asT goes to infinity.

B. Proof of Theorem 1—Converse

We prove the following nonasymptotic lower bound
on |C|, and then the converse part of Theorem 1 follows
immediately:

Proposition 1: Any λ-covering codebookC on [0, T ]
whose codewords have Lebesgue measures not exceed-
ing dT must satisfy

|C| ≥ 1
dλT

. (20)

Proof: We first observe the following relation
betweenP(λ, T ) and the λT -dimensional hypercube
[0, T ]×{1,...,λT}: every point in [0, T ]×{1,...,λT} can be
mapped to a point pattern inP(λ, T ) by collecting all
its coordinates. (Note that a point with two or more
identical coordinates is mapped to a point pattern with
less thanλT points.) We further observe that a point in
[0, T ]×{1,...,λT} is contained inX×{1,...,λT} with X ⊆
[0, T ] if, and only if, all its coordinates lie inX , i.e.,
if the point pattern it maps to is covered byX . The
codebookC beingλ-covering is hence equivalent to⋃

X∈C
X×{1,...,λT} = [0, T ]×{1,...,λT}. (21)

Since by assumptionµ(X ) ≤ dT for all X ∈ C, we
know that the volume of each term inside the union in
(21) is at most(dT )λT . On the other hand, the hypercube
on the RHS of (21) has volumeTλT . Hence, for (21) to
hold, we need

|C| ≥ TλT

(dT )λT
=

1
dλT

. (22)

III. C OVERING SOME POINTS

Let us now generalize the notion of “covering”. What
if, instead of all theλT points, the codeword is only
required to cover a proportionb of these points? We
formulate this problem as follows.

Let the set of point patternsP(λ, T ) be as in (3) and
the codebookC be as in (4). Fixb ∈ [0, 1]. We say a
patternx is b-coveredby a covering setX if

|x ∩ X c| ≤ (1− b)λT. (23)

A codebookC is said to be(λ, b)-covering if

∀x ∈ P(λ, T ), ∃X ∈ C : x is b-covered byX . (24)

Denote

M(λ, b, d, T ) = min{|C| : C is (λ, b)-covering}. (25)

Generalizing Theorem 1, we have the following the-
orem:
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Theorem 2:For anyλ > 0, b ∈ [0, 1] andd ∈ (0, 1],

lim
T→∞

log M(λ, b, d, T )
T

=

{
λD2(b‖d), b > d

0, b ≤ d.
(26)

whereD2(·‖·) is defined in (2).

Not surprisingly, when we letb = 1, the RHS of (26)
becomes the RHS of (7). Also note that

D2(b‖d) ≤ b log
1
d
, b > d, (27)

so covering a proportionb of every pattern containingλT
points is easier than covering every pattern containing
bλT points.

The proof of Theorem 2 is a generalization of that of
Theorem 1, and is given below.

A. Proof of Theorem 2—Achievability

We partition the interval[0, T ] into parts of size∆ as
in (8). We then randomly generate a size-M codebookC
by choosing each covering set as the union ofdT/∆
parts picked uniformly inI∆ independently of the other
covering sets in the codebook.

Fix a point patternx ∈ P(λ, T ) with |x| = λT .4 We
mapx to a multisetx∆ from I∆ in the following way:
for each point inx, add the (unique) part inI∆ which
contains this point tox∆. Hence each part inI∆ appears
in x∆ as many times as the number of points inx that lie
in this part. (Note that, unlike in the covering-all-points
case, now we must take into account the repetitions of
parts inx∆, namely, we must keep track of the number
of points inside each occupied part. This is because
missing at mostk occupied parts does not imply missing
at mostk points in the pattern.) Now a covering setX b-
coversx if, and only if, it b-coversx∆, i.e., if it covers at
leastbλT elements ofx∆. Further, a codebook generated
as above isb-covering if, and only if, itb-covers all size-
λT multisets fromI∆.

We first consider the case where the elements ofx∆

are all different from each other. In this case, the total
number of covering sets that are of Lebesgue measure
dT , that are unions of parts inI∆, and that canb-cover
x∆ is given by

λT∑
i=bλT

(
λT

i

)(
T/∆− λT

dT/∆− i

)
. (28)

We next show that, even ifx contains repetitions, the
total number of different codewords thatb-cover x∆ is

4It is sufficient to consider only those point patterns withexactly
λT points, as a pattern with fewer points is always subset of a pattern
with λT points.

at least

1
λT

λT∑
i=bλT

(
λT

i

)(
T/∆− λT

dT/∆− i

)
. (29)

To this end, lety∆ be any size-λT subset of I∆

without repetitionswhich contains all the elements that
are in x∆. Consider any covering set̃X that coversi
elements iny∆. We produce another(λT − 1) covering
sets in the following way: we fix the parts iñX that lie
outsidey∆, and cyclically shift the parts iñX that lie
insidey∆. For example, for a covering set that contains
(only) the first and third parts iny∆, we first shift it to
one which contains the second and fourth parts iny∆,
then shift it to one which contains the third and fifth
parts in y∆, etc. Each one of theseλT covering sets
(including the original one) coversi elements iny∆.
(Note, however, that some of theseλT covering sets
might be the same.) If we uniformly pick one from these
λT covering sets, then the probability that each part
in y∆, as well as each part inx∆, be covered is equal to
i/(λT ). This further implies that the expected number of
covered parts inx∆ equalsi. Hence at least one of these
λT covering sets will cover no less thani parts inx∆

(repetitions counted). In particular, ifi ≥ bλT , then this
covering setb-coversx∆. We have thus shown that at
least a proportion of1/(λT ) of all covering sets which
b-covery∆ will also b-coverx∆. Since, by assumption,
y∆ contains no repetitions, the number of covering sets
that b-coversy∆ is given by (28). This implies that the
number of different covering sets which coverx∆ is at
least (29).

We now obtain that the probability that a uniformly
chosen covering set willb-cover x∆, wherex∆ is any
size-λT multiset fromI∆, is at least

1
λT

λT∑
i=bλT

(
λT

i

)(
T/∆− λT

dT/∆− i

)
(

T/∆
dT/∆

) . (30)

Since the covering sets inC are chosen independently,
we further have that the probability that no element of
C will b-coverx∆ is at most1−

1
λT

λT∑
i=bλT

(
λT

i

)(
T/∆− λT

dT/∆− i

)
(

T/∆
dT/∆

)


M
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≤ exp

−M

1
λT

λT∑
i=bλT

(
λT

i

)(
T/∆− λT

dT/∆− i

)
(

T/∆
dT/∆

)
 (31)

≤ exp

−M

(
λT

i

)(
T/∆− λT

dT/∆− i

)
λT

(
T/∆
dT/∆

)
 ,

i ∈ {bλT, . . . , λT}. (32)

We next upper-bound the probability that there exists at
least one size-λT multiset fromI∆ that is not covered
by any element ofC. To this end, we use the union bound
and the fact that the total number of such multisets is(

T/∆ + λT − 1
λT

)
. (33)

These yield that the probability that there exists a mul-
tiset that is not covered by any element ofC is at most

(
T/∆ + λT − 1

λT

)
exp

−M

(
λT

i

)(
T/∆− λT

dT/∆− i

)
λT

(
T/∆
dT/∆

)


(34)
where i can be any integer betweenbλT and λT . If
(34) is less than one, then there must exist at least one
deterministic codebook thatb-covers all multisets, and
hence all size-λT point patterns. That (34) be less than
one is equivalent to

M >

λT

(
T/∆
dT/∆

)
ln

(
T/∆ + λT − 1

λT

)
(

λT

i

)(
T/∆− λT

dT/∆− i

) . (35)

We again apply the bound (15) to obtain that (35) holds
whenever

log M > log(λT ) +
T

∆
H2(d)− λTH2(η)

−
(

T

∆
− λT

)
·H2

(
d− ηλ∆
1− λ∆

)
+ log(λT + 1) + log

(
T

∆
− λT + 1

)
+ log

(
H2

(
λT

T/∆ + λT − 1

)
· ln 2

)
(36)

for someη ∈ [b, 1]. Letting T increase to infinity we
obtain that a sequence of(λ, b)-covering codebooks of

sizeMT exists if

lim
T→∞

log MT

T
>

1
∆

(
H2(d)− λ∆H2(η)

− (1− λ∆) H2

(
d− ηλ∆
1− λ∆

))
(37)

for some η ∈ [b, 1]. Since (37) is achievable for all
positive∆ and allη ∈ [b, 1], we conclude that a sequence
of desired codebooks exists provided

lim
T→∞

log MT

T
> min

η∈[b,1]
lim
∆↓0

1
∆

(
H2(d)− λ∆H2(η)

− (1− λ∆) H2

(
d− ηλ∆
1− λ∆

))
(38)

= min
η∈[b,1]

D2(η‖d) (39)

=

{
D2(b‖d), b > d,

0, b ≤ d.
(40)

This completes the proof of the achievability part of
Theorem 2.

Remark 2:Remark 1 in Section II-A applies here
as well. Indeed, with probability1− ε for any ε > 0 the
random choice will produce a(λ, b)-covering codebook
without any loss in rate asymptotically asT goes to
infinity.

Remark 3:The discrete-time problem encountered
in our proof of the achievability part of Theorem 2
is similar to a problem of covering binary vectors by
a constant-weight code with some Hamming-covering
radius. More specifically, in the latter problem, we seek a
constant-weight-dT/∆ codeC such that, for any weight-
λT binary vector, there exists an element ofC within
Hamming distance(1 − 2b + d/∆)λT from the vector.
This problem has been considered in [13].

B. Proof of Theorem 2—Converse

Like in Section II-B, we map every point in[0, T ]×λT

to a point pattern on[0, T ]. We consider only the points
whose coordinates are all different. (The set of points
with identical coordinates has Lebesgue measure zero,
and can hence be ignored.) Such a point is mapped to a
point pattern containing exactlyλT points. If this point
pattern isb-covered byX , then at leastbλT coordinates
of the corresponding point must be inX , which means
the point must be contained in⋃

s⊆{1,...,λT} :
|s|≥bλT

X×s × [0, T ]×({1,...,λT}\s). (41)
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The union (41) can also be written as the union of
nonoverlapping regions as follows:

λT⋃
i=bλT

⋃
s⊆{1,...,λT} :

|s|=i

X×s × ([0, T ] \ X )×({1,...,λT}\s)
.

(42)
We now know that, forC to be(λ, b)-covering, the union
of (42) over allX ∈ C must cover the whole hyper-
cube of [0, T ]×{1,...,λT} (except perhaps for the sub-
set containing points with identical coordinates, whose
Lebesgue measure is zero). Next note that the volume
of (42) is at most

λT∑
i=bλT

(
λT

i

)
(dT )i

(
(1− d)T

)λT−i
. (43)

Therefore we have

|C| ≥ TλT

λT∑
i=bλT

(
λT

i

)
(dT )i

(
(1− d)T

)λT−i

(44)

=
1

λT∑
i=bλT

(
λT

i

)
di(1− d)λT−i

(45)

≥
((

(1− b)λT + 1
)

· max
i∈{bλT,...,λT}

(
λT

i

)
di(1− d)λT−i

)−1

. (46)

This further implies

log |C| ≥ − log
(
(1− b)λT + 1

)
+ min

i∈{bλT,...,λT}

{
− log

(
λT

i

)
+ i log

1
d

+(λT − i) log
1

1− d

}
(47)

≥ − log
(
(1− b)λT + 1

)
+ min

i∈{bλT,...,λT}

{
−λTH2

(
i

λT

)
+ i log

1
d

+(λT − i) log
1

1− d

}
(48)

= − log
(
(1− b)λT + 1

)
+ λT · min

i∈{bλT,...,λT}
D2

(
i

λT

∥∥∥∥ d

)
, (49)

where in the second inequality we used (15). Next, note
that

min
i∈{bλT,...,λT}

D2

(
i

λT

∥∥∥∥ d

)
≥ min

i∈[bλT,λT ]
D2

(
i

λT

∥∥∥∥ d

)
(50)

=

{
D2(b‖d), b > d,

0, b ≤ d.
(51)

Combining (49) with (51) and lettingT increase to
infinity proves the converse part of Theorem 2.
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