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Pilot Signal Design via Constrained Optimization with Application to

Delay-Doppler Shift Estimation in OFDM Systems

Lishuai Jing1, Troels Pedersen1 and Bernard H. Fleury1

Abstract— We address the problem of searching for the
optimal pilot signal, i.e. pattern and signature, of an orthogo-
nal frequency-division multiplexing (OFDM) system when the
purpose is to estimate the delay and Doppler shift under the
assumption of a single-path propagation channel. This problem
is relevant for synchronization and for time-based localization
using said signals. We propose to use the Cramér-Rao bound
and the normalized side-lobe level (NSL) of the ambiguity
function as figures of merit to devise the pilot signals. We
formulate the design problem as a constrained optimization
problem for which we propose a genetic algorithm that com-
putes close-to-optimal solutions. Simulation results demonstrate
that the proposed algorithm can efficiently find pilot signals
that outperform the state-of-the-art pilot signals in both single-
path and multipath propagation scenarios. In addition, we
demonstrate that data interference causes a performance loss
if a standard non-coherent correlator is used. The results
also indicate that the pilot pattern impacts the estimator’s
performance more than the pilot signature.

I. INTRODUCTION

In Orthogonal Frequency-Division Multiplexing (OFDM)
systems, data signals are embedded in an OFDM frame
together with pilot signals which are used to acquire channel
information [1]. In this contribution, the term pilot signal
embraces the pilot pattern (i.e. the placement of pilots in
the time-frequency grid) and the pilot signature (i.e. pilot
amplitudes and phases). The traditional objective of pilot
signal design is to find parsimonious pilot signals that
lead to efficient channel estimation in OFDM receivers. A
comprehensive survey of pilot signal design can be found
in [1]. Equispaced and equipowered pilot signals are shown
to maximize the channel capacity, minimize the channel
estimation error, and minimize the bit error rate for the
considered scenarios, see [1] and references therein.

The last ten years have witnessed a steady increasing
endeavor in research on localization using terrestrial wire-
less systems, especially long-term evolution (LTE) and its
extension LTE-A. The deployment of localization capabili-
ties in terrestrial wireless systems is aimed at substituting,
complementing, or supplementing satellite-based positioning
systems in scenarios where the latter systems are unable
to operate [2] [3] [4]. These localization features put ad-
ditional requirements on the pilot signals transmitted by
these wireless systems: pilot signals should additionally
be designed to optimze positioning capabilities. Position-
bearing channel parameters commonly exploited for localiza-
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tion are the received signal strength (RSS), the propagation
delay, and the angle of arrival (AOA) [2] [4]. Time-of-
arrival (TOA) and time-difference-of-arrival (TDOA) based
positioning methods rely on estimates of the propagation
delay between the reference stations and the mobile station
to be localized. Doppler shift estimate can be used to extract
the relative velocity for navigation and thereby to enhance
the positioning accuracy [3]. In this contribution, we focus on
pilot assisted delay and Doppler shift estimation in OFDM
for the purpose of synchronization and localization.

In radar theory, the ambiguity function [5] of the transmit
signal is an important tool for assessing the accuracy of
the joint estimation of the delay and Doppler shift. To
achieve good estimation accuracy, it is mandatory that the
ambiguity function exhibits a narrow main-lobe and low
side-lobes. However, these two features are contradictory
due to the volume invariance property [5]. The ambiguity
function of equispaced and equipowered pilot signals does
not fulfill the second of these requirements: it exhibits high
side-lobes (see Fig. 2 in Section V). Two approaches have
been proposed in the literature to obtain pilot signals with
a “good” ambiguity function in the aforementioned sense.
The first approach consists in using pilot patterns that belong
to the class of “perfect periodic” Costas arrays [6]. This
class is an extension of the class of Costas arrays. Costas
arrays leads to an ambiguity function with low side-lobes
away from the main-lobe, though high side-lobes remain
near the main-lobe [7]. A limitation of the Costas arrays
is their inherent constraint: the array must be square and
the number of pilots must equal the array length. The class
of “perfect periodic” Costas arrays [6] allow for alleviating
this constraint. The second approach, proposed in [8], is
to use a genetic algorithm to design pilot signals for one
OFDM symbol that yields an autocorrelation function—the
delay ambiguity function in our terminology—with low side-
lobes. The objective function that the algorithm attempts
to minimize is a linear combination of the maximum side-
lobe magnitude and the 3 dB main-lobe width of the delay
ambiguity function.

Inspired by the above two approaches, we consider in
this contribution the constrained optimization problem of
designing pilot signals that yield a delay-Doppler ambiguity
function with low side-lobes, while keeping the Cramér-
Rao bounds (CRBs) for the estimation of the delay and
Doppler shift below a prescribed level. We propose a genetic
algorithm to compute close-to-optimal solutions. For a given
number of pilots, the algorithm can efficiently find pilot
signals which yield lower side-lobes and CRBs than the
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Fig. 1. The structure of an OFDM frame with N = 12 subcarriers and
K = 7 OFDM symbols. One box stands for one resource element. Black
boxes indicate pilot symbols and white boxes indicate data symbols.

corresponding values achieved with equispaced, equipowered
pilot signals and “perfect periodic” Costas arrays. We provide
simulation results showing that the pilot signals designed
with the genetic algorithm lead to a better estimation accu-
racy compared to the accuracy achieved by using “perfect
periodic” Costas arrays in both single-path and multipath
channels when the delay-Doppler estimator is implemented
via a standard (pilot-based) correlator. The results also show
that the pilot pattern affects the estimator performance more
than the pilot signature and that the data symbols affect the
threshold region performance of the correlator-based delay-
Doppler estimator.

II. SIGNAL MODEL

We consider a single-input single-output OFDM setup
with N subcarriers and K symbols in a frame as the example
shown in Fig. 1. An OFDM symbol with time duration T
is generated by multiplexing a sequence of data symbols
and known pilot symbols onto N orthogonal sub-carriers.
Afterward, the time domain symbols are obtained by using an
inverse Fourier transform. Finally, a cyclic prefix of duration
Tcp is appended to prevent inter-symbol and inter-carrier
interference. The total duration of an OFDM symbol is thus
Tp = T +Tcp. The adjacent sub-carrier spacing is ∆f = 1

T .

An OFDM frame consists of a total of NK so-called
resource elements indexed by the set I = {1, 2, . . . , NK}.
Of these resource elements, Np = |Ip| are pilots indexed by
Ip and Nd = |Id| are allocated to data indexed by Id. We
further define the mapping

I→ {1, . . . , N}× {1, . . . ,K} : i #→ (n(i), k(i)), (1)

where n(i) and k(i) specify the subcarrier and the OFDM
symbol respectively of resource element i. The OFDM signal
reads in complex baseband notation:

s(t) = sp(t) + sd(t)

=
∑

i∈Ip

si(t) +
∑

i∈Id

si(t) (2)

with si(t) = aie
2πn(i)∆f(t−k(i)Tp) ( t

Tp
− k(i) ∈ [− 1

2 ,
1
2 ]).

Here, ai is the ith transmit symbol,  =
√
−1, and (·)

denotes the indicator function.

Assuming transmission across a multipath propagation
channel, the received signal reads

Y (t) =
L−1
∑

l=0

αls(t, θl) +N(t) (3)

with s(t, θl) = s(t − τ)e2πνlt where s(t − τ) = sp(t −
τl)+sd(t−τl). The lth multipath component is characterized
by its complex weight αl, delay τl, and Doppler shift νl.
We concatenate the later two parameters in the vector θl =
[τl, νl]T . The noise contribution N(t) is assumed to be a cir-
cular white complex Gaussian process with autocorrelation

E[N(t)N∗(t+ τ)] = N0δ(τ), (4)

where E[·] denotes expectation, (·)∗ stands for complex
conjugation, N0 is a positive constant, and δ(·) is the Dirac
delta function.

III. MAXIMUM-LIKELIHOOD ESTIMATION OF
DELAY AND DOPPLER SHIFT

In this section, we first derive the joint maximum likeli-
hood estimator of the delay and Doppler shift in an OFDM
scenario with pilot-only transmission across a single-path
propagation channel. Then, we define the pilot ambiguity
function and derive the CRBs for the estimation of the
delay and Doppler shift. Finally, we propose a constrained
optimization problem for pilot signal design.

We assume a single-path propagation channel (L = 1)
with complex gain α0, delay τ0 and Doppler shift ν0

1.
Furthermore, the OFDM frame duration is short enough
so that α0, τ0 and ν0 are constant during one OFDM
frame. Under these assumptions, the channel time-frequency
response is flat in frequency, but varies from one OFDM
symbol to another due to the Doppler shift. We define the
signal to noise ratio (SNR) γ = Ep

N0
with Ep =

∫

|sp(t)|2dt.
We further assume that the receiver estimates the unknown

parameter vector ψ0 = [θ0,α0]T based only on the ob-
servation of the pilot signal, i.e. we set sd(t) = 0, and
thus s(t) = sp(t) and s(t; θ0) = sp(t; θ0). From (3) and
with the above assumptions, the log-likelihood function of
ψ = [θ,α]T reads [9]

Λ̃(ψ;Y (t)) =
2

N0
R{α∗Λ(θ;Y (t))} −

|α|2

N0

∫

|sp(t; θ)|2dt.
(5)

In this expression, R{·} and | · | denote respectively the real
part and the absolute value of the argument and Λ(θ;Y (t)) =
∫

s∗p(t; θ)Y (t)dt. Note that the term
∫

|sp(t; θ)|2dt = Ep

that arises in the log-likelihood function does not depend on
θ. Given the pilot signal observation Y (t) = y(t), the joint
maximum likelihood (ML) estimator of the delay, Doppler
and complex gain is

ψ̂0 = arg max
ψ

Λ̃(ψ; y(t)). (6)

The estimation problem in (6) is separable:

θ̂0 = arg max
θ

|Λ(θ; y(t))|2 (7)

α̂ =
Λ(θ̂0; y(t))

Ep
. (8)

1We will return to the multipath scenario in Section V.



Therefore, to estimate the delay and Doppler shift, we need
to compute Λ(θ; y(t)). In practice, this computation can be
implemented via a correlator which correlates the observed
signal y(t) with the delayed and Doppler shifted replicas of
the pilot signal.

A. Ambiguity Function of Pilot Signals

We can rewrite the objective function in (7) as
∣
∣
∣
∣

∫

s∗p(t; θ)sp(t; θ0)dt
︸ ︷︷ ︸

χ(θ,θ0)

+

∫

s∗p(t; θ)N(t)dt
︸ ︷︷ ︸

W (θ)

∣
∣
∣
∣

2

. (9)

The term χ(θ, θ0) is the so-called ambiguity function of
sp(t) [10] and W (θ) is a zero mean colored Gaussian
process.

The ambiguity function of the pilot signal limits the
accuracy of the estimation of θ0. To minimize the estimation
error, sp(t) shall be designed such that its ambiguity function
exhibits a narrow main-lobe centered at θ0 and low side-
lobes [10]. However, due to the volume invariance property
(
∫∫

|χ(θ, θ0)|2dτdν = 1), the design involves a trade-off
between the width of the main-lobe and the magnitude of
the side-lobes [5]. Thus if sp(t) is selected such that its
ambiguity function exhibits a narrow main-lobe, high side-
lobes may appear and vice-versa.

B. Fisher Information and Cramér-Rao Bound

In the subsequent investigation, we consider the real vector
ψ̃ = [θ,R(α), I(α)]T with I{·} denote the imaginary part
of the argument. The Fisher information matrix for ψ̃ is
defined as [5]

J(ψ̃) = Eψ̃

[

∂

∂ψ̃
Λ̃(ψ;Y (t))

(
∂

∂ψ̃
Λ̃(ψ;Y (t))

)H
]

, (10)

with (·)H denoting hermitian transposition. Using (3)
and (5), we obtain after some algebraic manipulations

J(ψ̃) = γ
8π2

Ep
R

{

G
H
M(ψ̃)G

}

(11)

where

G = diag{N,1,1,1}

M(ψ̃) =

∫




|α|2∆f2 −|α|2t∆f −α∆f
2π −α

∆f
2π

|α|2t∆f |α|2t2 αt αt

α∆f
2π −αt 1 0

α∆f
2π −αt 0 1



⊗C(θ, θ, t)dt

with diag{} stands for a block diagonal matrix with
the column vector on its diagonal, ⊗ denoting the Kro-
necker product, 1 being a column vector of all ones,

N = [n(1), n(2), . . . , n(NK)]T , and C(θ, θ
′

, t) denoting
the NK × NK matrix with (i, j)th entry si(t, θ) (i ∈
Ip)s∗j (t, θ

′

) (j ∈ Ip).
The mth diagonal element of the inverted Fisher infor-

mation matrix is the CRB on the variance of the estimation
error of an unbiased estimator of [ψ0]m. In particular,

CRBτ = [J−1(ψ0)]1,1 and CRBν = [J−1(ψ0)]2,2. (12)

The CRB is “local bound” in the sense that it depends
essentially on the curvature of the main-lobe of the ambiguity
function [5, Ch.10]. The narrower the main-lobe, the lower
the CRB. As the SNR γ is a common factor that can be
factored out from the Fisher information matrix (11), it is
irrelevant when comparing the CRBs for various pilot signal
selections. For such comparison, we can therefore consider
the re-scaled versions γCRBτ and γCRBν .

C. Constrained Optimization Problem for Pilot Signal De-

sign

It is well-known that the mean-squared error (MSE) of a
nonlinear estimator such as (7) exhibits a so-called threshold
effect [5]: If the SNR drops below a certain threshold value
γth, there is an abrupt increase in the MSE of the estimator.
We define γth for our particular application as follows:

Definition 1: The threshold value of a nonlinear estimator
of (τ0, ν0) that asymptotically approaches the CRBs in (12)
as the SNR increases is

γth = max{γthτ̂ , γthν̂ }
with

γthτ̂ = min{γ
′

: MSEτ̂ (γ) ≤ 2CRBτ (γ) for all γ > γ
′

},
γthν̂ = min{γ

′

: MSEν̂(γ) ≤ 2CRBν(γ) for all γ > γ
′

}.
The threshold effect is caused by outliers which occur if the
estimate move from the main-lobe of the ambiguity function
in (9) to one of its side-lobes due to noise. The probability
that outliers occur at a particular SNR is closely connected
to the magnitude of the highest side-lobe of the normalized
ambiguity function [5] [11]. We define the normalized side-
lobe level (NSL) as the magnitude of the highest side-
lobe of the normalized ambiguity function. A high NSL
leads to a high sensitivity of the estimator towards noise,
therefore, leading to high γth. Determining γth requires
time-consuming Monte Carlo simulations. As an alternative,
we can numerically obtain the NSL with a much lower
computational effort.

To keep γth low, the NSL needs to be minimized. At the
same time, to minimize the estimation error when the SNR
is larger than γth, the CRBs also need to be minimized.
But there is a tradeoff between the NSL and the CRBs. To
account for this tradeoff, we formulate the design of the pilot
signal as a constrained optimization problem2:

2We could equally formulate another optimization problem which takes
the NSL as constraint and minimizes the CRBs, i.e.

arg min
Ip∈I

CRBτ (Ip),CRBν(Ip)

subject to |Ip| = Np

NSL(Ip) < NSL(I0).

In this case, however, one needs to simultaneously optimize two conflicting
objectives (CRBτ and CRBν ). Indeed, reducing CRBτ might increase
CRBν and vice versa.



arg min
Ip∈I

NSL(Ip)

subject to |Ip| = Np (13)

CRBτ (Ip) < CRBτ (I0),

CRBν(Ip) < CRBν(I0),

where I0 is a reference pilot signal with |I0| = Np.

The optimization procedure (13) differs from the opti-
mization procedure formulated in [8] in three respects. First,
whereas both procedures make use of the NSL as the first
figure of merit, the former utilizes the CRBs as the second
figure, while the latter utilizes the 3 dB bandwidth. Note that
the CRBs can be easily computed via (12) and the NSL can
be computed numerically. Second, while the latter procedure
accounts for the tradeoff between the two figures of merit by
specifying a weighted sum of them as the objective function
to be optimized, the former deals with this tradeoff by means
of a constrained optimization. Third, the procedure in [8] is
constrained to the delay domain only, while (13) extends over
the delay-Doppler domain.

IV. A GENETIC ALGORITHM FOR PILOT SIGNAL
DESIGN

The global optimal solution to the above optimization
problem may be in principle found by exhaustive search.
However, this search is unfeasibly complex since the num-
ber of possible patterns is

(
NK
Np

)

, which is large even for

moderate values of NK and Np. A feasible alternative is
to use a genetic algorithm. Genetic algorithms are easy to
implement, have fast convergence and are able to avoid local
extrema [12]. Although the obtained solutions are subop-
timal, genetic algorithms are well-suited for combinatorial
optimization problems. We refer the interested reader to [12]
for the basics and the applications of such algorithms in
signal processing.

We propose the genetic algorithm described below (Algo-
rithm 1) to solve the constraint optimization problem (13).
In this context, we define the “chromosomes” to be the
pilot patterns. The algorithm can be conveniently extended
to jointly design the pilot pattern and the pilot signature
by additionally including the complex amplitudes in each
chromosome.

V. NUMERICAL PERFORMANCE EVALUATION

In this section, we utilize the proposed Algorithm 1 to
design pilot signals for delay-Doppler estimation and then
compare their performance to state-of-the-art pilot signals
via Monte Carlo simulations of the MSE for the joint delay-
Doppler shift estimator in (7). For these investigations, we
use the settings summarized in Table I. The considered
OFDM frame corresponds to 24 resource blocks according
to the LTE specifications.

In Fig. 2, we consider four pilot signals (a)-(d): Pattern
(a) is the equispaced and equipowered pilot signal; Pattern
(b) is the “perfect periodic” Costas array; Pattern (c) is the
pilot pattern designed using Algorithm 1; and Pattern (d) is
obtained using Algorithm 1 modified to design pilot pattern

Algorithm 1: Genetic algorithm for the design of pilot pattern

for joint delay-Doppler estimation.

←: assignment operation.

URWR: uniformly at random without replacement.

Initialization: Set Nind, Nelite(even number), Nm and
randomly generate the initial population
I(0) = {Ip1 , . . . , IpNind

} with |Ipi | = Np ;

for g = 0, 1, . . . ,MaxGen do

Elite selection: Form Ielite(g) ⊂ I(g) consisting of
the Nelite pilot patterns with the lowest fitness

F (Ipi) =









NSL CRBτ (Ipi) < CRBτ (I0) &

CRBν(Ipi) < CRBν(I0)

1 otherwise.

;

I(g + 1)← Ielite(g) ;

for j = 1, . . . , Nelite

2 do

Pick two elements I
′

, I
′′ ∈ Ielite(g) URWR ;

Generate offspring Ioff ⊂ I
′

∪ I
′′

by picking
Np elements from I

′ ∪ I
′′

URWR ;

Mutation: Pick Nm elements from Ioff URWR
and substitute them by Nm elements picked
from Icoff = I \ Ioff URWR to generate Im ;

Ielite(g)← Ielite(g) \ {I
′

, I
′′} ;

Update population: I(g + 1)← I(g + 1) ∪ Im ;
end

end

and signature jointly. Fig. 2 reports patterns (a)-(d), along
with their associated magnitude of the ambiguity functions,
NSLs, and CRBs. From the results in Fig. 2, we make
two observations: Firstly, we observe that the pilot signal
designed with Algorithm 1, i.e. (c) and (d), leads to much
lower fitness parameters (NSL and CRBs) than that are
obtained for (a) and (b). Thus, as expected, Algorithm 1
is able to improve the design of pilot signals in terms of
their fitness parameters as expected. We remark that the
noticeably high NSL of the ambiguity function associated
with the “perfect periodic” Costas array (b) is induced jointly
by the high side-lobes near the main-lobe of the ambiguity
function of the Costas array and the repetition of this array
with the selected spacing in the frequency domain. Secondly,
we observe only small differences between the NSLs and the
CRBs for pilot signals (c) and (d). This observation indicates
that the impact of the pilot pattern is predominant on the
estimator performance compared to the impact of the pilot
signature.

We now evaluate the reduction of MSE that can be
obtained for the pilot signals designed with Algorithm 1
by means of Monte Carlo simulations using the joint delay-
Doppler shift estimator (7). We demonstrate that although
Algorithm 1 is proposed under simplified conditions, the
designed pilot signals are also appropriate under more re-



TABLE I

SIMULATION SETTINGS

OFDM system:

N = 288, K = 7, Np = 96

Tp = T + Tcp = 66.7 + 6.67 = 73.4 µs

Genetic algorithm:

Nind = 100, Nelite = 40, Nm = 1, MaxGen = 80

I0 = ”Perfect periodic” Costas array

Estimation range τ ∈ [−
Tp

2
,
Tp

2
], ν ∈ [−∆f

2
, ∆f

2
]

Pilots are equipowered with zero phase unless otherwise specified.

Case Pilot Pattern Magnitude of the ambiguity function Fitness parameters
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Equispaced
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F
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ν
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z
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γCRBν = 0.54
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)
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5

NSL = 0.35
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(d)
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Joint
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γCRBτ = 7.4× 10−9

γCRBν = 0.6

Fig. 2. The considered pilot signals. The pilot pattern and signature of the
pilot signal in panel (d) are jointly optimized: the amplitudes and phases
of all pilots are drawn independently according to a uniform distribution
on [0, 1] and [0, 2π] respectively during the initialization of Algorithm 1.
At each mutation stage of the algorithm, the signature of the Nm selected
pilots is drawn similarly. After each random drawing, the pilot signature is
scaled such that its energy equals 1.

alistic conditions. We consider three scenarios of increasing
realism: Scenario 1 is the single-path propagation with pilot-
only transmission, i.e. the scenario for which estimator (7)
coincides with the maximum likelihood estimator of the
delay and Doppler shift. Scenario 2 is the same as Scenario
1, but includes data transmission. Scenario 3 is with both
data transmission and multipath propagation. In the first
two scenarios, we assume without loss of generality that
ψ0 = [0, 0, 1]T .
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Fig. 3. Scenario 1: MSE performance of estimator (7) and CRBs versus
SNR when using pilot patterns (a), (b), and (c) in Fig. 2. The corresponding
threshold values (γth) are 23 dB, 18 dB and 16 dB, respectively. Each point
is obtained from 10000 Monte Carlo trials.

A. Scenario 1: Single-Path Propagation, Without Data

Transmission

Fig. 3 reports the MSE of estimator (7) computed from
Monte Carlo simulations, using pilot signals (a)-(c) in Fig. 2.
It appears that pilot signal (c) designed with Algorithm 1
leads to a threshold gain of 7 dB and 2 dB compared to pilot
signals (a) and (b) respectively, as a result of the significant
reduction of the NSL.

B. Scenario 2: Single-Path Propagation, With Data Trans-

mission

So far the effect of data signals on the estimation per-
formance of the estimator (7) has been neglected in the
literature, see e.g. [2] [4] [6] [8]. In this subsection, we
compare the effect of data signals on patterns (b) and (c).

During the data transmission phase, (3) reads Y (t) =
α0(sp(t; θ0)+sd(t; θ0))+N(t). The objective function in (7)
is given by

Z(θ;Y (t)) =

∣
∣
∣
∣

∫

s∗p(t; θ)Y (t)dt

∣
∣
∣
∣

2

=
∣
∣
∣α0χ(θ, θ0) + α0

∫

s∗p(t; θ)sd(t; θ0)dt
︸ ︷︷ ︸

Interference

+W (θ)
∣
∣
∣

2
. (14)

Fig. 4 reports the MSE of estimator (7) when using pilot
signals (b) and (c). A comparison with the MSE results
reported Fig. 3 shows that the interference caused by data
transmission only affects the threshold value, which is shifted
to the right by approximately 1 dB. In the high SNR regime,
the data interference has no significant effect on the estimator
performance.
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Fig. 4. Scenario 2: MSE performance of estimator (7) and CRBs versus
SNR when using pilot patterns (b) and (c) in Fig. 2. Each point is obtained
from 10000 Monte Carlo trials.

C. Scenario 3: Multipath Propagation, With Data Transmis-

sion

In the third and most realistic scenario, we consider both
data transmission and multipath propagation. In this scenario,
the objective function (7) reads

Z(θ;Y (t)) =
∣
∣
∣

L−1
∑

l=0

αlχ(θ, θl) +

L−1
∑

l=0

αl

∫

s∗p(t; θ)sd(t; θl)dt

︸ ︷︷ ︸

Interference

+W (θ)
∣
∣
∣

2
.(15)

First we consider the case where the main-lobe and the
side-lobes of the ambiguity function of the pilot signal
devised with Algorithm 1 are respectively sufficiently narrow
and low enough, so that the L multipath components can be
resolved in the delay-Doppler domain. This implies that, if
one discards the effect of noise and data interference in (15),
Z(θ;Y (t)) exhibits L well-separated dominant peaks, each
peak being contributed by one multipath component. Each
peak uniquely corresponds to the main-lobe of one of the
weighted ambiguity function in the first summand in (15). In
this case, the joint ML estimator of the L pairs {(τl, νl)}Ll=1
is accurately approximated by L independent ML estimators,
one for each pair. The outputs of these L estimators are the
L delay-Doppler arguments corresponding to the L largest
maxima of Z(θ;Y (t)). The same approximation holds true
in the presence of data interference and of noise at high SNR
and even at medium SNR since the NSL is low. Thus, in a
scenario with well-separable multipath components, a pilot
signal designed using Algorithm 1 still essentially keeps its
optimality properties in medium and high SNR regime.

A necessary condition for multipath components to be
separable is that the bandwidth of the OFDM system is
large enough. Due to practical constraints on the available
bandwidth of the OFDM system and the number of pilots,
not all path components may be resolved in Z(θ; y(t))
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Fig. 5. Scenario 3: MSE performance of estimator (7) versus SNR when
using pilot patterns (b) and (c) in Fig. 2. Each point is obtained from 10000
Monte Carlo trials.

in (15). We consider such a case in the following and
show that the pilot pattern designed using Algorithm 1 is
still a good choice. We use (7) to obtain the delay and
Doppler shift estimates and compute the MSE of the delay
and Doppler shift by using the first path component as the
reference. As indicated in the introduction, this estimate can
be used—in combination with other such estimates computed
from other transmission links—for localization in a TOA or
TDOA based positioning method, or also for synchronization
[13]. However, due to the unresolvable path components
with higher delay than the first component, the estimator
is expected to be biased.

The “Extended Vehicular A” channel model specified in
the 3GPP LTE standard [14] is used to generate a new
channel impulse response for each simulation trial. The
values of the delay, Doppler shift and weight magnitude
of the L = 9 multipath components are kept fixed while
generating the channel responses. The phases of the path
weights are drawn independently from a uniform distribution
on [0, 2π) for each trial.

A comparison of the MSE curves depicted in Fig. 5
with those reported in Fig. 4 shows that a much higher
error floor appears at high SNR due to bias caused by
unresolved multipath components. In addition, the multipath
channel leads to a significantly shifts of the thresholds.
Specifically, for the pilot signal designed with Algorithm 1, a
pronounced threshold appears at 25 dB while for the “perfect
periodic” Costas array, it appears at 30 dB. This observation
indicates that even though pilot pattern (c) is optimized for
the idealized scenario ignoring multipath propagation and
data transmission, it still leads to better performance than
obtained by using the “perfect periodic” Costas array.

VI. CONCLUSION

The conventional equispaced and equipowered pilot sig-
nals, as used in LTE, is suboptimal for joint delay and
Doppler estimation. It has an ambiguity function with a
high normalized side-lobe level (NSL), which causes the



correlator-based estimator (7) to exhibit a high threshold
value. The proposed genetic algorithm generates pilot signals
that minimize the NSL, while maintaining the CRBs for
the delay and Doppler shift estimation below a target value.
Compared to the “perfect periodic” Costas arrays, these pilot
signals produce much lower NSL and CRBs. The results
clearly exemplify that the possible reduction in MSE can
be achieved with the same number of pilots. An additional
finding is that the pilot pattern affects more significantly
the NSL and the CRBs than the pilot signature does. Our
genetic algorithm can generate close-to-optimal pilot signals
regardless of the OFDM frame size and the number of pilots.
This computation can be done offline. We also show that the
pilot signals computed with the genetic algorithm remain a
good choice in single-path and multipath propagation con-
ditions during the data transmission phase when a correlator
is employed for delay and Doppler shift estimation.

Among the interesting open research avenues, we would
like to mention the extension of the constrained optimization
problem to account for transmission across multipath chan-
nels, especially when more sophisticated channel estimators
are used. The performance of these estimators could then
be assessed by means of performance criteria traditionally
employed in communications, such as channel estimation
error and bit-error-rate.
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