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Abstract. In this paper we construct two mechanisms that fully implement social welfare

maximising allocation in Nash equilibria for the case of single infinitely divisible good being

demanded by a separate groups of agents, whilst being subject to multiple inequality constraints.

The nature of the good demanded is such that it can be duplicated locally at no cost. The first

mechanism achieves weak budget balance, while the second is an extension of the first, and

achieves strong budget balance at equilibrium. One important application of these mechanisms

is the multi-rate multicast service on the Internet where a network operator wishes to allocate

rates among strategic agents, who are segregated in groups based on the content they demand

(while their demanded rates could be different), in such a way that maximises overall user

satisfaction while respecting capacity constraints on every link in the network. The emphasis of

this work is on full implementation, which means that all Nash equilibria of the induced game

result in the optimal allocations of the centralized allocation problem.

1. Introduction

Allocation of services on the Internet is an important problem, not only from the system

performance point of view but also from an economic standpoint. As requirements from Internet

services increase, having appropriate markets for various services could lead to more efficient use

of available resources.

Once one introduces the notion of allocation of resources based on requiring specific payments

for services provided, the next logical step would be to model the system agents as being strategic

i.e. utility-maximising. In a general informationally (and physically) decentralised system, such

as the Internet, in order to make protocols work the designer would usually require dissemination

of (local) information from agents. It is here that enforcing of protocols becomes harder when

strategic users are present. For example, if a protocol requires agents to take action based in the

interest of whole network then in the absence of true local information, the designer cannot check

whether an agent adheres to the protocol. For strategic agents, the one thing we can ensure is
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that actions taken by agents would be so as to maximise their own profit. So the decentralised

information structure along with strategic agents requires the designer to venture into the field

of mechanism design. Mechanism design focuses on designing contracts which enforce strategic

agents to take actions that reveal their private information truthfully. Voting rules, auctions,

private and public good exchange economies are a few examples of fields where Economists have

used mechanism design extensively.

In this paper, we focus on a specific aspect of mechanism design, Nash Implementation.

Without going into a formal definition, Nash implementation refers to design of contracts such

that only the designer’s most preferred outcome is realised as a result of interaction between

strategic agents (Nash equilibria), whereas in general mechanism design, other less preferred

outcomes are also possible. Thus implementation is more stringent and is capable of producing

better allocations. For implementation, readers may refers to survey article [1] where the discus-

sion is in microeconomics context or one may refer to [2, 3] for mechanism design review with

networks and communications applications. Mechanism design for allocation of a single divisible

good in Internet framework has been discussed in [4, 5, 6], where implementation in general

unicast and multicast has been discussed in [7, 8, 9, 10]. All of the above as well as the work

here uses Nash equilibrium as a solution concept. Nash equilibrium is generally used as a solution

concept for complete information games and we discuss this aspect of modelling in section 4

where information assumptions are stated and also in the discussion in section 6.

We consider the problem of multi-rate multicast service provisioning. Here, on the same

network, different services with varying QoS within the same service are provided. The main

difference with unicast service is that here agents requesting the same service need not be serviced

by establishing completely separate connections for each; at common links only connection for

the agent with the highest QoS will be established thereby preventing duplication at that link.

In fact, multicast formalism subsumes the unicast one for any reasonable system performance

metric. Our aim is to build a mechanism who’s Nash equilibria give only such allocation that

maximises the utilitarian social welfare i.e. sum of agents’ utilities. Because of the framework of

multicast, there are two different aspects of resource allocation that we come across in this paper

- private and public goods. Overall due to the capacity constraints of the links on the network,

allocation of rate to one group of users will mean that such additional rate can no longer be

allocated to another group of users sharing this link - this is the private good aspect. On the

other hand within a group since the allocation via the capacity constraint is dictated only by the

highest QoS user from that group on that link, others in the group can be allocated additional

rate without having to affect somebody else’s allocation - this is the public good aspect.

The philosophy here is to allocate rates based on utilitarian social welfare maximisation, which

is a well-known criterion than encompasses fairly general requirements like Pareto optimality and

zero independence. In models without strategic users, researchers have argued for different types

of maximization criteria. One example is the max-min fairness for multicast is used in [11, 12,
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13, 14]. On the other hand, in [15, 16] authors have used integer and convex programming

to get decentralised algorithms that maximise utilitarian social welfare in the multicast problem.

One can argue in favour of maximising sum of utilities as follows; any allocation which is pareto-

dominated by another cannot be predicted as the outcome for a society since mere exchange

of resources will make everybody better off (a side market would facilitate this and a designer

would want to avoid this situation). For quasi-linear utilities e.g. utilities with a linear money

component, it can be shown that allocations that maximise sum of utilities (without money) are

the only Pareto optimal allocations.

The work here generalises the idea of proportional allocation that was introduced in mechanism

design framework by [5, 6] for the case of infinitely divisible single good (unicast) with only

one capacity constraint and for stochastic control of networks by [17]. We emphasize, that

in the context of this paper, proportional allocation does not reflect an attempt to allocate

resources in a fair manner. It is used as a way to translate users’ demands into actual allocations

taking into account the capacity constraints. Additionally, readers may be refer to [18] for a

full implementation mechanism that uses proportional allocation in the unicast framework. The

main advantage of proportional allocation is the off-equilibrium feasibility of allocation. This

means that even if agents do not play an equilibrium action profile, the allocation of rates would

still satisfy capacity constraints of all links in the network. So the communication system will

perform reliably even off-equilibrium; actually the allocation here is always on the boundary of

the feasible region thereby always utilising the system resources to the full extent. This is in

contrast to [9], where significant effort has been made to ensure budget balance off-equilibrium

but feasibility isn’t ensured off-equilibrium. The second contribution of this work is to demonstrate

how the budget balance property can be added to a non-budget balanced mechanism without

significant difficulty (at least in this setup). In section 5 we go on show that with the proportional

allocation idea it takes the exchange of one more signal to achieve this. Contrary to [5, 6], the

work here ensures full implementation of social welfare maximising allocation, so the designer

can guarantee that only the most efficient outcome will be reached and no other (this kind of

guarantee is substantially harder to make in a game-theoretic framework).

From a practical point of view, the work here establishes a tight upper bound on the number

of message exchanges required for implementation for the multicast problem. The agents here

are only required to communicate via announcing signals which consist of demands and prices as

opposed to generalised VCG mechanisms (refer to [1, 2, 19, 20] or section 5.3 in [21]), which

are widely used in mechanism design problems and require announcement of pay-off types (entire

valuation function in this case).

The remainder of this paper is structured as follows - in section 2 we state and characterise

the solution of the Centralised problem that we wish to implement in a decentralised manner.

In sections 4 and 5 we describe and prove our mechanisms for the weak and strong budget
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balance cases respectively. In section 6 we discuss relevant literature and salient features of our

mechanism in greater detail.

2. Centralised Problem

Formally, maximising social welfare will be defined via the centralised problem below.

Consider a set N of Internet agents who have been divided into disjoint groups (an agent

is considered as a pair of source and destination users). The set of groups is denoted by K =

f1; 2; : : : ;Kg and within a group k 2 K, the set of agents by Gk. Each group k 2 K has Gk

agents i.e. jGkj = Gk. From all this one can write N = f(k; i) j k 2 K; i 2 Gkg and that the

total number of distinct agents is N =
PK

k=1Gk. The agents communicate over pre-specified

routes on the Internet and the agents have been divided into groups based on the content they

demand. While the content demanded by different groups is distinct, within a group all agents

demand the same content but maybe at different rates. An allocation will be a vector x of rates

which has K = jKj elements, each of which are themselves vectors of sizes Gk, k 2 K. For this

denote by xki 2 R+ (where R+ is the set of non-negative real numbers) the rate allocated to

agent i of group k, of the content demanded by group k (from here on we will refer to such an

agent as agent ki). Agent’s valuation for an allocation x can be written as

~vki(x) = vki(xki) 8 ki 2 N

where vki(�) : R+ ! R, for all ki 2 N , which indicates that agent ki’s satisfaction depends only

on his information rate allocation xki. Due to capacity constraints on the utilised links, allocation

to agents is constrained by a number of inequality constraints - both on the network level as well

as the group level.

Separate Routes and Notation. Each agent has a fixed pre-determined route. The route

Lki of agent ki is the set of links that agent ki uses for his communication, and L = [ki2NLki

is the set of all available links. The set of agents utilising a link l 2 L is defined as N l = fki 2

N j l 2 Lkig. Also we define Gl
k = N l \Gk, the set of agents from group k who use link l and

Kl is the set of groups that have at least one agent that uses link l i.e. Kl = fk 2 K j Gl
k 6= ;g.

The magnitudes of the sets defined above are L = jLj, Lki = jLkij, G
l
k = jGl

kj and N l = jN lj.

In addition to group-wise ordering of agents, we also have ordering of agents within the group

for every link that is used by that agent. Any agent ki, on link l, will alternatively be also referred

to as

ki 7! glk(i) where 1 � glk(i) � Gl
k; 8 l 2 Lki:

Here the mapping is such that if for i; j 2 Gl
k and i > j then glk(i) > glk(j). This is done to

order agents in a group separately at every link. Note that given the previous definitions, this
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notation is redundant; however we define it because it will be useful later on. Inverse mapping

from ordering within a group and link will be denoted by (glk)
�1.

The network administrator is interested in maximizing the social welfare under the link

capacity constraints. This centralized problem is formally defined below.

max
x

X
k2K

X
i2Gk

vki(xki)

s.t. xki � 0 8 ki 2 N (C1)

and
X
k2Kl

max
j2Gl

k

f�l
kjxkjg � cl 8 l 2 L (C2)

Specifically, constraints C2 are the inequality constraints on allocation, which as mentioned above,

can be interpreted as capacity constraint for every link l 2 L, in the network. In this interpretation

�l
kj would be representative of the QoS requirement of agent j combined with the specific

architecture on link l. As an example, �l
kj =

1
Rkj(1��

l
kj
)

for all links l 2 Lkj, where �lkj represents

the packet error probability for link l for a packet encoded with channel coding rate Rkj.

2.1. Assumptions. Our analysis would be done under the following assumptions.

(A1) For all agents, vki(�) 2 Vki, where the sets Vki are arbitrary subsets of V0, the set

of all strictly increasing, strictly concave, twice differentiable functions R+ ! R with

continuous second derivative.

(A2) v0ki(0) is finite 8 ki 2 N . This also implies that v0ki(x) is finite and bounded 8 ki and

8 x since vki’s are concave.

(A3) Every link has at least two groups that use it, i.e. K l � 2 8 l 2 L.

(A4) The optimal solution of the centralised problem is such that on every link there are at

least 2 groups such that each has at least one non-zero component, i.e. if Sl(x) :=

fk 2 Kl j 9 i 2 Gl
k s.t. xki > 0g then the assumption says jSl(x?)j � 2 8 l 2 L

(where x? is the optimal solution of (CP)).

In addition, the coefficients are all strictly positive, i.e. �l
ki > 0 8 l 2 Lki, 8 ki 2 N . Also, for

well-posedness of the problem we take cl > 0 8 l 2 L.

Assumption (A1) is made in order for the centralized problem to have a unique solution and

for this solution to be sufficiently characterized by the KKT conditions. (A2) is a mild technical

assumption that is required in the proof of Lemma 4.7. Assumption (A3) is made in order to

avoid situations where there is a link constraint involving only one agent. Such case requires

special handling in the design of the mechanism (since in such a case there is no contention at

the link), and destructs from the basic idea that we want to communicate. Finally (A4) is related
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to (A3) and is made in order to simplify the exposition of the proposed mechanism, without

having to define corner cases that are of minor importance.

2.2. Necessary and Sufficient Optimality conditions. Following are the KKT conditions,

which are generally necessary, but in our case (due to all constraints being affine and strict

concavity of vki) they will also be sufficient. For this we first rewrite the centralised problem by

restating the capacity constraints differently

max
x;m

X
k2K

X
i2Gk

vki(xki)(CP)

s.t. xki � 0 8 ki 2 N (C1)

and
X
k2Kl

ml
k � cl 8 l 2 L (C2)

and �l
kixki � ml

k 8 i 2 Gl
k; k 2 K

l; l 2 L (C3)

Here the capacity constraints have been rewritten with the introduction of new variables. The

virtual variables ml
k represent the weighted maximum rate of group k on link l. It’s easy to see

that the solution of this problem is the same as the solution of the original centralised problem

as far as optimal x is concerned. Now we define the Lagrangian for (CP)

L(x; �; �; �) =
X
k2K

X
i2Gk

vki(xki)�
X
l2L

�l

0
@X
k2Kl

ml
k � cl

1
A

�
X
l2L

X
k2Kl

X
i2Gl

k

�lki
�
�l
kixki �ml

k

�
+
X
ki2N

�kixki

Here KKT conditions will be written without explicitly referring to �ki’s and just using the fact

that �?ki � 0 and �?kix
?
ki = 0 8 ki 2 N . With the assumptions above, it’s easy to see that the

KKT conditions below will give rise to a unique x? (and m?) as the optimiser for (CP).

KKT conditions:

a) Primal Feasibility:

x?ki � 0 8 ki 2 N and
X
k2Kl

ml
k

?
� cl 8 l 2 L

and �l
kix

?
ki � ml

k

?
8 i 2 Gl

k; k 2 K
l; l 2 L

b) Dual Feasibility: �?l � 0 8 l 2 L, �lki � 0 8 ki 2 N l, l 2 L

c) Complimentary Slackness:

�?l

0
@X
k2Kl

ml
k

?
� cl

1
A = 0 8 l 2 L

�lki
?
�
�l
kix

?
ki �ml

k

?
�
= 0 8 i 2 Gl

k; k 2 K
l; l 2 L(5)
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d) Stationarity:

v0ki(x
?
ki) =

X
l2Lki

�lki
?
�l
ki 8 ki 2 N if x?ki > 0

v0ki(x
?
ki) �

X
l2Lki

�lki
?
�l
ki 8 ki 2 N if x?ki = 0

and

(6) �?l =
X
i2Gl

k

�lki
?

8 k 2 Kl; l 2 L

Looking at (5), �lki
?

will be non-zero only if �l
kix

?
ki = ml

k

?
, so these can be interpreted as the

“prices” for only those agents who receive maximum weighted allocation from a group at a given

link. Consequently, from (6), �?l will be the sum of �lki
?

over those agents in a group for whom

it is non-zero and it is the same for all groups. �?l can be thought of as the common total price

subject to each group at link l.

3. Different Formulations of the Centralised Problem

The designer’s task is to ensure that the above optimum allocation is made. This clearly

requires the knowledge of vki’s even when constraints C1, C2 and C3 are completely known. The

premise of our problem is that we are dealing with agents who are strategic and for each of whom,

the designer doesn’t know their private information i.e. their valuation function vki(�). One way

forward for the designer could be to simply ask each agent to report their private information and

announce the solution of (CP), with reported functions in place of vki, for allocation. Apart from

the fact that asking to report a function creates a practical communication problem, the main

problem with this is that the agents could report untruthfully and end up getting a strictly better

allocation. For example, reporting a vki which has higher derivative than original at every point.

In mechanism design terminology, as stated, the allocation function arising out of (CP) isn’t even

partially implementable1. Restricting ourselves to a certain class of utility functions (quasi-linear

utilities), provides additional flexibility of penalising agents for reporting untruthfully by imposing

taxes/subsidies. In this way, another related problem is created which is implementable, and

which we will also show to be equivalent to (CP) as far as allocation is concerned. This leads us

to the following additional assumption about agents’ utilities

(A5) All agents have quasi-linear utilities, i.e. we can write overall utility functions as

uki(x; t) = vki(xki)� tki 8 ki 2 N

where in addition to allocation we have introduced taxes t (a vector like x).

1This can be deduced from the revelation principle. Indeed if there was a mechanism that even partially implements
the allocation function arising out of (CP), then there would exist also a truthful implementation. However, as
shown with the above example, such an implementation will always fail.
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Note that under assumption (A5), agent ki pays tax if tki > 0 and receives a subsidy if tki < 0.

Taxes affect utilities linearly and overall utility itself is valuation after adjustment for taxes (total

monetary representation of one’s state of happiness).

Because we talk about social welfare as our main objective, the centralised problem (CP) isn’t

complete until we fix who owns the good that is being allocated. Then one will have to further

check whether including their welfare in the objective function changes the optimum allocation.

As it turns out, under the assumption of quasi-linear utilities and cost of providing the good

being zero for the owner, optimum doesn’t change even if we involve the seller’s welfare. In this

regard, there are two interesting ways of reformulating (CP), as elaborated below.

3.1. First Reformulation of CP: Weak budget balance. We now introduce agent 0 as

the owner of the good (called the seller). The seller doesn’t have any costs for producing and

providing the good, i.e. his valuation is the zero function. This could be interpreted as the good

being already produced and ready to be provided, so those costs don’t come into consideration

for the seller as well as the designer. His utility is linear (since valuation is zero) and his revenue

is the total tax paid by the agents,
P

ki2N tki.

We define centralised problem (CP1) as

max
x;m;t

X
ki2N

uki(x; t) +
X
ki2N

tki(CP1)

s.t. C1 and C2 and C3

where now, instead of just taking agent’s valuations into account, we maximise the sum of their

overall utilities, with the addition of seller’s utility (which is only his revenue) - each agent pays

a tax tki, all of which goes to the seller, who has no valuation and therefore has utility equal to

sum of taxes. Anticipating that a rational seller will only sell if his revenue is non-negative we

can add a weak budget balance (WBB) constraint, which states

(WBB)
X
ki2N

tki � 0:

3.2. Second Reformulation of CP: Strong budget balance. In this case, in contrast to

(CP1), there is no separate seller. We can alternatively say that the agents are themselves the

owners of the good and are only looking to distribute the good (which they collectively own) in

a way such that sum of utilities is maximised. Therefore strong budget balance (SBB) constraint

is needed. This means that for the system N , no money has been introduced from the outside

and the agents wish that no excess money remain on the table either.
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The new centralised problem (CP2) resulting from the above interpretation can be stated as

max
x;m;t

X
ki2N

uki(x; t)(CP2)

s.t. C1 and C2 and C3

and
X
ki2N

tki = 0:(SBB)

The two problems defined above will be shown to be equivalent to (CP) where since our

original problem (CP) did not involve taxes, we will talk of equivalence only in terms of optimum

allocation, x?. Note that due to different conditions on taxes in the two, two different mechanisms

will be needed to implement them.

It is straightforward to see that (CP2) and (CP) are completely equivalent - due to constraint

(SBB), the objective for (CP2) is independent of t and is exactly the same as objective for (CP),

with same remaining constraints. Now for (CP1) and (CP2), since the constraints on x are the

same in (CP1) and (CP2) and the x�dependent part of the objective in (CP2) in independent

of t and is the same as the objective of (CP1), we can see that (CP1) and (CP2) are equivalent.

The two equivalences above automatically give the third one i.e. (CP) and (CP1).

The above equivalences mean that not only will x? be the same, but also that the necessary

and sufficient conditions describing it will be the same i.e. KKT conditions, for x? and �?; �?,

will be exactly the same for all three problems (additionally we will show (WBB) and (SBB)

constraints to be satisfied in respective formulations). This fact will be used in Sections 4, 5

where the KKT conditions from Section 2 will be treated as if they have been written for (CP1),

(CP2), respectively.

In Section 4, we will present a mechanism that fully implements (CP1) in Nash Equilibria

(NE), while in Section 5 we will modify our mechanism to fully implement (CP2) in NE.

4. A Mechanism with Weak Budget Balance

In this section we refer to (CP1) as the centralised problem. So we have all the agents in N

plus the seller and social welfare is in terms of everyone’s utility (including seller’s).

We will define a mechanism, in a way that doesn’t require knowledge of vki, whose game-form

will have NE in pure strategies such that the allocation which corresponds to the equilibria of

the game-form is same across all equilibria and is equal to the unique optimiser of (CP1), x?. In

addition, the mechanism will be such that everyone involved (including the seller) will be weakly

better-off at equilibrium than not participating at all.
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4.1. Information assumptions. Assume that vki(�) is a private information of agent ki and

nobody else knows it2. Let Ic be the set of common information between all agents, containing the

information about full rationality of each agent. Finally, let Id be the knowledge of the designer,

containing the information about constraints C1, C2, C3, the fact that Vki � V0; 8 ki 2 N and

that the seller has 0 valuation.

4.2. Mechanism. Formally, we have a set of environments V = �ki2NVki. We have seen

from KKT, how each element of V can be mapped to an allocation x? which maximises so-

cial welfare for that set of utilities. The allocation x? achieves the maximum of (CP1), and

correspondingly any tax t satisfying (WBB) would do.

In our mechanism, the designer would define an action space Ski for each agent ki 2 N . We

denote S = �ki2NSki the set of action profiles for all agents. In addition the designer defines and

announces the contract h : S ! RN
+�RN that maps every vector of messages received from the

agents into an allocation vector and a tax vector (thinking of x; t as vectors with N =
P

k2KGk

elements). The designer would then ask every agent ki 2 N to choose a message from the set

Ski based on which allocations (and taxes) would be made. The seller is not asked to take any

action, so as far as strategic decision making is concerned, we don’t need to consider him any

further. It is implicit in our mechanism in this section that when the tax t is imposed, the seller

gets revenue (or utility) of
P

ki2N tki.

Specifically, the designer would ask each agent to report ski = (yki; pki) where pki =�
(plki; q

l
ki)
�
l2Lki

. This includes their demand for the good and the “price” for each constraint

that they are involved, which they believe other(s) should pay. In this for every agent and link,

there are two quoted prices - plki and qlki; the first one represents the price for �l
kixki � ml

k

constraint and the second one for the constraint �l
kjxkj � ml

k where kj is the agent that can

alternatively be identified by glk(i) + 1. All this gives us Ski = R+ � R2Lki
+ . For received mes-

sages s = (s11; : : : ; s1N1
; : : : ; sK1; : : : ; sKNK

) = (y; P;Q) = (y11; : : : ; yKNK
; p11 : : : ; pKNK

) the

contract hki(s) = (hx;ki(s); ht;ki(s)) will be defined for each ki 2 N as follows.

If the received demand vector is y = (y11; : : : ; yKNK
) = 0 then the allocation is x =

(x11; : : : ; xKNK
) = 0. Otherwise it is evaluated by first generating a scaling factor r through

nlk := max
i2Gl

k

f�l
kiykig 8 k 2 Kl; l 2 L

r = min
l2L

rl

2This assumption is crucial because it raises the question of the validity of NE as a solution concept of the resulting
game, since that would require that all agents have complete information about everyone’s utilities. We believe
this is a serious problem in this entire line of research and that a Bayesian formulation would be more appropriate.
However, in this work we accept the justification–weak in our opinion–given by Reichelstein and Reiter in [22]
and Groves and Ledyard in [23].
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rl =

8>>><
>>>:

clP
k2Kl n

l
k

; if jSl(y)j � 2

clP
k2Kl n

l
k

� f l(nlk); if Sl(y) = fkg

+1 if jSl(y)j = 0

(7)

with

f l(nlk) = f l
�
(yi)i2Gl

k

�
=

cl

nlk(n
l
k + 1)

Using all these previously defined quantities, the allocation and taxes would be

hx;ki(s) = xki = ryki(8)

ml
k := rnlk 8 k 2 Kl; l 2 L

For tax we will first define total prices, wl
k; w

l
�k for any link l and group k 2 Kl

wl
k :=

X
i2Gl

k

plki �wl
�k :=

1

jKlnfkgj

X
k02Klnfkg

wl
k0 =

1

K l � 1

X
k02Klnfkg

wl
k0:(9)

where �wl
�k is well-defined due to assumption (A3).

ht;ki(s) = tki =
X
l2Lki

tlki(10)

where if Gl
k � 2 then consider agents kj and ke who have alternate representation on link l as

glk(i)� 1 and glk(i) + 1 (mod Gl
k), respectively

tlki = xki�
l
kiq

l
kj + (qlki � plke)

2 + (wl
k � �wl

�k)
2 + qlkj(p

l
ki � qlkj)(m

l
k � �l

kixki)

+ �wl
�k(w

l
k � �wl

�k)(c
l �

X
k02Kl

ml
k0);

and if Gl
k = 1 then

tlki = xki�
l
ki �w

l
�k + (wl

k � �wl
�k)

2 + �wl
�k(p

l
ki � �wl

�k)(m
l
k � �l

kixki)

+ �wl
�k(w

l
k � �wl

�k)(c
l �

X
k02Kl

ml
k0);

Here there are two levels of interactions that the mechanism is dealing with, one among

groups for allocation of maximums on each link and second within each group. Here agents are

contesting to demand allocation that makes full use of the fact that only maximum at each link

will give rise to a price on that link. At any link l and group k, total price wl
k is the summation of

prices quoted by all the agents in the group at link l. The quantity �wl
�k is calculated by averaging

the total prices for link l over all other groups than k. (vki), quoting of prices and demand is

used as a way of eliciting v0ki(xki) by comparing it appropriately with prices. In this vein, we do

not wish to influence �pl�k with prices quoted by groups whose agents aren’t using the link at all,

since the price then essentially doesn’t contain any information.
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The quantity hx;ki(s) creates allocation by first creating proxies nlk for weighted maximum

at each link for each group. Then ml
k’s are created by dilating/shrinking nlk’s on to one of the

hyperplanes defined by the second set of constraints in C2, specifically, that hyperplane for which

the corresponding ml
k’s are the closest to origin (this could also be at the intersection of multiple

hyperplanes). Finally allocation xki is calculated by dilating/shrinking yki by the same factor.

Another way to describe this is to say that the contract dilates/shrinks nlk to the boundary of the

feasible region defined by the capacity constraints and then allocations within a group are made

proportionally. Since all the �l
kj’s are positive, this means that all constraints in C2 are satisfied

for the allocation automatically (shown later). Additionally, the separate definition for rl when

jSl(y)j < 2 is to ensure (as it will be shown later) that there are no equilibria where jSl(y)j < 2.

This is required since we are only dealing with achieving solutions3 to (CP) which satisfy (A4).

The mechanism gives rise to a one-shot game G, played by all the agents in N , where action

sets are (Ski)ki2N and utilities are given by

ûki(s) = vki(xki)� tki = vki(hx;ki(s))� ht;ki(s) 8 ki 2 N

We will say that maximising social welfare for (CP1) has been fully implemented in NE , if the

outcomes (all possible NE) of this game produce allocation x? and all agents in N plus the seller

are better-off participating in the mechanism than opting out (getting 0 allocation and taxes).

The second property is known as individual rationality .

4.3. Results.

Theorem 4.1 (Full Implementation). For game G, there is a unique allocation, x, corre-

sponding to all NE. Moreover, x = x?, the maximiser of (CP). In addition, individual rationality

is satisfied for all agents and for the seller.

The theorem will be proved by a sequence of results, in which all candidate NE of G are

characterised by necessary conditions until only one family NE candidates is left. We will then

show that G has NE in pure strategies, and that all of them result in allocation x = x?. Finally,

individual rationality will be checked.

Lemma 4.2 (Primal Feasibility). For any action profile s = (y; P ) of game G, constraints

C1 and C2 are satisfied at the corresponding allocation.

Proof. Constraint C1 is clearly always satisfied. For y = 0 we will have x = 0 and m = 0,

so constraints C2 and C3 are also clearly satisfied. We will now show C2 and C3 for any y 6= 0

as demand. In that case r < +1 (since there exists at least one link q with jSq(y)j � 1 and

thus rq < +1). Now, for any link l, we have the following two cases. If jSl(y)j = 0 then the

3Note that for the given allocation function, jSl(y)j = 0; 1 is equivalent to jSl(x)j = 0; 1.
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allocation for all agents on that link is zero (along with the corresponding ml
k’s), so C2 and C3

for those links is satisfied. If jSl(y)j � 1 we have

X
k2Kl

ml
k = r

X
k2Kl

nlk � rl
X
k2Kl

nlk �
clP

k2Kl nlk

X
k2Kl

nlk = cl

where the first inequality holds because r is the minimum of all rl’s. The second inequality will

be equality if jSl(y)j � 2 and will be strict only if jSl(y)j = 1 (see second sub-case in (7)). For

C2, take any agent ki and link l 2 Lki

�l
kixki = r�l

kiyki � rnlk = ml
k

where the inequality holds because nlk is the maximum over �l
kiyki’s for all i 2 Gl

k. �

Feasibility of allocation for action profiles is a direct consequence of using projections of

demand y on to the feasible region. Now we will prove that all groups, using a link, quote the

same total price wl
k for that link at any equilibrium, this is brought about by the 3rd tax termP

l(w
l
k� �wl

�k)
2. This is a way of threatening agents with higher taxes just for quoting a different

price than average, at each link.

Lemma 4.3. At any NE s = (y; P ) of G, for any link l 2 L we have

wl
k = wl 8 k 2 Kl:

Also, for any group k and link l such that Gl
k � 2 if we take any agents i; e 2 Gl

k where alternate

representation for e is glk(i) + 1 then at equilibrium we will have qlki = plke. (which will denote

as plk;e)

Proof. First we will show the second part of the lemma, so suppose there are agents

i; e 2 Gl
k as above, for whom qlki 6= plke. Here if agent ki deviates with qlki

0
= plke then we can

write the difference in agent ki’s utility after and before deviation by just comparing tax for link

l (since allocation and tax for other links don’t change)

�ûki = �(qlki
0
� plke)

2 + (qlki � plke)
2 = (qlki � plke)

2 > 0

which means that the deviation was profitable. This gives us the second part of the lemma. (In

addition to defining qlki = plke = plk;e when Gl
k � 2 we will also denote plki = wl

k = plk;i when

Gl
k = fig).

For the first part, suppose there is a link l for which (wl
k)k2Kl are not all equal, at equilibrium.

Clearly then there is a group k 2 Kl for which wl
k > �wl

�k (this can be seen from (9)). We will

show that some agent i 2 Gl
k can deviate by reducing price plki and be strictly better off, thereby

contradicting the equilibrium condition. First we will take the case when the group k is such that

Gl
k � 2 and then Gl

k = 1.
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Since wl
k > �wl

�k we must have wl
k > 0 and since wl

k =
P

i2Gl
k
plki there must be an agent

i 2 Gl
k for whom plki > 0. Take deviation by this agent ki as plki

0
= plki � � > 0, for which we

can write the difference in utility, just as before, as

�ûki = �(wl
k � �wl

�k � �)2 + (wl
k � �wl

�k)
2 � plk;i(p

l
k;i � �� plk;i)(m

l
k � �l

kixki)

+ 0� �wl
�k(w

l
k � �� �wl

�k)(c
l �

X
k2Kl

ml
k) + �wl

�k(w
l
k � �wl

�k)(c
l �

X
k2Kl

ml
k)

= ��2 + 2�(wl
k � �wl

�k) + �plk;i(m
l
k � �l

kixki) + � �wl
�k(c

l �
X
k2Kl

ml
k)

�ûki = �

0
@��+ 2(wl

k � �wl
�k) + plk;i(m

l
k � �l

kixki) + �wl
�k(c

l �
X
k2Kl

ml
k)

1
A = �(��+ a)(11)

where a > 0 because of Lemma 4.2 and the fact that wl
k > �wl

�k. So by taking � such that

minfa; plkig > � > 0, the above deviation will be a profitable one for agent ki. This gives the

result for Gl
k � 2.

For Gl
k = 1, say Gl

k = fig, we have that plki = wl
k > �wl

�k. This again means that plki > 0

and we take the deviation plki
0
= plki � � > 0 and get

�ûki = �

0
@��+ 2(wl

k � �wl
�k) + �wl

�k(m
l
k � �l

kixki) + �wl
�k(c

l �
X
k2Kl

ml
k)

1
A :

Following the same argument as above we will get our result here as well. �

With Lemma 4.3, we can talk in terms of the common total price vector at equilibrium rather

than different total price vectors for all agents. In particular, any NE s = (y; P;Q) can be

characterized as s = (y; P ) with P = (pk;i)ki2N and pk;i =
�
plk;i

�
l2Lki

.

Later it will become clear how plk;i and wl take the place of dual variables �lki and �l when we

compare equilibrium conditions with KKT conditions, hence we identify the following condition

as dual feasibility.

Lemma 4.4 (Dual Feasibility). plk;i � 0, wl � 0 8 i 2 Gl
k, 8 k 2 Kl and 8 l 2 L.

Proof. This is also by design, since agents are only allowed to quote non-negative prices

and that wl is the sum of such prices. �

Following is the property that solidifies the notion of prices as dual variables, since here we

claim that inactive constraints do not contribute to payment at equilibrium. This notion is very

similar to the centralised problem, where if we know certain constraints to be inactive at the

optimum then the same problem without these constraints would be equivalent to the original.

The 4th and 5th terms in the tax function facilitate this by charging extra taxes for inactive
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constraints where the agent is quoting higher prices than the average of remaining ones, thereby

driving prices down.

Lemma 4.5 (Complimentary Slackness). At any NE s = (y; P ) of game G with corresponding

allocation x, for any agent i 2 Gl
k, group k 2 Kl and link l 2 L we have

wl

0
@X
k2Kl

ml
k � cl

1
A = 0; plk;i

�
�l
kixki �ml

k

�
= 0

Proof. Suppose there is a link l for which wl > 0 and
P

k2Kl ml
k < cl. Take any group

k 2 Kl and an agent i 2 Gl
k such that plki = plk;i > 0 (there is such an agent because

wl =
P

i2Gl
k
plki > 0). Take the deviation plki

0
= plk;i � � > 0 and we get (using same arguments

as in (11) and noting that wl
k = �wl

�k = wl)

�ûki = �

0
BB@��+ plk;i(m

l
k � �l

kixki)| {z }
�0 by Lemma 4.2

+wl(cl �
X
k2Kl

ml
k)

1
CCA = �(��+ a):

where a > 0 due to Lemma 4.2 and the assumption that wl(cl �
P

k2Kl ml
k) > 0. This gives us

that wl(cl �
P

k2Kl ml
k) = 0 for all l 2 L at equilibrium.

Now suppose there is an agent ki for whom plki = plk;i > 0 and �l
kixki < ml

k. Same as

before, we will take the deviation plki
0
= plki � � > 0,

�ûki = �
�
��+ plk;i(m

l
k � �l

kixki)
�
= �(��+ a)

where a > 0 by assumption. This gives us that plk;i(m
l
k��l

kixki) = 0 for all ki 2 N l and l 2 L,

at equilibrium. �

Lemma 4.6 (Stationarity). At any NE s = (y; P ) of game G, and corresponding allocation,

x, we have

v0ki(xki) =
X
l2Lki

plk;i�
l
ki 8 ki 2 N if xki > 0

v0ki(xki) �
X
l2Lki

plk;i�
l
ki 8 ki 2 N if xki = 0

and

(12) wl =
X
i2Gl

k

plk;i 8 k 2 Kl; 8 l 2 L

Proof. (12) is true by construction since we defined wl
k =

P
i2Gl

k
plki and by Lemma 4.3 we

have plk;i = plki and wl
k = wl.

At any NE, agent ki’s utility in the game ûki(s
0) = vki(hx;ki(s

0))� ht;ki(s
0) as a function of

his message s0ki = (y0ki; p
0
ki), with s�ki fixed, should have a global maximum at ski = (yki; pki).

This would mean that if this function was differentiable w.r.t. y0ki at s, the partial derivatives
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w.r.t. y0ki at s should be 0. However, since our allocation dilates/shrinks demand vector y0 on to

the feasible region, it could be the case that increasing and decreasing y0ki gives allocations lying

on different hyperplanes, meaning that the transformation from y0 to x0 is different on both sides

of yki and therefore we conclude that ûki could be non-differentiable w.r.t y0ki at s. Important

thing here however is to notice that right and left derivatives exist, it’s just that they may not be

equal. Hence we can take derivatives on both sides of yi as (noting that derivative of the other

terms in utility involving xki or involving ml
k will be zero due Lemma 4.3)

@ûki
@yki

0����
y0
ki
#yki

=

0
@v0ki(xki)� X

l2Lki

plk;i�
l
ki

1
A @x0ki
@y0ki

����
y0
ki
#yki

(13)

@ûki
@yki

0����
y0
ki
"yki

=

0
@v0ki(xki)� X

l2Lki

plk;i�
l
ki

1
A @x0ki
@y0ki

����
y0
ki
"yki

We will first show that the @xi=@yi term above (for either equation) is always positive. If y = 0

then clearly this is true, because if any agent ki demands yki > � while y�ki = 0 then clearly

xki > 0 (in fact the allocation is differentiable at y = 0). If y 6= 0 from (8), we can write

� :=
@xki
@yki

=
@(ryki)

@yki
= r + yki

@r

@yki
= rq + yki

@rq

@yki

where r = rq.

From here we divide our arguments into following cases: (A) ki =2 N q (, i =2 Gq
k); (B)

ki 2 N q, i =2 argmaxj2Gq
k
f�q

kjykjg and (C) ki 2 N q, i 2 argmaxj2Gq
k
f�q

kjykjg.

(A) Here clearly @rq=@yi = 0 and this makes � = rq > 0.

(B) Since value of rq depends only on the value of (nqk)k2Kq , and in this case changes in yki
don’t affect nqk we can see that @rq=@yki = 0 and so � = rq > 0.

(C) We divide this case into two cases: jSq(y)j � 2 or jSq(y)j = 1. If jSq(y)j � 2 then

� = rq + yki
@rq

@yki
= rq + yki

 
�

cq

(
P

k02Kq n
q
k0
)2

!
@nqk
@yki

:

Here
@n

q

k

@yki
is either �q

ki or 0. If it is 0 then � = rq > 0. Otherwise we have

� =
(rq)2

cq
X

k02Kqnfkg

nqk0

which is positive because jSq(y)j � 2, since then there is at least one positive term in the

summation. For jSq(y)j = 1, we will consider Sq(y) = fkg; else in case Sq(y) = fk0g 6= fkg,

taking the derivative would give the same expression as above. For Sq(y) = fkg we will get

rq =
cq

nqk
�

cq

nqk(n
q
k + 1)

=
cq

nqk

 
1�

1

nqk + 1

!
=

cq

nqk + 1
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� = rq + yki
@rq

@nqk

@nqk
@yki

where
@n

q

k

@yki
is either 0 or �q

ki. If it is 0 then � = rq > 0 and if it is �q
ki then we have

� =
(rq)2

cq

So we have � > 0 in all cases.

Referring to (13), there are two possibilities, the first term on RHS in both equations in (13)

is positive or negative. If it’s positive, then we can see from the first equation in (13) that by

increasing y0ki from yki (and therefore x0ki from xki) agent ki can increase his pay-off, which

contradicts equilibrium. Now similarly consider the first term in (13) to be negative, then from

the second equation in (13), agent ki can reduce y0ki from yki to get a better pay-off. But the

downward deviation in y0ki is only possible if yki > 0 (, xki > 0). So we conclude that

v0ki(xki) =
X
l2Lki

plk;i�
l
ki 8 ki 2 N if xki > 0

v0ki(xki) �
X
l2Lki

plk;i�
l
ki 8 ki 2 N if xki = 0

�

Collecting the results of the above lemmas, we can conclude that every NE satisfies the KKT

conditions of the (CP). This means we now have necessary conditions on the NE up to the point

of having unique allocation. In the next Lemma we verify the existence of the equilibria that we

have claimed.

Lemma 4.7 (Existence). For the game G, there exists equilibria s = (y; P;Q) = (y; P ),

where corresponding allocation (xki)ki2N and prices (plk;i)ki2N l; l2L and (wl)l2L satisfy KKT

conditions as (x?ki)ki2N , (�lki
?
)ki2N l; l2L and (�?l )l2L, respectively.

Proof. The proof is completed in two parts. Firstly we will check that for every x that

can be a possible solution to (CP) while satisfying assumption (A4) there is indeed at least one

y 2 RN
+ such that the allocation corresponding to y is x. (However we do not need to check the

same for prices and Lagrange multipliers (�; �) since there it is straightforward). Secondly we

will check that for the claimed NE, there are no unilateral deviations that are profitable.

In lieu of (A4), the optimal x? is such that jSl(x?)j � 2 for all links; also it is clear that x?

and m? are on the boundary of the feasible region defined by C1 and C2. So any vector y which

is a scalar multiple of x? would give allocation x? (and corresponding m will be equal to m?). So

in particular, y = x will also do the job. Hence our first task is done. (kindly see more detailed

comments at the end of this proof for why (A4) was required here)

Now we will check for profitable deviations. For this we want to show any action profile

that satisfies the hypothesis of above statement, is a NE. Due to assumptions on vi and by
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construction, where we have taxes and allocations that are continuous, so we can do this by

checking the first and second order conditions for any arbitrary agent, say agent ki. Price

derivatives are

@ûki
@plki

= �2(wl
k � �wl

�k)� qlkj(m
l
k � �l

kixki)� �wl
�k(c

l �
X
k02Kl

ml
k0) 8 l 2 Lki s.t. Gl

k � 2

This is clearly zero at equilibrium due to Lemma 4.3 and 4.5. Similarly we can get price derivative

equal to 0 when Gl
k = 1. Now referring to the differentiability arguments made in the proof of

Lemma 4.6, we symbolically write

@ûki
@yki

=

0
@v0ki(xki)� X

l2Lki

�l
kiq

l
kj

1
A @xki

@yki

!
�
X
l2Lki

qlkj(p
l
ki � qlkj)

 
@ml

k

@yki
� �l

ki

@xki
@yki

!

�
X
l2Lki

�wl
�k(w

l
k � �wl

�k)

0
@� X

k02Kl

@ml
k0

@yki

1
A

where as before we note that @xki
@yki

> 0, always (note that we have written the above expression

as if all links have Gl
k � 2 but the expression and consequent arguments won’t change much

even if there are links where Gl
k = 1). The second and third terms above are always zero at

equilibrium (due to Lemma 4.3). So if xki > 0 at equilibrium then the 1st term is also zero as

well (due to Stationarity) and if xki = 0 (, yki = 0) the 1st term is either negative, making

the whole derivative negative (this is fine since downward deviation isn’t possible from yki = 0),

or equal to zero. For the remaining of the proof we will consider the case where the first order

derivatives are equal to zero.

Second order partial derivatives are

upp :=
@2ûki

@plki@p
l
ki

= �2 upl12 :=
@2ûki

@pl1ki@p
l2
ki

= 0

upq :=
@2ûki

@plki@q
l
ki

= 0 upq12 :=
@2ûki

@pl1ki@q
l2
ki

= 0

uqq :=
@2ûki
@qlki@q

l
ki

= �2 uqlk :=
@2ûki
@qlki@q

k
ki

= 0 uqy :=
@2ûki

@qlki@yki
= 0

uyy :=
@2ûki

@yki@yki
=

0
@v0ki(xki)� X

l2Lki

�l
kiq

l
kj

1
A @2xki

@y2ki

!
+ v00ki(xki)

 
@xki
@yki

!

upy :=
@2ûki

@plki@yki
= qlkj

 
�l
ki

@xki
@yki

�
@ml

k

@yki

!
+ �wl

�k

0
@ X
k02Kl

@ml
k0

@yki

1
A

These derivatives will give us a Hessian H of size (2Lki + 1) � (2Lki + 1), where 1st row and

column represent yki and subsequent Lki rows and columns represent plki’s for different l’s and
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then the last Lki rows represent qlki’s. We want H to be negative definite at equilibrium. Now,

1st term in uyy is zero at equilibrium, and the 2nd term is strictly negative due to strict concavity

of vi. This along with upp = uqq = �2 tells us that all diagonal entries in H are negative. Also

notice that all off-diagonal entries, except the first Lki+1 in the first row and column, are zero.

Finally, note that due to assumption (A2), all prices are finite at equilibrium and so upy will be

finite. We will show that roots of the characteristic polynomial of H (i.e. its eigenvalues) all

become negative 8 y such that jyj sufficiently large.

For this, we take a generic matrix A0, which is similar in structure to H and has the same

dependence on jyj as H. So A0 will be of the form

A0 =

2
4A 0

0 D

3
5

where D = (�2)ILki
. In this case we know that eigenvalues of A and D together will give us all

the eigenvalues of A0. Clearly eigenvalues of D are �2 repeated Lki times, so all that we now

need to do is check whether all eigenvalues of A are negative. Entries in A are

a11 = �
a

jyj
aij = aji = 0 8 i; j > 1; i 6= j

aii = �2 a1i = ai1 =
bi�1
jyj

8 2 � i � Lki + 1

where a > 0 (and we don’t care about the sign of bi’s). We can explicitly calculate jA��Ij and

write the characteristic equation as

Q(�) =

 
�
a

jyj
� �

!
(�2� �)Lki +

PLki

i=1(�1)
ib2i

jyj2
(�2� �)Lki�1 = 0

So �2 is a repeated eigenvalue, Lki� 1 times. The equation for the remaining two roots can be

written as  
�
a

jyj
� �

!
(�2� �) +

C

jyj2
= 0

Necessary and sufficient conditions for both roots of this quadratic to be negative are 
2 +

a

jyj

!
> 0

2a

jyj
+

C

jyj2
> 0;

first of which is always true, since a > 0. The second one gives jyj > �C
2a

, which can be satisfied

(for large enough jyj) irrespective of the sign of constant C.

Hence we have shown the Hessian H to be negative definite for jyj large enough. �

Several comments are in order regarding the selection of the proportional allocation mechanism

and in particular (7). If we use “pure” proportional allocation i.e. same expression for rl for

jSl(y)j � 2 and � 1, then irrespective of optimal solution of (CP), for game G the “stationarity”
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property will not be satisfied for equilibria with jSl(y)j � 1. Thus the mechanism will result in

additional extraneous equilibria. For this reason we tweak the expression for rl when jSl(y)j � 1,

so that we can eliminate these extraneous equilibria - irrespective of the solution of (CP). With

this tweak in the expression for rl, all KKT conditions become necessary for all equilibria regardless

of the value of jSl(y)j. This however creates a problem in the proof of existence of equilibria.

In particular, if x? was such that it had links where jSl(x?)j = 1 then in our allocation this

would require y at NE such that jSl(y)j = 1. In this case the rl used would be lower than what

the proportional allocation requires (see second sub-case in (7)) and we actually would have the

problem of possibly not having any y that creates x? as allocation. Hence we have used (A4) to

eliminate this case.

Lemma 4.8 (Individual Rationality). At any NE s = (y; P ) of G, with corresponding alloca-

tion x and taxes t, we have

uki(x; t) � uki(0; 0) 8 ki 2 N(14)

and
X
ki2N

tki � 0 (WBB)

Proof. Because of Lemma 4.3, the only non-zero term in tki (see (10)) at equilibrium is

xki
P

l2Lki
�l
kip

l
k;i, which is clearly non-negative. Hence

P
ki2N tki � 0 at equilibrium. This is the

seller’s individual rationality condition.

Now if xki = 0 then we know from Lemma 4.3 and (10) that tki = 0 and so (14) is evident.

Now take xki > 0 and define the function

f(z) = vki(z)� z
X
l2Lki

�l
kip

l
k;i:

Note that f(0) = uki(0; 0) and f(xki) = uki(x; t), the utility at equilibrium. Since f 0(xki) = 0

(Lemma 4.6), we see that 8 0 < y < xki, f
0(y) > 0 since f strictly concave (because of vki).

This clearly tells us f(xki) � f(0). �

Now that we have Lemmas characterising NE in the same way as KKT conditions (and

individual rationality), we can compare them to prove Theorem 4.1.

Proof of Theorem 4.1. We know that the four KKT conditions produce a unique solu-

tion x? (and corresponding �?). For the game G, from Lemmas 4.2–4.6 we can see that at any

NE, allocation x and prices p satisfy the same conditions as the four KKT conditions and hence

they give a unique x = x?, as long as (A5) is satisfied. So we have that the allocation is x?

across all NE. This combined with individual rationality Lemma 4.8, gives us Theorem 4.1. �
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5. A Mechanism with Strong Budget Balance

We now turn our attention to problem (CP2). So in this case we have the agents in N ,

who are the owners and users that wish to allocate the good amongst themselves in a way that

maximises
P

ki2N uki. In this case one can now think of taxes as a way of facilitating efficient

redistribution of the already available good. Since all payments are made amongst agents in

N and we have quasi-linear utilities, this clearly tells us that
P

ki2N tki must be zero. This

interpretation is slightly different from Section 4, where taxes were indeed payments made to the

seller for provisioning of the good.

All of the above is required to be done again under the assumption of strategic agents, which

means the designer (who is a third party) still has the problem of information elicitation and

moreover has to make sure that the wealth has to be redistributed in a way that we still get x?

allocation at the all equilibria. Here we will say that the mechanism fully implements maximising

social welfare allocation if in addition to the previous conditions, we also have SBB.

5.1. Information assumptions. These are the same as Section 4.

For creating a mechanism in this formulation, main difference with the previous section, is

that we have to find a way of redistributing the total tax paid by all the agents. In the last section

we saw that the total payment made at the equilibrium is

B =
X
ki2N

0
@xki X

l2Lki

�l
kip

l
k;i

1
A = r

X
ki2N

0
@yki X

l2Lki

�l
kip

l
k;i

1
A

since all other tax terms were zero at equilibrium. We will redistribute taxes by modifying tax

function for each agent only using messages from other agents. This has the advantage of keeping

our equilibrium calculations in line with Section 4, since deviations by an agent wouldn’t affect

his utility through this additional term. In view of this, we can express B as follows

(15) B = r
X
ki2N

0
@X
l2Lki

1

N l � 1

X
k0j2N lnfkig

�l
k0jp

l
k0;jyk0j

1
A ;

where each term of the outer summation depends only on demands of agents other than the kith

one. This means that each term in the parenthesis (scaled by the factor r) can now be used as

the desired additional tax for user ki. Observe, however, that in our mechanism, each agent’s

demand affects the factor r as well. So, if all agents can agree on value of r then we can use

that signal to create the term that facilitates budget balance.

In lieu of this, our mechanism here works by asking for an additional signal �ki from every

agent and imposing an additional tax of (�ki � r)2, thereby essentially ensuring that all agents

agree on the value of r (via �ki’s) at equilibrium. Finally, we use ���ki (cf. (19)) as a proxy for r

in (15) - somewhat similar to what we did with �wl
�k’s.
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5.2. Mechanism. Now the actions sets Ski for agents will be R+�R2Lki
+ �R+ and actions

will look like ski = (yki; pki; �ki).

The designer announces the contract h : S ! RN
+ � RN and asks each agent to submit

their message (yki; pki; �ki). Then he makes allocations and taxes based on the contract for each

agent ki 2 N exactly as in (WBB) case, with the only exception that the tax is now defined as

ht;ki(s) = tki =
X
l2Lki

tlki + (�ki � r)2(16)

if Gl
k � 2, then again using agents kj and ke as described after (10), we have

tlki = xki�
l
kiq

l
kj + (qlki � plke)

2 + (wl
k � �wl

�k)
2 + qlkj(p

l
ki � qlkj)(m

l
k � �l

kixki)(17)

+ �wl
�k(w

l
k � �wl

�k)(c
l �

X
k02Kl

ml
k0)�

���ki
N l � 1

X
k0j2N lnfkig

�l
k0jq

l
k0j0yk0j

where agent k0j 0 is an agent who has alternate representation glk0(j) � 1 on link l, if Gl
k0 � 2.

However if Gl
k0 = 1 we would use �wl

�k0 instead of qlk0j0 .

Similarly for Gl
k = 1, we have

tlki = xki�
l
ki �w

l
�k + (wl

k � �wl
�k)

2 + �wl
�k(p

l
ki � �wl

�k)(m
l
k � �l

kixki)(18)

+ �wl
�k(w

l
k � �wl

�k)(c
l �

X
k02Kl

ml
k0)�

���ki
N l � 1

X
k0j2N lnfkig

�l
k0jq

l
k0j0yk0j

In addition to previous definitions, here (for both equations) we have

���ki :=
1

N � 1

X
k0j2Nnfkig

�k0j:(19)

Here we will call the corresponding game G0, for which utilities will be

ûki(s) = vki(xki)� tki = vki(hx;ki(s))� ht;ki(s) 8 ki 2 N

We will now move on to results section and discuss the implications of the modifications

there.

5.3. Results. With this new mechanism, we will again have full implementation (note that

for individual rationality there is no seller here). The only term in ûki that is affected by �ki is

�(�ki � r)2, so all the Lemmas from Section 4 will go through with minor modifications and

we will have our main result using the same line of argument as for Theorem 4.1. Note here

that, terms in ûki affected by plki; q
l
ki’s are the same as before but for yki there is a new term

�(�ki � r)2 which is affected by it.

Theorem 5.1 (Full Implementation). For game G0, there is a unique allocation, x, corre-

sponding to all NE. Moreover, x = x?, the maximiser of (CP), where individual rationality is

satisfied for all agents in N .
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In addition to all the properties from Section 4, here we will characterise �ki’s at equilibrium

and then go on to show SBB at equilibrium.

Instead of proving the results from Section 4 for this new mechanism, we will outline their

proofs and only show the rigorous proofs for new properties.

� Primal Feasibility - Since allocation function is the same as before, this result holds here

as well.

� Equal Prices at equilibrium - This was proved by taking price deviations only and keeping

other parameters of the signal constant, so the same argument works here as well (noting

that no new price related terms have been added in the new mechanism).

Before moving on to other results, we will show common �ki’s at equilibrium.

Lemma 5.2. At any NE s = (y; P; �) of game G0, we have �ki = r 8 ki 2 N .

Proof. Suppose not, i.e. assume 9 kj 2 N such that �kj 6= r. In this case agent kj can

deviate with only changing �0kj = r (which also means r is the same as before deviation, since

demand y doesn’t change). It’s easy to see that this is a profitable deviation, since change in

utility of agent kj will be only through the term involving �kj.

�ûkj = �(�0kj � r)2 + (�kj � r)2 = (�kj � r)2 > 0

�

Note however that although �ki are same for all ki at any equilibrium, that common value,

r, will be different across equilibria. This is obvious since magnitude of vector y changes across

equilibria.

Now we move on with properties from Section 4.

� Dual Feasibility - This is obvious here as well.

� Complimentary Slackness - This was proved by taking only price deviations and hence

the same argument works here as well.

� Stationarity - Now the additional term in the derivative here will be

@ûki
@y0ki

����
new

=
@ûki
@y0ki

����
old| {z }

T1

� 2(�0ki � r0)

 
�
@r0

@y0ki

!
| {z }

T2

So we claim as before that if T1 is positive, we can increase y0ki from yki to be better-off.

Here however we would have to make sure that agent ki deviates with �0ki simultaneously

to make it equal to r0, so that the contribution of the T2 term to the derivative is zero.

The only thing left to notice here is that the change in �0ki is such that not only the

term T2 is zero but also that the contribution of term �(�0ki � r0)2 to the utility is zero

before and after deviation - so this deviation doesn’t change other partial derivatives.
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Similar argument also works when T1 is negative and we get the stationarity property

here as well.

With this we will have unique allocation at every equilibria, since solution to KKT is unique (as

far as allocation is concerned). This unique allocation will be x?; also the prices will be �?, same

as before.

Now we verify the existence of equilibria. The arguments here will be similar to the ones

in the proof of Lemma 4.7. First order conditions can again be shown to be satisfied, the only

difference is that here we will also use �i = r at equilibrium. The Hessian H for any agent

ki here will be of order (2Lki + 2) � (2Lki + 2) where 1st, 2nd row and column represent yki,

�ki respectively whereas the remaining rows and columns represent plki’s and qlki’s. The generic

matrix A0 for H will then be of the form

A0 =

2
4A 0

0 D

3
5

where D = (�2)ILki
and matrix A, of order (Lki + 2)� (Lki + 2), will have elements

a11 = �
a

jyj
�

d

jyj4
a12 = a21 = �

e

jyj2
aij = aji = 0 8 i; j > 1; i 6= j

a22 = �2 aii = �2 a1i = ai1 =
bi�1
jyj

8 3 � i � Lki + 2

where a; d; e > 0. As before, all we have to is show that all eigenvalues of A are negative (since

that is clearly true for D). Writing the characteristic equation we will again get that �2 is a

repeated eigenvalue, Lki times. And the equation for remaining two roots is

�2 + �

 
2 +

a

jyj
+

d

jyj4

!
+

 
2a

jyj
+

2d

jyj4
+

C

jyj2
�

E

jyj4

!
= 0

Necessary and sufficient conditions for the roots of above quadratic to be negative are again that

coefficient of � and the constant term are both positive. Coefficient of � is clearly positive, and

for jyj big enough the constant term also becomes positive, irrespective of signs of C and E.

Hence here also we get NE for all y (along a fixed direction) such that jyj is large enough.

� Individual Rationality - This is obvious in here because we are only redistributing money

from the previous case, so if the mechanism there was individually rational it will be here

too.

Lemma 5.3 (Strong Budget Balance). At any NE s = (y; P; �) of game G0, with corre-

sponding taxes ftkigki2N , we have
P

ki2N tki = 0.
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Proof. We know that terms 2, 3, 4 and 5 in (17) and (18) are zero at equilibrium and so

we can write (at equilibrium)

X
ki2N

tki =
X
ki2N

xki

0
@X
l2Lki

�l
kip

l
k;i

1
A� r

X
l2Lki

1

N l � 1

X
k0j02N lnfkig

�l
k0j0p

l
k0;j0yk0j0

)
X
ki2N

tki =
X
ki2N

X
l2Lki

0
@xki�l

kip
l
ki �

1

N l � 1

X
k0j02N lnfkig

�l
k0j0p

l
k0;j0xk0j0

1
A

Consider the coefficient of xki for any agent ki in the above expression

X
l2Lki

0
@�l

kip
l
k;i �

1

N l � 1

X
k0j02N lnfkig

�l
kip

l
k;i

1
A =

X
l2Lki

�
�l
kip

l
k;i �

1

N l � 1
(N l � 1)�l

kip
l
k;i

�

= 0;

which proves the claim. �

Proof of Theorem 5.1. So by the preceding properties, we get allocation x?, prices �?

at all equilibria. Then SBB and individual rationality give us the desired full implementation. �

6. Discussion and Generalizations

Relevant Literature. The problem considered in [9] is essentially equivalent to ours (with

relaxed assumptions (A3)-(A4), the additional property of SBB on and off equilibrium, and

feasibility only at equilibrium). In the following we point out two problems with the mechanism

described in [9], the first of which has been addressed by the authors in a correction in [10].

The first problem is that the claim of efficiency made in [9] is not valid. In particular the

proof of [9, Theorem 6] is incorrect: the utilities need not have zero derivatives at equilibrium,

since they are discontinuous at equilibrium and the only allowable deviations of xki are downwards

deviations. Intuitively, this problem arises due to using hard constraints for ensuring feasibility

of allocation: when the demanded allocation is not feasible, a large penalty is imposed on the

agents. This approach creates discontinuities of the utility functions at the boundaries of the

achievable region and thus renders invalid any attempt to link the corresponding NE with the

KKT conditions of the corresponding centralized problem. The authors of [9] have suggested a

modified mechanism in [10] for overcoming this problem. This modification is similar in spirit to

the correction [8] for the problem of mechanism design for unicast service [7].

The second problem with the mechanism in [9] which persists in the correction [10], is that

the claim of existence of NE made in [9, Theorem 1] is incorrect, resulting in a mechanism that

does not always have pure-strategy NE. In particular, the mechanism in [9], makes allocations

according to demand i.e. xki = yki and sets beforehand the price paid by agent ki on link l as

0 if ki =2 argmaxi2Gl
k
f�l

kjxkjg. This is in line with KKT conditions; complimentary slackness
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indeed requires �lki
?
(�l

kix
?
ki �ml

k

?
) = 0, so the price for agent ki (as above) should be 0. The

problem however is that in some cases an agent ki could profitably deviate from the stated NE

by reducing demand xki by an arbitrary small amount �. This would ensure agent ki no longer

belongs to argmaxi2Gl
k
f�l

kjxkjg on those links where argmaxi2Gl
k
f�l

kjxkjg had more than one

agent and ki was one of them. This is profitable because the tax would reduce in a discontinuous

manner whereas the reduction in utility from reduced allocation would be continuous (since vki
is continuous). A similar situation arises in the correction [10], although taxes there are not fixed

at zero4 for agents not belonging to argmaxi2Gl
k
f�l

kjxkjg. Intuitively, this problem arises by the

attempt to hard-wire the solutions implied by the KKT conditions into the mechanism.

Indeed, one of the contributions of our work in this paper is embedding of the constraints

within the mechanism in an implicit way, such that the allocations are always feasible (on and

off equilibrium), and are continuous and (piecewise) differentiable with respect to the demands.

In addition, the KKT conditions are implicitly embedded in the mechanism by the use of the

additional complimentary slackness terms.

Strong Budget Balance off-equilibrium. In this work, we do not view SBB off equilibrium

as an important property of a mechanism. However, in the following we sketch a modification of

the proposed mechanism that results in arbitrarily close to SBB off equilibrium. In Section 5, we

use ���ki’s simply as a way to get SBB at equilibrium. Here ���ki was used as a proxy for r, since

we knew that at equilibrium we will have ���ki = r. We could, in addition to this, also use ���ki as

a proxy for r in the allocation i.e. xki = ���kiyki. Although we won’t have feasibility of allocation

off-equilibrium, this will ensure that the first term (payment) and the sixth term (redistribution)

in the tax function (refer to (17)) cancel out when we sum over all agents - on or off-equilibrium.

This will give us something close to SBB at all points in the message space S and not just at

equilibria - for this all we have to notice is that in (16) we could introduce any positive constant

in front of terms 2, 3, 4 and 5 and all the results would still go through. So by making that

constant small enough we could restrict the contribution of those terms to
P

ki2N tki, which we

couldn’t do with terms 1 and 6 since term 1 compares with vki, for which we do not know the

scaling and term 6 is introduced to cancel out term 1 when we sum over all agents.

Using Nash equilibrium as solution concept. As mentioned before, Nash equilibrium as

a solution concept applies to complete information games. Our motivation to use mechanism

design, implementation to be specific, for resource allocation on the Internet lied in the fact

that the designer (or equivalently a centralised authority responsible for enforcing contracts and

overlooking allocations) did not have the private information of Internet agents. So to assume

that the players themselves have complete knowledge about each others’ private information

might be considered an impractical assumption. One justification used is that the mechanism is

4It is actually unclear what is the meaning of [10, eq. (2)], since user k is defined only in the group of users with
maximum demand.
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designed prior to agents’ realising their private information, just like how a constitution designed

a long time ago is still used years later. So the designer cannot know the private information

of agents in advance. This in conjunction with the assumption that agents involved have a lot

to lose or gain from the allocation (hence have an incentive to learn about private information

others’ separately) may form one instance of an Internet system where Nash equilibrium is a

valid solution concept. Another justification is by interpreting Nash equilibria as the outcome

of a dynamic adjustment process, where players eventually learn enough about each other to

converge to the Nash equilibrium action. Readers may refer to [24] for an exposition on the

above mentioned dynamic adjustment argument and to [25] for learning methods used in game

theoretic setup.

Future research directions. We believe further investigation is needed into this problem.

A very important research direction would be to look into the possible outcomes from a Bayesian

framework and/or designing a new mechanism appropriate for this framework. One could also

look into informational robustness of this mechanism itself.
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