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A Distributed Algorithm for Solving a Linear

Algebraic Equation

Shaoshuai Mou Ji Liu A. Stephen Morse

Abstract

A distributed algorithm is described for solving a linear algebraic equation of the formAx = b

assuming the equation has at least one solution. The equation is simultaneously solved bym agents

assuming each agent knows only a subset of the rows of the partitioned matrix [A b ], the current

estimates of the equation’s solution generated by its neighbors, and nothing more. Each agent recursively

updates its estimate by utilizing the current estimates generated by each of its neighbors. Neighbor

relations are characterized by a time-dependent directed graphN(t) whose vertices correspond to agents

and whose arcs depict neighbor relations. It is shown that for any matrixA for which the equation has

a solution and any sequence of “repeatedly jointly stronglyconnected graphs”N(t), t = 1, 2, . . ., the

algorithm causes all agents’ estimates to converge exponentially fast to the same solution toAx = b. It

is also shown that the neighbor graph sequence must actuallybe repeatedly jointly strongly connected

if exponential convergence is to be assured. A worst case convergence rate bound is derived for the case

whenAx = b has a unique solution. It is demonstrated that with minor modification, the algorithm can

track the solution toAx = b, even ifA andb are changing with time, provided the rates of change ofA

andb are sufficiently small. It is also shown that in the absence ofcommunication delays, exponential

convergence to a solution occurs even if the times at which each agent updates its estimates are not

synchronized with the update times of its neighbors. A modification of the algorithm is outlined which

enables it to obtain a least squares solution toAx = b in a distributed manner, even ifAx = b does

not have a solution.
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I. INTRODUCTION

Certainly the most well known and probably the most important of all numerical computations

involving real numbers is solving a system of linear algebraic equations. Efforts to develop

distributed algorithms to solve such systems have been under way for a long time especially

in the parallel processing community where the main objective is to achieve efficiency by

somehow decomposing a large system of linear equations intosmaller ones which can be solved

on parallel processers more accurately or faster than direct solution of the original equations

would allow [2]–[6]. In some cases, notably in sensor networking [7], [8] and some filtering

applications [9], the need for distributed processing arises naturally because processors onboard

sensors or robots are physically separated from each other.In addition, there are typically

communication constraints which limit the flow of information across a robotic or sensor network

and consequently preclude centralized processing, even ifefficiency is not the central issue. It

is with these thoughts in mind that we are led to consider the following problem.

II. THE PROBLEM

We are interested in a network ofm > 1 {possibly mobile} autonomous agents which are

able to receive information from their “neighbors” where bya neighborof agenti is meant any

other agent within agenti’s reception range. We writeNi(t) for the labels of agenti’s neighbors

at timet, and we always take agenti to be a neighbor of itself. Neighbor relations at timet can

be conveniently characterized by a directed graphN(t) with m vertices and a set of arcs defined

so that there is an arc inN(t) from vertexj to vertex i just in case agentj is a neighbor of

agenti at time t. Thus the directions of arcs represent the directions of information flow. Each

agenti has a real-time dependent state vectorxi(t) taking values inRn, and we assume that

the information agenti receives from neighborj at time t is xj(t). We also assume that agent

i knows a pair of real-valued matrices(Ani×n
i , bni×1

i ). The problem of interest is to devise local

algorithms, one for each agent, which will enable allm agents to iteratively and asynchronously

compute solutions to the linear equationAx = b whereA = column {A1, A2, . . . , Am}n̄×n,

b = column {b1, b2, . . . , bm}n̄×n and n̄ =
∑m

i=1 ni. We shall require these solutions to be exact
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up to numerical round off and communication errors. In the first part of this paper we will focus

on the synchronous case and we will assume thatAx = b has a solution although we will not

require it to be unique. A restricted version of the asynchronous problem in which communication

delays are ignored, is addressed in§VIII; a more general version of the asynchronous problem

in which communication delays are explicitly taken into account, is treated in [10].

The problem just formulated can be viewed as adistributed parameter estimation problem

in which thebi are observationsavailable to the sensors andx is a parameter to be estimated.

In this setting, the observation equations are sometimes ofthe form bi = Aix + ηi where ηi

is a term modeling measurement noise [8]. The most widely studied version of the problem

is whenm = n, the Ai are linearly independent row vectorsai, the bi are scalars, andN(t)

is a constant, symmetric and strongly connected graph. For this version of the problem, A is

therefore ann × n nonsingular matrix,b is an n vector and agenti knows the statexj(t) of

each of its neighbors as well as its own state. The problem in this case is thus for each agenti

to computeA−1b, givenai, bi andxj(t), j ∈ Ni, t ≥ 0. In this form, there are several classical

parallel algorithms which address closely related problems. Among these are Jacobi iterations

[2], so-called “successive over-relaxations” [5] and the classical Kaczmart method [6]. Although

these are parallel algorithms, all rely on “relaxation factors” which cannot be determined in

a distributed way unless one makes special assumptions about A. Additionally, the implicitly

defined neighbor graphs for these algorithms are generally strongly complete; i.e., all processors

can communicate with each other.

This paper breaks new ground by providing an algorithm whichis

1) applicable toany pair of real matrices(A, b) for which Ax = b has at least one solution.

2) capable of finding a solution at least exponentially fast{Theorem 1}.

3) applicable to thelargestpossible class of time-varying directed neighbor graphsN(t) for

which exponential convergence can be assured{Theorem 2}.

4) capable of finding a solution toAx = b which, in the absence of round off and commu-

nication errors, is exact.

5) capable of finding a solution using at most ann dimensional state vector received at each

clock time from each of its neighbors.

6) applicable without imposing restrictive or unrealisticrequirements such as (a) the assump-

tion that each agent is constantly aware of an upper bound on the number of neighbors
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of each of its neighbors or (b) the assumption that all agentsare able to share the same

time-varying step size.

7) capable of operating asynchronously.

An obvious approach to the problem we’ve posed is to reformulate it as a distributed opti-

mization problem and then try to use existing algorithms such as those in [11]–[21] to obtain a

solution. Despite the fact that there is a large literature on distributed optimization, we are not

aware of any distributed optimization algorithm which, if applied to the problem at hand, would

possess all of the attributes mentioned above, even if the capability of functioning asynchronously

were not on the list. For the purpose of solving the problem ofinterest here, existing algorithms

are deficient in various ways. Some can only find approximate solutions with bounded errors

[11]; some are only applicable to networks with bi-directional communications{ie, undirected

graphs} and/or networks with fixed graph topologies [12]–[14], [17]; many require all agents to

share a common, time varying step size [12], [14]–[19]; manyintroduce an additional scalar or

vector state [13], [14], [16], [18]–[21] for each agent to update and transmit; none have been

shown to generate solutions which converge exponentially fast, although it is plausible that some

may exhibit exponential convergence when applied to the type of quadratic optimization problem

one would set up to solve the linear equation which is of interest here.

One limitation common to many distributed optimization algorithms is the requirement that

each agent must be aware of an upper bound on the number of neighbors of each of its neighbors.

This means that there must be bi-directional communications between agents. This requirement

can be quite restrictive, especially if neighbor relationschange with time. The requirement stems

from the fact that most distributed optimization algorithms depend on some form of “distributed

averaging.”Distributed averagingis a special type of consensus seeking for which the goal is for

all n agents to ultimately compute the average of the initial values of their consensus variables.

In contrast, the goal of consensus seeking is for all agents to ultimately agree on a common

value of their consensus variable, but that value need not bethe average of their initial values.

Because distributed averaging is a special form of consensus seeking, the methods used to obtain

a distributed average are more specialized than those needed to reach a consensus. There are

three different approaches to distributed averaging: linear iterations [7], [22], gossiping [23],

[24], and double linear iterations [25] which are also knownas push-sum algorithms [16], [26],

[27] and scaled agreement algorithms [28].
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Linear iterations for distributed averaging can be modeledas a linear recursion equation in

which the{possibly time-varying} update matrix must be doubly stochastic [23]. The doubly

stochastic matrix requirement cannot be satisfied without assuming that each agent knows an

upper bound on the number of neighbors of each of its neighbors. A recent exception to this is

the paper [29] where the idea is to learn weights within the requisite doubly stochastic matrix in

an asymptotic fashion. Although this idea is interesting, it also adds complexity to the distributed

averaging process; in addition, its applicability is limited to time invariant graphs.

Gossiping is a very widely studied approach to distributed averaging in which each agent

is allowed to average its consensus variable with at most oneother agent at each clock time.

Gossiping protocols can lead to deadlock unless specific precautions are taken to insure that

they do not and these precautions generally lead to fairly complex algorithms [24] unless one

is willing to accept probabilistic solutions.

Push-sum algorithms are based on a quite clever idea first apparently proposed by in [26].

Such algorithms are somewhat more complicated than linear iterations, and generally require

more data to be communicated between agents. They are however attractive because, at least for

some implementations, the requirement that each agent knowthe number of neighbors of each

of its neighbors is avoided [25].

Another approach to the problem we have posed is to reformulate it as a least squares problem.

Distributed algorithms capable of solving the least squares problem have the advantage of being

applicable toAx = b even when this equation has no solution. The authors of [30],[31] develop

several algorithms for solving this type of problem and givesufficient conditions for them

to work correctly; a limitation of their algorithms is that each agent is assumed to know the

coefficient matrixAj of each of its neighbors. In [32], it is noted that the distributed least

squares problem can be solved by using distributed averaging to compute the average of the

matrix pairs(A′
iAi, A

′
ibi). The downside of this very clever idea is that the amount of data to

be communicated between agents does not scale well as the number of agents increases. In§IX

of this paper an alternative approach to the distributed least squares problem is briefly outlined;

it too has scaling problems, but also appears to have the potential of admitting a modification

which will to some extent overcome the scaling problem.

Yet another approach to the problem of interest in this paper, is to view it as a consensus

problem in which the goal is for allm agents to ultimately attain the same value for their states
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subject to the requirement that eachxi satisfies the convex constraintAixi = bi. An algorithm for

solving a large class of constrained consensus problems of this type in a synchronous manner,

appears in [15]. Specialization of that algorithm to the problem of interest here, yields an

algorithm similar to synchronous version of the algorithm which we will consider. The principle

difference between the two - apart from correctness proofs and claims about speed of convergence

- is that the algorithm stemming from [15] is based on distributed averaging and consequently

relies on convergence properties of doubly stochastic matrices whereas the synchronous version

of the algorithm developed in this paper does not. As a consequence, the algorithm stemming

from [15] cannot be implemented without assuming that each agent knows as a function of time,

at least an upper bound on the number of neighbors of each of its current neighbors, whereas the

algorithm under consideration here can. Moreover, limiting the consensus updates to distributed

averaging via linear iterations almost certainly limits the possible convergence rates which might

be achieved, were one not constrained by the special structure of doubly stochastic matrices. We

see no reason at all to limit the algorithm we are discussing to doubly stochastic matrices since,

as this paper demonstrates, it is not necessary to. In addition, we mention that a convergence

proof for the constrained consensus algorithm proposed in [15] which avoids doubly stochastic

matrices is claimed to have been developed in [33] but the correctness of the proof presented

there is far from clear.

Perhaps the most important difference between the results of [15] and the results to be

presented here concerns speed of convergence. In this paperexponential convergence is estab-

lished for any sequence of repeatedly strongly connected neighbor graphs. In [15], asymptotic

convergence is proved under the same neighbor graph conditions, butexponentialconvergence is

only proved in the special case when the neighbor graph is fixed and complete. It is not obvious

how to modify the analysis given in [15] to obtain a proof of exponential convergence under

more relaxed conditions.

In contrast with earlier work on distributed optimization and distributed consensus, the ap-

proach taken in this paper is based on a simple observation, inspired by [15], which has the

potential on being applicable to a broader class of problemsthan being considered here. Suppose

that one is interested in devising a distributed algorithm which can cause all members of a group

of m agents to find a solutionx to the system of equationsαi(x) = 0, i ∈ {1, 2, . . . , m} where

αi : R
n → Rni is a “private” function know only to agenti. Suppose each agenti is able to
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find a solutionxi to its private equationαi(xi) = 0, and in addition, all of thexi are the same.

Then allxi must satisfyαj(xi) = 0, j ∈ {1, 2, . . . , m} and thus each constitutes a solution to

the problem. Therefore to solve such a problem, one should try to craft an algorithm which,

on the one hand causes each agent to satisfy its own private equation and on the other causes

all agents to reach a consensus. We call this theagreement principle. We don’t know if it has

been articulated before although it has been used before without special mention [34]. As we

shall see, the agreement principle is the basis for three different versions of the problem we are

considering.

III. T HE ALGORITHM

Rather than go through the intermediate step of reformulating the problem under consideration

as an optimization problem or as a constrained consensus problem, we shall approach the problem

directly in accordance with the agreement principle. This was already done in [34] for the case

when neighbors do not change and the algorithm obtained was the same one as the one we are

about to develop here. Here is the idea assuming that all agents act synchronously. Suppose time

is discrete in thatt takes values in{1, 2, . . .}. Suppose that at each timet ≥ 1, agenti picks

as a preliminary estimate of a solution toAx = b, a solutionzi(t) to Aix = bi. Suppose that

Ki is a basis matrix for the kernel ofAi. If we setxi(1) = zi(1) and restrict the updating of

xi(t) to iterations of the formxi(t+ 1) = zi(t) +Kiui(t), t ≥ 1, then no matter whatui(t) is,

eachxi(t) will obviously satisfyAixi(t) = bi, t ≥ 1. Thus, in accordance with the agreement

principle, all we need to do to solve the problem is to come up with a good way to choose the

ui so that a consensus is ultimately reached. Capitalizing on what is known about consensus

algorithms [35]–[37], one would like to chooseui(t) so thatxi(t+ 1) = 1
mi(t)

(

∑

j∈Ni(t)
xj(t)

)

where mi(t) is the number of neighbors of agenti at time t, but this is impossible to do

because−zi(t) +
1

mi(t)

∑

j∈Ni(t)
xj(t) is not typically in the image ofKi. So instead one might

try choosing eachui(t) to minimize the difference(zi(t) +Kiui(t))−
1

mi(t)

(

∑

j∈Ni(t)
xj(t)

)

in

the least squares sense. Thus the idea is to choosexi(t + 1) to satisfyAixi(t + 1) = bi while

at the same time makingxi(t + 1) approximately equal to the average of agenti’s neighbors’

current estimates of the solution toAx = b. Doing this leads at once to an iteration for agenti

of the form

March 4, 2015 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ACCEPTED. 8

xi(t + 1) = zi(t)−
1

mi(t)
Pi



mi(t)zi(t)−
∑

j∈Ni(t)

xj(t)



 , t ≥ 1 (1)

wherePi is the readily computable orthogonal projection on the kernel ofAi. Note right away that

the algorithm does not involve a relaxation factor and is totally distributed. While the intuition

upon which this algorithm is based is clear, the algorithm’scorrectness is not.

It is easy to see that(I − Pi)zi(t) is fixed no matter whatzi(t) is, just so long as it is a

solution toAix = bi . Sincexi(t) is such a solution, (1) can also be written as

xi(t+ 1) = xi(t)−
1

mi(t)
Pi



mi(t)xi(t)−
∑

j∈Ni(t)

xj(t)



 , t ≥ 1 (2)

and it is this form which we shall study. Later in§VII when we focus on a generalization of

the problem in whichA andb change slowly with time, the corresponding generalizations of (1)

and (2) are not quite equivalent and it will be more convenient to focus on the generalization

corresponding to (1).

As mentioned in the preceding section, by specializing the constrained consensus problem

treated in [15] to the problem of interest here, one can obtain an update rule similar to (2).

Thus the arguments in [15] can be used to establish asymptotic convergence in the case of

synchronous operation. Of course using the powerful but lengthy and intricate proofs developed

in [15] to address the specific constrained consensus problem posed here, would seem to be a

round about way of analyzing the problem, were there available a direct and more transparent

method. One of the main contributions of this paper is to provide just such a method. The

method closely parallels the well-known approach to unconstrained consensus problems based

on nonhomogeneous Markov chains [36], [38]. The standard unconstrained consensus problem is

typically studied by looking at the convergence propertiesof infinite products ofSm×m stochastic

matrices. On the other hand, the problem posed in this paper is studied by looking at infinite

products of matrices of the formP (S ⊗ I)P whereP is a block diagonal matrix ofm, n× n

orthogonal matrices,S is an m × m stochastic matrix,I is the n × n identity, and⊗ is the

Kronecker product. For the standard unconstrained consensus problem, the relevant measure of

the distance of a stochastic matrixS from the desired limit of a rank one stochastic matrix is

the infinity matrix semi-norm [24] which is also the same thing as the well known coefficient of

ergodicity [38]. For the problem posed in this paper, the relevant measure of the distance of a
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matrix of the formP (S⊗ I)P from the desired limit of the zero matrix, is a somewhat unusual

but especially useful concept called a “mixed-matrix” norm§VI-A.

IV. ORGANIZATION

The remainder of this paper is organized as follows. The discrete-time synchronous case is

treated first. We begin in Section V by stating conditions on the sequence of neighbor graphs

N(1),N(2), . . . encountered along a “trajectory,” for the overall distributed algorithm based on

(2) to converge exponentially fast to a solution toAx = b. The conditions on the neighbor graph

sequence are both sufficient{Theorem 1} and necessary{Theorem 2}. A worst case geometric

convergence rate is then given{Corollary 1} for the case whenAx = b has a unique solution.

Analysis of the synchronous case is carried out in§VI. After developing the relevant linear

iteration (8), attention is focused in§VI-A on proving that repeatedly jointly strongly connected

neighbor graph sequences are sufficient for exponential convergence. For the case whenAx = b

has a unique solution, the problem reduces to finding conditions {Theorem 3} on an infinite

sequence ofm×m stochastic matricesS1, S2, . . . with positive diagonals under which an infinite

sequence of matrix products of the form(P (Sk⊗ I)P )(P (Sk−1⊗ I)P ) · · · (P (S1⊗ I)P ), k ≥ 1

converges to the zero matrix. The problem is similar to problem of determining conditions on an

infinite sequence ofm ×m stochastic matricesS1, S2, . . . with positive diagonals under which

an infinite sequence of matrix products of the form(SkSk−1 · · ·S1), k ≥ 1 converges to a rank

one stochastic matrix. The latter problem is addressed in the standard consensus literature by

exploiting several facts:

1) The induced infinity matrix semi-norm [24]{i.e., the coefficient of ergodicity [38]} is

sub-multiplicative on the set ofm×m stochastic matrices.

2) Every finite product of stochastic matrices is non-expansive in the induced infinity matrix

semi-norm [24].

3) Every sufficiently long product of stochastic matrices with positive diagonals is a semi-

contraction in the infinity semi-norm provided the graphs ofthe stochastic matrices ap-

pearing in the product are all rooted1 [24], [35], [39].

1A directed graph isrooted if it contains at least one vertexr from which, for each vertexv in the graph, there is a directed

path fromr to v .
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There are parallel results for the problem of interest here:

1) The mixed matrix norm defined by (10) is sub-multiplicative onRmn×mn {Lemma 3}.

2) Every finite matrix product of the form(P (Sk ⊗ I)P )(P (Sk−1 ⊗ I)P ) · · · (P (Sq ⊗ I)P )

is non-expansive in the mixed matrix norm{Proposition 1}.

3) Every sufficiently product of such matrices is a contraction in the mixed matrix norm

provided the stochastic matrices appearing in the product have positive diagonals and

graphs which are all strongly connected{Proposition 2}.

While there are many similarities between the consensus problem and the problem under

consideration here, one important difference is that the set of m × m stochastic matrices is

closed under multiplication whereas the set of matrices of the form (P (S ⊗ I)P ) is not. To

deal with this, it is necessary to introduce the idea of a “projection block matrix” §VI-C2.

A projection block matrix is a partitioned matrix whose specially structured blocks are called

“projection matrix polynomials”§VI-C1. What is important about this concept is that the set of

projection block matrices is closed under multiplication and contains every matrix product of the

form (P (Sk⊗I)P )(P (Sk−1⊗I)P ) · · · (P (Sq⊗I)P ). Moreover, it is possible to give conditions

under which a projection block matrix is a contraction in themixed matrix norm{Proposition

1}. Specialization of this result yields a characterization of the class of matrices of the form

(P (Sk ⊗ I)P )(P (Sk−1 ⊗ I)P ) · · · (P (Sq ⊗ I)P ) which are contractions{ Proposition 2}. This,

in turn is used to prove Theorem 3 which is the main technical result of the paper.

The proof of Theorem 1 is carried out in two steps. The case when Ax = b has a unique

solution is treated first. Convergence in this case is an immediate consequence of Theorem 3.

The general case without the assumption of uniqueness is treated next. In this case, Lemma 1

is used to decompose the problem into two parts - one to which the results for the uniqueness

case are directly applicable and the other to which standardunconstrained consensus results are

applicable.

It is well known that the necessary condition for a standard unconstrained consensus algo-

rithm to generate an exponentially convergent solution is that the sequence of neighbor graphs

encountered be “repeatedly jointly rooted” [40]. Since a “repeatedly jointly strongly connected

sequence” is always a repeatedly jointly rooted sequence, but not conversely, it may at first

glance seem surprising that for the problem under consideration in this paper, repeatedly jointly

strongly connected sequences are in fact necessary for exponential convergence. Nonetheless
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they are and a proof of this claim is given in Section VI-B. Theproof relies on the concept of

an “essential vertex” as well as the idea of “a mutual reachable equivalence class.” These ideas

can be found in [38] and [41] under different names.

Theorem 3 is proved in§VI-C. The proof relies heavily on a number of concepts mentioned

earlier including the mixed matrix norm, projection matrixpolynomials{§VI-C1}, and projection

block matrices{§VI-C2}. These concepts also play an important role in§VI-D where the

worst case convergence rate stated in Corollary 1 is justified. To underscore the importance of

exponential convergence, it is explained in§VII why that with minor modification, the algorithm

we have been considering can track the solution toAx = b, if A andb are changing with time,

provided the rates of change ofA andb are sufficiently small. Finally, the asynchronous version

of the problem is addressed in Section VIII.

A limitation of the algorithm we have been discussing is thatit is only applicable to linear

equations for which there are solutions. In§IX we explain how to modify the algorithm so that

it can obtain least squares solutions toAx = b even in the case whenAx = b does not have

a solution. As before, we approach the problem using standard consensus concepts rather than

the more restrictive concepts based on distributed averaging.

A. Notation

If M is a matrix,M denotes its column span. Ifn is a positive integer,n = {1, 2, . . . , n}.

Throughout this paperGsa denotes the set of all directed graphs withm vertices which have

self-arcs at all vertices. The graph of anm × m matrix M with nonnegative entries is anm

vertex directed graphγ(M) defined so that(i, j) is an arc fromi to j in the graph just in case

the jith entry ofM is nonzero. Such a graph is inGsa if and only if all diagonal entries ofM

are positive.

V. SYNCHRONOUS OPERATION

Obviously conditions for convergence of them iterations defined by (2) must depend on

neighbor graph connectivity. To make precise just what is meant by connectivity in the present

context, we need the idea of “graph composition” [35]. By thethe compositionof a directed

graphGp ∈ Gsa with a directed graphGq ∈ Gsa, writtenGq ◦Gp is meant that directed graph in

Gsa with arc set defined so that(i, j) is an arc in the composition just in case there is a vertex
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k such that(i, k) is an arc inGp and (k, j) is an arc inGq . It is clear thatGsa is closed under

composition and composition is an associative binary operation; because of this, the definition

extends unambiguously to any finite sequence of directed graphs inGsa. Composition is defined

so that for any pair of nonnegativem×m matricesM1,M2, with graphsγ(M1), γ(M2) ∈ Gsa,

γ(M2M1) =γ(M2) ◦ γ(M1).

To proceed, let us agree to say that an infinite sequence of graphs G1,G2, . . . in Gsa is

repeatedly jointly strongly connected, if for some finite positive integersl and τ0 and each

integer k > 0, the composed graphHk = Gkl+τ0−1 ◦ Gkl+τ0−2 ◦ · · · ◦G(k−1)l+τ0 , is strongly

connected. Thus ifN1,N2, . . . is a sequence of neighbor graphs which is repeatedly jointly

strongly connected, then over each successive interval ofl consecutive iterations starting atτ0,

each proper subset of agents receives some information fromthe rest. The first of the two main

results of this paper for synchronous operation is as follows.

Theorem 1:Suppose each agenti updates its statexi(t) according to rule (2). If the sequence

of neighbor graphsN(t), t ≥ 1, is repeatedly jointly strongly connected, then there exists a

positive constantλ < 1 for which all xi(t) converges to the same solution toAx = b ast → ∞,

as fast asλt converges to0.

In the next section we explain why this theorem is true.

The idea of a repeatedly jointly strongly connected sequence of graphs is the direct analog

of the idea of a “repeatedly jointly rooted” sequence of graphs; the repeatedly jointly rooted

condition, which is weaker than the repeatedly jointly strongly connected condition, is known to

be not only a sufficient condition but also a necessary one on an infinite sequence of neighbor

graphs inGsa for all agents in an unconstrained consensus process to reach a consensus exponen-

tially fast [40]. The question then, is repeatedly jointly strongly connected strong connectivity

necessary for exponential convergence of thexi to a solution toAx = b? Obviously such a

condition cannot be necessary in the special case whenA = 0 and {and consequentlyb = 0}

because in the case the problem reduces to an unconstrained consensus problem. The repeatedly

jointly strongly connected condition also cannot be necessary if a distributed solution toAx = b

can be obtained by only a proper subset of the full set ofm agents. Prompted by this, let us

agree to say that agents with labels inV = {i1, i2, . . . , iq} ⊂ m are redundantif any solution

to the equationsAix = bi for all i in the complement ofV, is a solution toAx = b. To derive
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an algebraic condition for redundancy, suppose thatz is a solution toAx = b. Write V̄ for the

complement ofV in m. Then any solutionw to the equationsAix = bi, i ∈ V̄ must satisfy

w − z ∈
⋂

i∈V̄ Pi, where for i ∈ m, Pi = image Pi. Thus agents with labels inV will be

redundant just in casew − z ∈
⋂

i∈V Pi. Therefore agents with labels inV will be redundant if

and only if
⋂

i∈V̄

Pi ⊂
⋂

i∈V

Pi.

We say that{P1, P2, . . . , Pm} is a non-redundant setif no such proper subset exists. We can

now state the second main result of this paper for synchronous operation.

Theorem 2:Suppose each agenti updates its statexi(t) according to rule (2). Suppose in

addition thatA 6= 0 and that{P1, P2, . . . , Pm} is a non-redundant set. If there exists a positive

constantλ < 1 for which all xi(t) converges to the same solution toAx = b as t → ∞ as fast

as λt converges to0, then the sequence of neighbor graphsN(t), t ≥ 1, is repeatedly jointly

strongly connected.

In the §VI-B we explain why this theorem is true.

For the case whenAx = b has a unique solution and each of the neighbor graphsN(t), t ≥ 1

is strongly connected, it is possible to derive an explicit worst case bound on the rate at which

the xi converge. As will be explained at the beginning of§VI-A, the uniqueness assumption

is equivalent to the assumption that
⋂

i∈m Pi = 0. This and Lemma 2 imply that the induced

two-norm | · |2 of any finite product of the formPj1Pj2 · · ·Pjk is less than1, provided each of

the Pi, i ∈ m, occur in the product at least once. Thus ifq
∆
= (m − 1)2 andC is the set of all

such products of lengthq + 1, thenC is compact and

ρ = max
C

|Pj1Pj2 · · ·Pjq+1
|2 (3)

is a number less than1. So therefore is

λ =

(

1−
(m− 1)(1− ρ)

mq

) 1

q

. (4)

We are led to the following result.

Corollary 1: Suppose thatAx = b has a unique solutionx∗. Let λ be given by (4). If each of

the neighbor graphsN(t), t ≥ 1 mentioned in the statement of Theorem 1 is strongly connected,

then allxi(t) converge tox∗ as t → 0 as fast asλt converges to0.
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A proof of this corollary will be given in section VI-D. The extension of this result to the case

whenAx = b has more than one solution can also be worked out, but this will not be done here.

It is likely that ρ can be related to a conditioning number forA, but this will not be done here.

In the consensus literature [37], researchers have also looked at algorithms using convex

combination rules rather than straight average rule which we have exploited here. Applying such

rules to the problem at hand leads to update equations of the more general form

xi(t + 1) = xi(t)− Pi



xi(t)−
∑

j∈Ni(t)

wij(t)xj(t)



 i ∈ m (5)

where thewij(t) are nonnegative numbers summing to1 and uniformly bounded from below by a

positive constant. The extension of the analysis which follow to encompass this generalization is

straightforward. It should be pointed out however, that innocent looking generalizations of these

update laws which one might want to consider, can lead to problems. For example, problems

can arise if the same value ofwij is not used to weigh all of the components of agentj’s

state in agenti’s update equation. To illustrate this, consider a network with a fixed two agent

strongly connected graph andA1 = [ 1 1 ] andA2 = [−a −1 ]. Suppose agent1 uses weights

w1j = .5. to weigh both components ofxj , j ∈ 2 but agent2 weights the first components of

state vectorsx1 andx2 with .25 and .75 respectively while weighing the second components of

both with .5. A simple computation reveals that the spectral radius of the relevant update matrix

for the state of the system determined by (5) will exceed1 for values ofa in the open interval

(.5, 1).

VI. A NALYSIS

In this section we explain why Theorems 1 and 2 are true. As a first step, we translate the

statexi of (2) to a new shifted stateei which can be interpreted as is the error betweenxi and

a solution toAx = b; as we shall see, this simplifies the analysis. Towards this end, let x∗ be

any solution toAx = b. Thenx∗ must satisfyAix
∗ = bi for i ∈ m. Thus if we define

ei(t) = xi(t)− x∗, i ∈ m, t ≥ 1 (6)

thenei(t) ∈ Pi, t ≥ 1, becausePi = kerAi. ThereforePiei(t) = ei(t), i ∈ m, t ≥ 1. Moreover

from (2),

ei(t + 1) = P 2
i ei(t)−

1

mi(t)
Pi



mi(t)Piei(t)−
∑

j∈Ni(t)

Pjej(t)
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for t ≥ 1, i ∈ m, which simplifies to

ei(t + 1) =
1

mi(t)
Pi

∑

j∈Ni(t)

Pjej(t), t ≥ 1, i ∈ m. (7)

As a second step, we combine thesem update equations into one linear recursion equation

with state vectore(t) = column{e1(t), e2(t), . . . , em(t)}. To accomplish this, writeAN(t) for

the adjacency matrix ofN(t), DN(t) for the diagonal matrix whoseith diagonal entry ismi(t)

{mi(t) is also the in-degree of vertexi in N(t)}, and letF (t) = D−1
N(t)A

′
N(t). Note thatF (t)

is a stochastic matrix; in the literature it is sometimes referred to as aflocking matrix. It is

straightforward to verify that

e(t + 1) = P (F (t)⊗ I)Pe(t), t ≥ 1 (8)

whereP is themn×mn matrix P = diagonal{P1, P2, . . . , Pm} andF (t)⊗ I is themn×mn

matrix which results when each entryfij(t) of F (t) is replaced byfij(t) times then×n identity.

Note thatP 2 = P because eachPi is idempotent. We will use this fact without special mention

in the sequel.

A. Repeatedly Jointly Strongly Connected Sequences are Sufficient

In this section we shall prove Theorem 1. In other words we will show that repeatedly jointly

strongly connected sequences of graphs are sufficient for exponential convergence of thexi

to a solution toAx = b. We will do this in two parts. First we will consider the special

case whenAx = b has a unique solution. This case is exactly when∩m
i=1 kerAi = 0. Since

kerAi = Pi, i ∈ m, the uniqueness assumption is equivalent to the condition
m
⋂

i=1

Pi = 0. (9)

AssumingAx = b has a unique solution, our goal is to derive conditions underwhich e →

0 since, in view of (6), this will imply that allxi approach the desired solutionx∗ in the

limit at t → ∞. To accomplish this it is clearly enough to prove that the matrix product

(P (F (t)⊗ I)P ) . . . (P (F (2)⊗ I)P )(P (F (1)⊗ I)P ) converges to the zero matrix exponentially

fast under the hypothesis of Theorem 1. Convergence of such matrix products is an immediate

consequence of the main technical result of this paper, namely Theorem 3, which we provide

below.
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To state Theorem 3, we need a way to quantify the sizes of matrix products of the form

(P (F (t)⊗ I)P ) . . . (P (F (2)⊗ I)P )(P (F (1)⊗ I)P ). For this purpose we introduce a somewhat

unusual but very useful concept, namely a special “mixed-matrix” norm: Let | · |2 and | · |∞

denote the standard induced two norm and infinity norm respectively and writeRmn×mn for the

vector space of allm×m block matricesQ = [Qij ] whoseijth entry is a matrixQij ∈ Rn×n.

We define themixed matrix normof Q ∈ Rmn×mn, written ||Q||, to be

||Q|| = |〈Q〉|∞ (10)

where〈Q〉 is the matrix inRm×m whoseijth entry is|Qij|2. It is very easy to verify that|| · ||

is in fact a norm. It is even sub-multiplicative{cf. Lemma 3}.

To state Theorem 3, we also need the following idea. Letl be a positive integer. A compact

subsetC of m×m stochastic matrices with graphs inGsa is l-compactif the setCl consisting of

all sequencesS1, S2, . . . , Sl, Si ∈ C, for which the graphγ(SlSl−1 · · ·S1) is strongly connected,

is nonempty and compact. Thus any nonempty compact subset ofm × m stochastic matrices

with strongly connected graphs inGsa is 1-compact. Some examples of compact subsets which

are l-compact are discussed on page 595 of [35].

The key technical result we will need is as follows.

Theorem 3:Suppose that (9) holds. Letl be a positive integer. LetC be anl-compact subset

of m×m stochastic matrices and define

λ = ( sup
Hω∈Cl

sup
Hω−1∈Cl

, · · · sup
H1∈Cl

||P (Qωl ⊗ I)P (Qωl−1 ⊗ I) · · · P (Q1 ⊗ I)P ||)
1

ωl

whereω = (m−1)2 and fori ∈ {1, 2, . . . , ω}, Hi is the subsequenceQ(i−1)l+1, Q(i−1)l+2, . . . , Qil.

Thenλ < 1, and for any infinite sequence of stochastic matricesS1, S2, . . . in C whose graphs

form a sequenceγ(S1), γ(S2), . . . which is repeatedly jointly strongly connected by contiguous

subsequences of lengthl, the following inequality holds.

||P (St ⊗ I)P (St−1 ⊗ I) · · ·P (S1 ⊗ I)P || ≤ λ(t−lω). (11)

The ideas upon which Theorem 3 depends is actually pretty simple. One breaks the infinite

product

· · ·P (St ⊗ I)P (St−1 ⊗ I) · · ·P (S1 ⊗ I)P

March 4, 2015 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ACCEPTED. 17

into contiguous sub-productsP (Skl ⊗ I)P (Skl−1 ⊗ I) · · ·P (Sk ⊗ I)P, k ≥ 1 of length l with

l chosen long enough so that each sub-product is a contractionin the mixed matrix norm

{Proposition 2}. Then using the sub-multiplicative property of the mixed matrix norm {Lemma

3}, one immediately obtains (11). This theorem will be proved in §VI-C3.

Next we will consider the general case in which (9) is not presumed to hold. This is the case

when Ax = b does not have a unique solution. We will deal with this case inseveral steps.

First we will {in effect} “quotient out” the subspace∩m
i=1Pi thereby obtaining a subsystem to

which Theorem 3 can be applied. Second we will show that the part of the system state we

didn’t consider in the first step, satisfies a standard unconstrained consensus update equation to

which well known convergence results can be directly applied. The first step makes use of the

following lemma.

Lemma 1:Let Q′ be any matrix whose columns form an orthonormal basis for theorthogonal

complement of the subspace∩m
i=1Pi and defineP̄i = QPiQ

′, i ∈ m. Then the following

statements are true.

1. EachP̄i, i ∈ m, is an orthogonal projection matrix.

2. EachP̄i, i ∈ m, satisfiesQPi = P̄iQ.

3.
⋂m

i=1 P̄i = 0.

Proof of Lemma 1: Note thatP̄ 2
i = QPiQ

′QPiQ
′ = QP 2

i Q
′ = QPiQ

′ = P̄i, i ∈ m, so eachP̄i

is idempotent; since each̄Pi is clearly symmetric, each must be an orthogonal projectionmatrix.

Thus property 1 is true.

SincekerQ = ∩m
i=1Pi, it must be true thatkerQ ⊂ Pi, i ∈ m. ThusPi kerQ = kerQ, i ∈ m.

ThereforeQPi kerQ = 0 sokerQ ⊂ kerQPi. This plus the fact thatQ has linearly independent

rows means that the equationQPi = XQ has a unique solutionX. Clearly X = QPiQ
′, so

X = P̄i. Therefore property 2 is true.

Pick x ∈ ∩m
i=1P̄i. Then x ∈ P̄i, i ∈ m, so there existwi such thatx=P̄iwi, i ∈ m. Set

y = Q′x in which casex = Qy; thusy = Q′P̄iwi, i ∈ m. In view of property 2 of Lemma 1,

y = PiQ
′wi, i ∈ m so y ∈ ∩m

i=1Pi. ThusQy = 0. But x = Qy so x = 0. Therefore property 3

of Lemma 1 is true.

Proof of Theorem 1: Consider first the case whenAx = b has a unique solution. Thus the

hypothesis of Theorem 3 that (9) hold, is satisfied. Next observe that since directed graphs

in Gsa are bijectively related to flocking matrices, the setFl of distinct subsequencesF ((k −
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1)l + 1), F ((k − 1)l + 2), . . . , F (kl), k ≥ 1, encountered along any trajectory of (8) must be

a finite and thus compact set. Moreover for some finite integerτ0 ≥ 0, the composed graphs

γ(F (kl)) ◦ γ(F (lk − 1) ◦ · · ·F (l(k − 1) + 1)), k ≥ τ0 must be strongly connected because the

neighbor graph sequenceN(t), t ≥ 1 is repeatedly jointly strongly connected by subsequences

of length l and γ(F (t)) = N(t), t ≥ 1. Hence Theorem 3 is applicable to the matrix product

(P (F (t)⊗ I)P ) . . . (P (F (2)⊗ I)P )(P (F (1)⊗ I)P ). Therefore for suitably defined nonnegative

λ < 1, this product converges to the zero matrix as fast asλt converges to0. This and (8) imply

that e(t) converges to zero just as fast. From this and (6) it follows that eachxi(t) converges

exponentially fast tox∗. Therefore Theorem 1 is true for the case whenAx = b has a unique

solution.

Now consider the case whenAx = b has more than one solution. Note that property 2 of

Lemma 1 implies thatQPiPj = P̄iP̄jQ for all i, j ∈ m. Thus if we definēei = Qei, i ∈ m,

then from (7)

ēi(t + 1) =
1

mi(t)
P̄i

∑

j∈Ni(t)

P̄j ēj(t), t ≥ 1, i ∈ m. (12)

Observe that (12) has exactly the same form as (7) except for the P̄i which replace thePi.

But in view of Lemma 1, theP̄i are also orthogonal projection matrices and∩m
i=1P̄i = 0. Thus

Theorem 3 is also applicable to the system of iterations (12). Thereforeēi → 0 exponentially

fast ast → ∞.

To deal with what is left, definezi = ei − Q′ēi, i ∈ m. Note thatQzi = Qei − ēi so

Qzi = 0, i ∈ m. Thuszi(t) ∈ ∩m
j=1Pj, i ∈ m. ClearlyPjzi(t) = zi(t), i, j ∈ m. Moreover from

property 2 of Lemma 1,PiQ
′ = Q′P̄i. These expressions, and (12) imply that

zi(t+ 1) =
1

mi(t)

∑

j∈Ni(t)

zj(t), t ≥ 1, i ∈ m. (13)

These equations are the update equations for the standard unconstrained consensus problem

treated in [35] and elsewhere for case when thezi are scalars. It is well known that for the

scalar case, a sufficient condition for allzi to converge exponentially fast to the same value

is that the neighbor graph sequence theN(t), t ≥ 1 be repeatedly jointly strongly connected

[35]. But since the vector update (13) decouples inton independent scalar update equations,

the convergence conditions for the scalar equations apply without change to the vector case as

well. Thus all zi converge exponentially fast to the same limit inz∗ ∈
⋂m

i=1Pi. So do all of
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the ei sinceei = zi + Q′ēi, i ∈ m, and all ēi converge to zero exponentially fast. Therefore all

xi defined by (2) converge to the same limitx∗ + z∗ which solvesAx = b. This concludes the

proof of Theorem 1 for the case whenAx = b does not have a unique solution.

B. Repeatedly Jointly Strongly Connected Sequences are Necessary

In this section we shall explain why the of exponential convergence of thexi(t) to a solution

can only occur if the sequence of neighbor graphsN(t), t ≥ 0 referred to in the statement of

Theorem 2, is repeatedly jointly strongly connected. To do this we need the following concepts

from [38] and [41]. A vertexj of a directed graphG is said to bereachablefrom vertex i if

either i = j or there is a directed path fromi to j. Vertex i is calledessentialif it is reachable

from all vertices which are reachable fromi. It is known that every directed graph has at least

one essential vertex{Lemma 10 of [24]}.

Verticesi andj in G are calledmutually reachableif each is reachable from the other. Mutual

reachability is an equivalence relation onm. Observe that ifi is an essential vertex inG, then

every vertex in the equivalence class ofi is essential. Thus each directed graph possesses at

least one mutually reachable equivalence class whose members are all essential. Note also that

a strongly connected graph has exactly one mutually reachable equivalence class.

Proof of Theorem 2: Consider first the case whenAx = b has a unique solution. In this case, the

unique equilibrium of (8) at the origin must be exponentially stable. Since exponential stability

and uniform asymptotic stability are equivalent properties for linear systems, it is enough to show

that uniform asymptotic stability of (8) implies that the sequence of neighbor graphsN(t), t ≥ 0

is repeatedly jointly strongly connected. Suppose therefore that (8) is a uniformly asymptotically

stable system.

To show that repeatedly jointly strongly connected sequences are necessary for uniform

asymptotic stability, we suppose the contrary; i.e. suppose thatN(1),N(2), . . . is not a repeatedly

jointly strongly connected sequence. Under these conditions, we claim that for every pair of

positive integersl andτ , there is an integerk > τ such that the composed graphN(k+ l− 1) ◦

· · · ◦N(k+1) ◦N(k) is not strongly connected. To justify this claim, suppose that for some pair

(l, τ), no suchk exists; thus for this pair, the graphsN(p+ l− 1) ◦ · · · ◦N(p+1) ◦N(p), p ≥ τ

are all strongly connected so the sequenceN(1), N(2), . . . must be repeatedly jointly strongly
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connected. But this contradicts the hypothesis thatN(t), t ≥ 0 is not a repeatedly jointly strongly

connected sequence. Therefore for any pair of positive integersl andτ there is an integerk > τ

such that the composed graphN(k + l − 1) ◦ · · · ◦ N(k + 1) ◦ N(k) is not strongly connected.

LetΦ(t, τ) be the state transition matrix ofP (F (t)⊗I)P . Since (8) is uniformly asymptotically

stable, for each real numberǫ > 0 there exist positive integerstǫ andTǫ such that||Φ(t+Tǫ, t)|| <

ǫ for all t > tǫ. Set ǫ = 1 and lett1 andT1 be any pair of such integers. SinceN(1),N(2), . . .

is not a repeatedly strongly connected sequence, there mustbe an integert2 > t1 for which the

composed graph

G = N(t2 + T1 − 1) ◦ · · · ◦N(t2 + 1) ◦ N(t2)

is not strongly connected. Sincet2 > t1, the hypothesis of uniform asymptotic stability ensures

that

||Φ(t2 + T1, t2)|| < 1. (14)

In view of the discussion just before the proof of Theorem 2,G must have at least one

mutually reachable equivalence classE whose members are all essential. Note that ifE where

equal tom, thenG would have to be strongly connected. ButG is not strongly connected soE

must be a strictly proper subset ofm with k < m elements. Suppose thatE = {v1, v2, . . . , vk}

and letĒ = {vk+1, . . . , vm} be the complement ofE in m. Since every vertex inE is essential,

there are no arcs inG from E to Ē . But the arcs of eachN(t), t ∈ {t2, t2 + 1, . . . t2 + T1 − 1}

must all be arcs inG because eachN(t) has self-arcs at all vertices. Therefore there cannot be

an arc fromE to Ē in anyN(t), t ∈ {t2, t2 + 1, . . . t2 + T1 − 1}.

Let π be a permutation onm for which π(vj) = j, j ∈ m and letQ be the corresponding

permutation matrix. Then fort ∈ {t2, t2+1, . . . t2+T1−1}, the transformationF (t) 7−→ QF (t)Q′

block triangularizesF (t). SetQ̄ = Q⊗ I. Note thatQ̄ is a permutation matrix and that̄QPQ̄′

is a block diagonal, orthogonal projection matrix whosejth diagonal block isPπ(vj), j ∈ m.

Because eachQF (t)Q′ is block triangular, so are the matrices̄QP (F (t)⊗ I)PQ̄′, t ∈ {t2, t2 +

1, . . . t2 + T1 − 1}. Thus for t ∈ {t2, t2 + 1, . . . t2 + T1 − 1}, there are matricesA(t), B(t) and

C(t) such that

Q̄P (F (t)⊗ I)PQ̄′ =

[

A(t) B(t)

0 C(t)

]

.

Let k be the number of elements inE . For t ∈ {t2, t2 + 1, . . . t2 + T1 − 1}, let S̄(t) be that

(m−k)×(m−k) submatrix ofF (t) whoseijth entry is thevi+kvj+kth entry ofF (t), for all and
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i, j ∈ {1, 2, . . . , m−k}. In other words,̄S(t) is that submatrix ofF (t) obtained by deleting rows

and columns whose indices are inE . Since eachF (t), t ∈ {t2, t2+1, . . . t2+T1−1} is a stochastic

matrix and there are no arcs fromE to Ē , each correspondinḡS(t) is a stochastic matrix as

well. SetP̄ = block diagonal{Pvk+1
, Pvk+2

, . . . , Pvm} in which caseC(t) = P̄ (S̄(t)⊗I)P̄ . Since

{P1, P2, . . . , Pm} is a non-redundant set and̄E is a strictly proper subset ofm,
⋂

i∈Ē Pi 6= 0. Let

z be any nonzero vector in
⋂

i∈Ē Pi. in which casePiz = z, i ∈ Ē . ThenC(t)z̄ = P̄ (S̄(t)⊗I)P̄ z̄

where z̄ = [ z′ z′ · · · z′ ]′(m−k)n×1. Note that

Q̄Φ(t2 + T1, t2)Q̄
′ = (Q̄P (F (t2 + T1 − 1)⊗ I)PQ̄′) · · · (Q̄P (F (t2)⊗ I)PQ̄′) =

[

A B

0 C

]

whereC = C(t2 + T1 − 1) · · ·C(t2). ThereforeCz̄ = z̄ for C has an eigenvalue at1. Thus the

state transition matrixΦ(t2 + T1 − 1, t2) has an eigenvalue at1 so ||Φ(t2 + T1 − 1, t2)|| = 1.

But this contradicts (14). It follows that the sequenceN(1),N(2), . . . must be repeatedly jointly

strongly connected ifAx = b has a unique solution.

We now turn to the general case in whichAx = b has more than one solution. Since by

assumption,A 6= 0, the matrixQ defined in the statement of Lemma 1 is not the zero matrix

and so the subsystem defined by (12) has positive state space dimension. Moreover, exponential

convergence of the overall system implies that this subsystem’s unique equilibrium at the origin

is exponentially stable. Thus the preceding arguments apply so the sequence of neighbor graphs

must be repeatedly jointly strongly connected in this case too.

C. Justification for Theorem 3

In this section we develop the ideas needed to prove Theorem 3. We begin with the following

lemma which provides several elementary but useful facts about orthogonal projection matrices.

Lemma 2:For any nonempty set ofn×n real orthogonal projection matrices{P1, P2, . . . , Pk}

|PkPk−1 · · ·P1|2 ≤ 1. (15)

Moreover,

|PkPk−1 · · ·P1|2 < 1 (16)

if and only if
k
⋂

i=1

Pi = 0. (17)
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Proof of Lemma 2: To avoid cumbersome notation, throughout this proof we dropthe subscript

2 and write| · | for | · |2. To establish (15), We make use of the fact that the eigenvalues of any

projection matrix are either0 or 1. But the projection matrices of interest here are orthogonal

and thus symmetric. Therefore each singular value of eachPi must be either0 or 1. It follows

that |Pi| ≤ 1, i ∈ k. The inequality in (15) follows at once the fact that| · | is sub-multiplicative.

To prove the equivalence of (16) and (17) suppose first that (16) holds. Letx be any vector

in
⋂k

i=1Pi. ThenPkPk−1 · · ·P1x = x. Since (16) holds,PkPk−1 · · ·P1 must be a discrete time

stability matrix. ThereforePkPk−1 · · ·P1 cannot have an eigenvalue at1 so x = 0. It follows

that (17) is true.

To proceed we will first need to justify the following claim: If {Q1, Q2, . . . , Qs} is any

nonempty subset ofs ≤ m projection matrices from{P1, P2, . . . , Pk} andx ∈ Rn is any vector

for which |Q1 · · ·Qs−1Qsx| = |x|, thenQix = x, i ∈ {1, 2, . . . , s}. To prove this claim, suppose

first thatQ ∈ {P1, P2, . . . , Pk} and that|Qx| = |x| for somex ∈ Rn. Write x = y + z where

y ∈ Q and z ∈ Q⊥. ThenQx = y so |y| = |x|. But |y|2 + |z|2 = |x|2 so z = 0. Therefore

Qx = x so the claim is true fors = 1.

Now fix q < k and suppose that the claim is true for every value ofs ≤ q. Let x be a vector

for which |Q1 · · ·QqQq+1x| = |x|. Then|x| = |Q1 · · ·QqQq+1x| ≤ |Qq+1x| ≤ |x| because| · | is

sub-multiplicative and because (15) holds for any nonemptyset of projection matrices. Clearly

|Qq+1x| = |x|; thereforeQq+1x = x because the claim is true for single projection matrices.

ThereforeQ1 · · ·QqQq+1x = Q1 · · ·Qqx so |Q1 · · ·Qqx| = |x|. From this and the inductive

hypothesis it follows thatQix = x, i ∈ {1, 2, . . . , q}. Thus the claim is true for alls ≤ q + 1.

It follows by induction that the claim is true.

To complete the proof, suppose that (17) holds and letx be any vector for which|PkPk−1 · · ·P1x| =

|x|. In view of the preceding claim,Pix = x, i ∈ {1, 2, . . . , k}. This implies thatx ∈ ∩k
1Pi, and

thus because of (17) thatx = 0. ThusPkPk−1 · · ·P1 cannot have a singular value at1. This and

(15) imply that (16) is true.

1) Projection Matrix Polynomials:To proceed we need to develop a language for talking

about matrix products of the form(P (Sq⊗I)P ) . . . (P (S2⊗I)P )(P (S1⊗I)P ) where theSi are

m×m stochastic matrices. Such matrices can be viewed as partitioned matrices whosem2 blocks

are specially structuredn× n matrices. We begin by introducing some concepts appropriate to
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the individual blocks.

Let {P1, P2, . . . , Pm} be a set ofn× n orthogonal projection matrices. We will be interested

in matrices of the form

µ(P1, P2, P3, . . . , Pm) =
d
∑

i=1

λiPhi(1)Phi(2) · · ·Phi(qi) (18)

whereqi andd are positive integers,λi is a real positive number, and for eachj ∈ {1, 2, . . . , qi},

hi(j) is an integer in{1, 2, . . . , m}. We call such matrices together with then× n zero matrix,

projection matrix polynomials. In the eventµ is nonzero, we refer to theλi as thecoefficientsof

µ. Note that eachn× n block of any partitioned matrix of the form(P (Sq ⊗ I)P ) . . . (P (S2 ⊗

I)P )(P (S1⊗ I)P ) is a projection matrix polynomial. The set of projection matrix polynomials,

writtenP, is clearly closed under matrix addition and multiplication. Let us note from the triangle

inequality, that

|µ(P1, P2, P3, . . . , Pm)|2 ≤
d
∑

i=1

λi|Phi(1)Phi(2) · · ·Phi(qi)|2.

From this and (15) it follows that

|µ(P1, P2, P3, . . . , Pm)|2 ≤ ⌈µ(P1, P2, P3, . . . , Pm)⌉ (19)

where ⌈µ(P1, P2, P3, . . . , Pm)⌉ =
∑d

i=1 λi if µ 6= 0 and ⌈µ⌉ = 0 if µ = 0. We call ⌈µ⌉ the

nominal boundof µ. Notice that the actual2 norm of µ will be strictly less than its nominal

bound provided at least one “component” ofµ has a2 norm less than one where by acomponent

of µ we mean any matrix productPhi(1)Phi(2) · · ·Phi(qi) appearing in the sum in (18) which defines

µ. In view of Lemma 2, a sufficient condition forPhi(1)Phi(2) · · ·Phi(qi) to have a2 norm less

than1 is that
qi
⋂

j=1

Im(Phi(j)) = 0.

Thus if
⋂m

i=1Pi = 0, this in turn will always be true if each of the projections matrices in the

set {P1, P2, . . . , Pm} appears in the componentPhi(1)Phi(2) · · ·Phi(qi) at least once. Prompted

by this we say that a nonzero projection matrix polynomialµ(P1, P2, P3, . . . , Pm) is com-

plete if it has a componentPhi(1)Phi(2) · · ·Phi(qi) within which each of the projections matrices

Pj, j ∈ {1, 2, . . . , m} appears at least once. Assuming
⋂m

i=1Pi = 0, complete projection matrix

polynomials are thus a class of projection matrix polynomials with 2-norms strictly less than

their nominal bounding values. The converse of course is notnecessarily so.
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2) Projection Block Matrices:The ideas just discussed extend in an natural way to “projection

block matrices.” By anm × m projection block matrixis meant a block partitioned matrix of

the form

M = [µij(P1, P2, . . . , Pm) ]m×m .

An m×m projection block matrix is thus annm× nm matrix of real numbers partitioned into

n × n sub-matrices which are projection matrix polynomials. Theset of allm ×m projection

block matrices, writtenPm×m, is clearly closed under multiplication. Note that any matrix of

the form (P (Sq ⊗ I)P ) . . . (P (S2 ⊗ I)P )(P (S1 ⊗ I)P ) is a projection block matrix.

By the nominal bound of M = [µij(P1, P2, . . . , Pm) ]m×m ∈ P
m×m, written ⌈M⌉, is meant

them×m matrix whoseijth entry is the nominal bound ofµij(P1, P2, . . . , Pm). Using (19) it

is quite easy to verify that

〈M〉 ≤ ⌈M⌉ (20)

where the inequality is intended entry-wise. The definitionof nominal bound of a projection

matrix polynomial implies that for allµ1, µ2 ∈ P, ⌈µ1µ2⌉ = ⌈µ1⌉⌈µ2⌉ and⌈µ1 + µ2⌉ = ⌈µ1⌉ +

⌈µ2⌉. From this it follows that

⌈M1M2⌉ = ⌈M1⌉⌈M2⌉, M1,M2 ∈ P
m×m. (21)

In order to measure the sizes of matrices inPm×m we shall make use of the mixed matrix

norm || · || defined earlier in (10). A critical property of this norm is that it is sub-multiplicative:

Lemma 3:

||AB|| ≤ ||A||||B||, ∀A,B ∈ R
mn×mn.

Proof of Lemma 3: Note first that

〈AB〉 =

[

n
∑

k=1

|AikBkj|2

]

m×m

.

But |AikBkj|2 ≤ |Aik|2|Bkj|2 so

m
∑

k=1

|AikBkj|2 ≤
m
∑

k=1

|Aik|2|Bkj|2 = [ |Ai1|2 |Ai2|2 · · · |Aim|2 ]













|B1j|2

|B2j|2
...

|Bmj |2













.
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Clearly 〈AB〉 ≤ 〈A〉〈B〉. It follows from this and the fact that the infinity norm is sub-

multiplicative that|〈AB〉|∞ ≤ |〈A〉|∞|〈B〉|∞ Thus the lemma is true.

It is worth noting that the preceding properties of|| · || remain true for any pair of standard

matrix norms provided both are sub-multiplicative. It is conceivable that the mixed matrix norm

which results when the1 -norm is used in place of the2-norm, will find application in the study

of distributed compressed sensing algorithms [42]. The notion of a mixed matrix norm has been

used before although references to the subject are somewhatobscure.

Let M = [µij ]m×m be a matrix inPm×m. Since〈M〉 = [ |µij|2 ]m×m, it is possible to rewrite

(20) as

〈M〉 ≤ ⌈M⌉, M ∈ P
m×m. (22)

Therefore

||M || ≤ |⌈M⌉|∞, M ∈ P
m×m. (23)

Thus in the case when⌈M⌉ turns out to be a stochastic matrix,||M || ≤ 1. In other words, when

⌈M⌉ is a stochastic matrix,M is non-expansive. As will soon become clear, this is exactlythe

case we are interested in.

What we are especially interested in are conditions under which M is a contraction in the

mixed matrix norm we have been discussing under the assumption that
⋂m

i=1Pi = 0. Towards

this end, let us note first that the sum of the terms in any givenrow i of 〈M〉 will be strictly

less than the sum of the terms in rowi of ⌈M⌉ provided at least one sub-matrixµij in block

row i of M is complete. It follows at once that the inequality in (23) will be strict if every row

of M has this property. We have proved the following proposition.

Proposition 1:Any matrix M in Pm×m whose nominal bound is stochastic, is non-expansive

in the mixed matrix norm. If, in addition,
⋂m

i=1Pi = 0 and at least one entry in each block row

of M is complete, thenM is a contraction in the mixed matrix norm.

3) Technical Results:We now return to the study of matrix products of the formP (Sq ⊗

I)P (Sq−1⊗I) · · ·P (S1⊗I)P whereP = diagonal {P1, P2, . . . , Pm}, Si is anm×m stochastic

matrix, andI is then × n identity. As noted earlier, each such matrix product is a projection

block matrix inP
m×m. Our goal is to state a sufficient condition under which any such matrix

product is a contraction in the mixed matrix norm. To do this let us note first that

⌈P (Sq ⊗ I)P (Sq−1 ⊗ I) · · ·P (S1 ⊗ I)P ⌉ = SqSq−1 · · ·S1 (24)
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because of (21) and the fact that⌈P (S⊗ I)P ⌉ = S for any stochastic matrixS. Thus in view of

Proposition 1,P (Sq ⊗ I)P (Sq−1 ⊗ I) · · ·P (S1 ⊗ I)P will be a contraction assuming (9) holds,

if each of its block rows contains an entry which is complete.

To proceed we need to generalize the idea of a repeated jointly strongly connected sequence

to sequences of finite length. A finite sequence of graphsG1,G2, . . .Gl in Gsa is l-connectedif

the composed graphGl ◦Gl−1 ◦ · · · ◦G1 is strongly connected. More generally, finite sequence

G1,G2, . . .Gp is repeatedlyl-connectedfor some positive integerl, if each of the composed

graphsHk = Gkl◦Gkl−1◦· · ·◦G(k−1)l+1, k ∈ q, is strongly connected; hereq is the unique integer

quotient ofp divided by l. Note that ifG1,G2, . . .Gp is such a sequence, the composed graph

H = Gp◦Gp−1◦· · ·◦Gl(q−1)+1 is also strongly connected becauseH = Gp◦Gp−1◦· · ·◦Gql+1◦Hq

and because inGsa, the arc sets of any two graphs are contained in the arc set of their composition.

Proposition 2:Suppose that (9) holds. LetS1, S2, . . . Sp be a finite set ofm ×m stochastic

matrices whose graphs form a sequenceγ(S1), γ(S2), . . . , γ(Sp) which is repeatedlyl-connected

for some positive integerl. If p ≥ (m−1)2l, then the matrixP (Sp⊗I)P (Sp⊗I) · · ·P (S1⊗I)P

is a contraction in the mixed matrix norm.

To prove this proposition we will make use of the following idea. By aroute over a given

sequence of graphsG1, G2, . . . ,Gq in Gsa is meant a sequence of verticesi0, i1, . . . , iq such that

for k ∈ q, (ik−1, ik) is an arc inGk. A route over a sequence of graphs which are all the same

graphG, is thus a walk inG.

The definition of a route implies that ifi0, i1, . . . , iq is a route overG1, G2, . . . ,Gq and

iq, iq+1, . . . , ip is a route overGq, Gq+1, . . . ,Gp, then the ‘concatenated’ sequencei0, i1, . . . , iq−1,

iq, iq+1, . . . , ip is a route overG1, G2, . . . ,Gq−1, Gq, Gq+1, . . . ,Gp. This clearly remains true

if more than two sequences are concatenated.

Note that the definition of composition inGsa implies that if j = i0, i1, . . . , iq = i is a route

over a sequenceG1, G2, . . . ,Gq, then(i, j) must be an arc in the composed graphGq ◦Gq−1 ◦

· · · ◦G1. The definition of composition also implies the converse, namely that if (i, j) is an arc

in Gq ◦Gq−1 ◦ · · · ◦G1, then there must exist verticesi1, . . . , iq−1 for which j = i0, i1, . . . , iq = i

is a route overG1, G2, . . . ,Gq.

Lemma 4:LetS1, S2, . . . Sq be a sequence ofm×m stochastic matrices with graphsG1,G2, . . .,

Gq in Gsa respectively. Ifj = i0, i1, . . . , iq = i is a route over the sequenceG1, G2, . . . ,Gq,

then the matrix productPiqPiq−1
· · ·Pi0 is a component of theijth block entry of the projection
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block matrix

M = P (Sq ⊗ I)P (Sq−1 ⊗ I) · · ·P (S1 ⊗ I)P.

Proof of Lemma 4: First supposeq = 1 in which caseM = P (S1 ⊗ I)P . By definition, (j, i)

is an arc inG1; thereforesij 6= 0. But the ijth block inM is sijPiPj . Thus the lemma is true

for q = 1.

Now suppose thatq > 1 and that the lemma is true for allk < q. Set A = PSqP and

B = P (Sq−1 ⊗ I)P (Sq−2 ⊗ I) · · ·P (S1 ⊗ I)P . SinceP 2 = P , M = AB. Since the lemma

is true for k < q and j = i0, i1, i2, . . . , iq−1 is a route overG1, G2, . . . ,Gq−1, the matrix

Piq−1
Piq−2

· · ·Pi0 is a component of theiq−1jth projection matrix polynomial entrybiq−1j of

B. Similarly, the matrixPiqPiq−1 is a component of theiiq−1th projection matrix polynomial

entry aiiq−1
of A. In general, the product of any component of any nonzero projection matrix

polynomial α with any component of any other nonzero projection matrix polynomial β, is

a component of the productαβ. It must therefore be true thatPiqPiq−1
Piq−1

Piq−2
· · ·Pi0 is a

component of the productaiiq−1
biq−1j. But P 2

iq−1
= Piq−1

soPiqPiq−1
Piq−2

· · ·Pi0 is a component

of aiiq−1
biq−1j . In view of the definition of matrix multiplication, the projection matrix polynomial

aiiq−1
biq−1j must appear within the sum which defines theijth block entryµij in M . Therefore

PiqPiq−1
Piq−2

· · ·Pi0 must be a component ofµij . Thus the lemma is true atq. By induction the

lemma is true for allq > 0.

Proof of Proposition 2: Set r = m − 1 and Gi = γ(Si), i ∈ p. Partition the sequence

G1,G2, . . . ,Gp into r successive subsequencesG1 = {G1,G2, . . . ,Grl}, G2 = {Grl+1, . . . ,G2rl},

. . . Gr−1 = {G((r−2)rl+1, . . .G(r−1)rl}, Gr = {G(r−1)rl+1, . . . ,Gp}, each of lengthr except for the

last which must be of lengthp− l(r2 − r) ≥ lr. Each of theser sequencesGi, i ∈ r, consists

of r successive subsequences which, in turn, are jointly strongly connected. Thus each of ther

composed graphsH1 = Grl◦· · ·◦G1, H2 = G2rl◦· · ·◦Grl+1, . . ., Hr−1 = G(r−1)rl◦· · ·◦G(r−2)rl+1,

Hr = Gp ◦ · · ·◦G(r−1)rl+1 can be written as the composition ofr strongly connected graphs. But

the composition of any sequence ofr or more strongly connected graphs inGsa is a complete

graph{cf. Proposition 4 of [35]}. Thus each of the graphsHk, k ∈ r, is a complete graph.

Therefore eachHk contains every possible arc(i, j). It follows that for anyi, j ∈ m and any

k ≤ r, there must be a route over the sequenceGk from j to i.
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Let i1, i2, . . . , im be any reordering of the sequence1, 2, . . . , m. In the light of the discussion

in the previous paragraph, it is clear that for eachk ∈ {1, 2, . . . r − 1}, there must be a route

ik = j(k−1)r, j(k−1)r+1, . . . , jkr = ik+1 over Gk from ik to ik+1. Similarly there must be a route

ir = j(r−1)r, j(r−1)r+1, . . . , jq = im from ir to im over Gr. Thus i1 = j1, j2, . . . , jp = im must

be route over the overall sequenceG1,G2, . . . ,Gp. In view of Lemma 4, the matrix product

Pjp · · ·Pj0 must be a component of the of theimi1th block entry of

M = P (Sp ⊗ I)P (Sp−1 ⊗ I) · · ·P (S1 ⊗ I)P.

But i1, i2, . . . , im are distinct integers and each appears in the sequencej0, j1, . . . , jp at least

once. Therefore theimi1th block entry ofM is complete. Since this reasoning applies for any

sequence ofm distinct vertex labelsi1, i2, . . . , im from the set{1, 2, . . . , m}, every block entry of

M , except for the diagonal blocks, must be a complete projection matrix polynomial. If follows

from Proposition 1 and (24) thatM is a contraction.

Proof of Theorem 3: Let Hi = Q(i−1)l+1, . . . , Qil, i ∈ {1, 2, . . . , ω}, be any set ofω sequences

in Cl. Since eachHi ∈ Cl, each graphγ(QilQil−1 · · ·Q(i−1)l+1), i ∈ {1, 2, . . . , ω} is strongly

connected. Therefore the sequenceγ(Q1), γ(Q2), . . . , γ(Qωl) is repeatedlyl-connected. Since

there areωl matrices in theQi - sequence, Proposition 2 applies. Therefore for any set of

sequencesHi ∈ Cl, i ∈ {1, 2, . . . , ω}, ||P (Qωl ⊗ I)P (Qωl−1 ⊗ I) · · ·P (Q1 ⊗ I)P || < 1. Since

Cl is compact,λ < 1.

SetMt = P (St ⊗ I)P (St−1 ⊗ I) · · ·P (S1 ⊗ I)P, t ≥ 1 andNk = P (Sωlk ⊗ I)P (Sωlk−1 ⊗

I) · · ·P (Sωl(k−1)+1 ⊗ I)P, for k ∈ qt, whereqt is the unique integer quotient oft divided by

ωl. SinceP 2 = P , it must be true thatMt = RtNqtNqt−1 · · ·N1 whereRt = P (St⊗I)P (St−1⊗

I) · · ·P (Sqtl+1⊗ I)P . Since the sequencesSl(i−1)k+1, Sl(i−1)k+2, . . . , Slik, i ∈ {1, 2, . . . , ω}, k ∈

qt, are all inCl, it must be true that||Nk|| ≤ λωl, k ∈ qt. Therefore||NqtNqt−1 · · ·N1|| ≤ λωlqt

so ||Mt|| ≤ ||Rt||λωlqt. But for anym×m stochastic matrixS, ||S⊗ I|| = 1 because|S|∞ = 1.

In addition, ||P || ≤ 1 because of (15). From these observations and the fact that|| · || is sub-

multiplicative, it follows that||Rt|| ≤ 1; thus

||Mt|| ≤ λωlqt . (25)

Moreover t = ωlqt + ρt where ρt is the unique integer remainder oft divided by ωl. Thus

λωlqt = λt−ρt . But ρt < lω and λ < 1 so λ(t−ρt) ≤ λ(t−lω). It follows from this and (25) that

(11) is true.
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D. Convergence Rate

In this section we will justify the claim that the expressionfor λ given by (4) is a worst case

bound on the{geometric} convergence rate for the algorithm (2) for the case whenAx = b has a

unique solution and all of the neighbor graphs encountered are strongly connected. To establish

this claim we will need a lower bound on the coefficients of thenonzeron×n projection matrix

polynomials which comprise them × m partition of P (Fq ⊗ I)P (Fq−1 ⊗ I) · · ·P (F1 ⊗ I)P .

The bound is given next.

Lemma 5:Let s be a positive integer and suppose that the nonzero block projection matrix

Mij =

d
∑

k=1

λkPhk(1)Phk(2) · · ·Phk(s+1)

is the ijth submatrix within thenm× nm matrix M = P (Fs ⊗ I)P (Fs−1 ⊗ I) · · ·P (F1 ⊗ I)P

whered is a positive integer, eachhk(i) is an integer inm and eachλk is a positive number.

Then

λk ≥
1

ms
, k ∈ d.

Proof of Lemma 5: We will prove the lemma by induction ons. Suppose first thats = 1. Then

M = P (F1 ⊗ I)P andMij = fijPiPj wherefij is the ijth entry inF1. SinceMij 6= 0, fij 6= 0.

SinceF1 is a flocking matrix, each nonzero entry is bounded below by1
m

. Thus, in this case

the lemma is clearly true.

Now suppose that the lemma holds for alls in the range1 ≤ s ≤ p wherep ≥ 1 is an integer.

Let s = p + 1. ThenM = P (Fs ⊗ I)N whereN = P (Fs−1 ⊗ I)P (Fs−2 ⊗ I) · · ·P (F1 ⊗ I)P .

Thus, for all i, j ∈ m,

Mij =

m
∑

k=1

fikPiNkj (26)

wherefik is the ikth entry ofFq andNkj is thekjth block entry ofN . EachNkj is either the

n× n zero matrix or a projection matrix polynomial of the form

Nkj =

c
∑

l=1

λlPhl(1)Phl(2) · · ·Phl(p+1)
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wherec is a positive integer, eachhl(i) is an integer inm, and for all l ∈ c, λl > 0. Thus if

Nkj 6= 0, thenλl ≥
1
mp because of the inductive hypothesis. From (26),

Mij =

m
∑

k=1

c
∑

l=1

(fikλl)PiPhl(1)Phl(2) · · ·Phl(p+1).

SinceFs is a flocking matrix, eitherfik = 0 or fik ≥ 1
m

, which implies that eitherfikλl = 0

or fikλl ≥
1

mp+1 . SinceMij 6= 0, it must therefore be a projection matrix polynomial whose

coefficients are all bounded below by1
mp+1 . Thus the lemma holds fors = p+ 1. By induction,

the lemma is established and the proof is complete.

Proof of Corollary 1: To prove this corollary, it is sufficient to show that for any set of q

flocking matricesF1, F2, . . . , Fq, the mixed matrix norm of the matrix

M = P (Fq ⊗ I)P (Fq−1 ⊗ I) · · ·P (F1 ⊗ I)P

satisfies

||M || ≤ 1−
(m− 1)(1− ρ)

mq
(27)

whereρ is given by (3). By definition

||M || = max
i∈m

(

m
∑

j=1

|Mij|2

)

(28)

whereMij is theijth block entry ofM . In view of (24), the nominal bound ofM is the stochastic

matrix FqFq−1 · · ·F1. Thus

|Mij |2 ≤ fij (29)

wherefij is the ijth entry inFqFq−1 · · ·F1.

Fix i, j ∈ m with i 6= j. As noted just at the end of the proof of Proposition 2, each block

entry of M , except for the diagonal blocks, must be a complete projection matrix polynomial.

ThusMij must be a nonzero matrix of form

Mij =

d
∑

k=1

λkPhk(1)Phk(2) · · ·Phk(q+1)

whered is a positive integer, eachλk is a real positive number, and eachhk(i) is an integer

in m. Completeness also means that for some integers ∈ d, each of the matrices in the set

{P1, P2, . . . , Pm} appears in the productPhs(1)Phs(2) · · ·Phs(q+1) at least once; consequently

March 4, 2015 DRAFT



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, ACCEPTED. 31

Phs(1)Phs(2) · · ·Phs(q+1) ∈ C so|Phs(1)Phs(2) · · ·Phs(q+1)|2 ≤ ρ. In addition,|Phk(1)Phk(2) · · ·Phk(q+1)|2 ≤

1, k ∈ d because of Lemma 2. It follows that

|Mij |2 ≤
d
∑

k=1

λk|Phk(1)Phk(2) · · ·Phk(q+1)|2

=
∑

k = 1, k 6= s

λk|Phk(1)Phk(2) · · ·Phk(q+1)|2 + λs|Phs(1)Phs(2) · · ·Phs(q+1)|2

≤
∑

k = 1, k 6= s

λk + λsρ

=
d
∑

k=1

λk − λs(1− ρ).

Recall that
∑d

k=1 λk is the nominal bound ofMij ; thus
∑d

k=1 λk = fij . Meanwhile, by Lemma

5, λs ≥
1
mq . If follows that

|Mij |2 ≤ fij −
1

mq
(1− ρ). (30)

Now for eachi ∈ m,
m
∑

j=1

|Mij|2 =
m
∑

j = 1, j 6= i

|Mij|2 + |Mii|2.

From (29) and (30) it follows that
m
∑

j=1

|Mij|2 ≤
m
∑

j = 1, j 6= i

(

fij −
1

mq
(1− ρ)

)

+ fii.

Clearly
m
∑

j=1

|Mij |2 ≤ 1−
(m− 1)

mq
(1− ρ).

From this and (28) it follows that (27) is true.

VII. T RACKING

An especially important consequence of exponential convergence is that it enables a slightly

modified version of algorithm (2) to track the solution toAx = b with “small error” whenA and

b are changing with time, provided the rates at whichA andb change are sufficiently small. In

the sequel we sketch why this is so for the case when the time-varying equationA(t)x(t) = b(t)
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has a unique solution for every fixed value oft. We continue to follow the agreement principle

stated at the beginning of§III. In particular, suppose that at each timet agenti knows the pair

(Ai(t+1), bi(t+1)) and using it, computes any solutionzi(t) to Ai(t+1)x = bi(t+1) such as

Ai(t + 1)′(Ai(t + 1)A′
i(t + 1))−1bi(t + 1), if Ai(t + 1) has linearly independent rows. IfKi(t)

is a basis matrix for the kernel ofAi(t + 1) and we restrict the updating ofxi(t) to iterations

of the formxi(t+ 1) = zi(t) +Ki(t)ui(t), t ≥ 1, then no matter whatui(t) is, eachxi(t + 1)

will satisfy Ai(t + 1)xi(t + 1) = bi(t + 1), t ≥ 1. Just as before, and for the same reason, we

will chooseui(t) to minimize the difference(zi(t) +Ki(t)ui(t))−
1

mi(t)

(

∑

j∈Ni(t)
xj(t)

)

in the

least squares sense. Doing this leads at once to an iterationfor agenti of the form

xi(t+ 1) = zi(t)−
1

mi(t)
Pi(t)



mi(t)zi(t)−
∑

j∈Ni(t)

xj(t)



 , t ≥ 1 (31)

where for eacht ≥ 0, Pi(t) is the time-varying orthogonal projection on the kernel ofAi(t+1)

andxi(1) is a solution toAi(1)x = bi(1). It is worth noting that even thoughzi(t) is not uniquely

specified here, update rule (31) is because(I −Pi(t))zi(t) is independent of the choice ofzi(t),

just as it was in the time-invariant case discussed earlier.The algorithm just described, differs

from (2) in two respects. First thePi are now time dependent and second, instead of usingxi(t)

to represent a preliminary estimate of the solution toA(t+1)x = bi(t+1), we usezi(t) instead.

This modification has the advantage of yielding an algorithmwhich is much easier to analyze

than would be the case were we to usexi(t).

We will assume thatA(t) andb(t) are uniformly bounded signals and for simplicity, we will

further assume that eachAi(t) has full row rank for allt; more specifically we will require

the determinant ofAi(t)A
′
i(t) to be bounded away from0 uniformly. We will also assume that

A(t+1) = A(t)+δA(t), t ≥ 1 andb(t+1) = b(t)+δb(t), t ≥ 1 whereδA(t) andδb(t) are small

norm bounded signals. SincePi(t) = I − A′
i(t + 1)(Ai(t + 1)A′

i(t + 1))−1Ai(t + 1), Pi(t) will

be uniformly bounded. Note that it is possible to writePi(t+1) = Pi(t) + Ēi(δA(t+1)), t ≥ 0

whereĒi(·) is a continuous function satisfyinḡEi(0) = 0.

Our goal is to explain why this algorithm can track the uniquesolutionsx∗(t) to A(t)x(t) =

b(t). As a first step, observe thatx∗(t + 1) = x∗(t) − δ(t) where δ(t) = δA(t)A
−1(t)b(t) −
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A−1(t + 1)δb(t). Clearly

x∗(t+ 1) = x∗(t)−
1

mi(t)
Pi(t)



mi(t)x
∗(t)−

∑

j∈Ni(t)

x∗(t)



− δ(t) (32)

for t ≥ 1 because the term in parentheses on the right of this equationis zero. Thus if we define

the error signal

ei(t) = xi(t)− x∗(t), i ∈ m, t ≥ 1 (33)

thenPi(0)ei(1) = ei(1) and

ei(t+ 1) = (I − Pi(t))(zi(t)− x∗(t+ 1)) +
1

mi(t)
Pi(t)

∑

j∈Ni(t)

ej(t) + Pi(t)δ(t), t ≥ 1.

But since bothx∗(t+1) andzi(t) are solutions toAi(t+1)x = bi(t+1), the vectorzi(t)−x∗(t+1)

is in the kernel ofAi(t+ 1); this implies that(I − Pi(t))(zi(t)− x∗(t+ 1)) = 0. It follows that

ei(t + 1) =
1

mi(t)
Pi(t)

∑

j∈Ni(t)

ej(t) + Pi(t)δ(t) t ≥ 1, i ∈ m.

Hence if we again definee(t) = column{e1(t), e2(t), . . . , em(t)} there results

e(t + 1) = P (t)(F (t)⊗ I)e(t) + P (t)(1⊗ δ(t)), t ≥ 1 (34)

where fort ≥ 0, P (t) is themn×mn matrixP (t) = diagonal{P1(t), P2(t), . . . , Pm(t)}, 1 is the

m vector of1’s, and and fort ≥ 1, F (t) is the same flocking matrix used earlier. Observe that

sinceP 2(t) = P (t), (34) implies thatP (t)e(t+1) = e(t+1), t ≥ 1; thusP (t−1)e(t) = e(t), t ≥

2. ButP (0)e(1) = e(1) becausePi(0)ei(1) = ei(1) as was noted earlier. ThereforeP (t−1)e(t) =

e(t), t ≥ 1. If we defineE(t) = diagonal{Ē1(δA(t)), Ē2(δA(t)), . . . , Ēm(δA(t))}, t ≥ 1, then

E(t) will have a small norm ifδA(t) does. In view of the definition ofE(t), P (t) = P (t− 1)+

E(t), t ≥ 1. Clearly fort ≥ 1, P (t)e(t) = P (t−1)e(t)+E(t)e(t) soP (t)e(t) = e(t)+E(t)e(t).

Therefore

e(t+ 1) = (P (t)(F (t)⊗ I)P (t)− P (t)(F (t)⊗ I)E(t))e(t) + P (t)(1⊗ δ(t)), t ≥ 1.(35)

We claim that for|δA(t)|2 sufficiently small for allt, the time varying matrix

P (t)(F (t)⊗ I)P (t)− P (t)(F (t)⊗ I)E(t)

is exponentially stable assuming the sequence of neighbor graphsN(t), t ≥ 1 satisfies the

hypotheses of Theorem 1. Because|P (t)(F (t)⊗I)E(t)|2 will be small if |δA(t)|2 is, to establish
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exponential stability, it is sufficient to show that the matrix P (t)(F (t)⊗ I)P (t) is exponentially

stable for |δA(t)|2 sufficiently small. To do this it is convenient to first consider the matrix

M(t, s) = P (s)(F (t) ⊗ I)P (s). We know already that for every fixed value ofs, the linear

systemz(t + 1) = M(t, s)z(t) has a unique equilibrium at the origin. In view of Theorem 3

we also know that every solution to this equation tends to theorigin exponentially fast. In other

words, for each fixeds, M(t, s) is an exponentially stable time varying matrix. Our goal is to

show thatM(t, t) is exponentially stable as well provided|δA|2 is sufficiently small. While doing

this is actually a fairly straightforward exercise in linear system theory, it is nonetheless a little

bit unusual and so for the sake of clarity we will proceed.

The key fact we will use, which comes from basic Lyapunov theory, is that for every constant

nm× nm matrix B and every fixed value ofs, the matrix

L(t, s, B) =

∞
∑

τ=t

Φ′
s(τ, t)BΦs(τ, t)

is a uniformly bounded function oft, whereΦs(t, τ) is the state transition matrix ofM(t, s).

This is an immediate consequence of exponential stability.It is also true, and is easily verified,

thatL(t, s, B) satisfies the Lyapunov equation

L(t, s, B) = M ′(t, s)L(t + 1, s, B)M(t, s) +B, t ≥ 1 (36)

for all s ≥ 0. We use these observations in the following way.

Let Q(t, s) = L(t, s, I). Then by a straightforward but tedious computation using (36),

Q(t, s + 1)−Q(t, s) = ∆Q(t, s, δA(s))

where∆Q(t, s, δA) is a bounded function oft ands and a continuous function ofδA satisfying

∆Q(t, s, 0) = 0, t, s ≥ 0. Observe that

Q(t, s) = M ′(t, s)(Q(t + 1, s+ 1)M(t, s) + I

−M ′(t, s)∆Q(t, s, δA(s))M(t, s).

Thus if the uniform norm bound on|δA(t)|2 is small enough, thenI−M ′(t, t)∆Q(t, t, δA(t))M(t, t)

will be positive definite implying that

Q(t, t)−M ′(t, t)Q(t+ 1, t+ 1)M(t, t)
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is negative definite for allt and thus thatz′Q(t, t)z is a valid Lyapunov function for the equation

z(t + 1) = M(t, t)z(t). Therefore the time varying matrixP (t)(F (t) ⊗ I)P (t) − P (t)(F (t) ⊗

I)E(t) will be an exponentially stable matrix if the norm bound onδA(t) is sufficiently small.

Of courseδ will be small in norms if bothδA and δb are. From this and the exponential

stability of the system (35), it follows that for sufficiently slow variations inA andb, e will be

small and in this sense, each of thexi(t) will eventually track with small error, the time-varying

solution x∗(t) to A(t)x∗(t) = b(t). Exponential stability is the key property upon which this

conclusion rests.

These observations prompt one to ask a number of questions: How small mustδA be for

tracking to occur and what is the “gain” between the sum of thenorms ofδA and δb and the

norm of the tracking errore? In the event thatδA andδb can be regarded as solutions to neutrally

stable linear recursion equations, can the internal model principal [43] be used to modify the

algorithm so as to achieve a zero tracking error asymptotically? There are questions for future

research.

Example: The following example is intended to illustrate the tracking capability of the algorithm

just discussed. The equation to be solved isA(t)x(t) = b where fort ≥ 1

A(t) =







2 3 5

4 9 −8

1 5 10






+ sin 0.1(t− 1)







.1 .09 −.24

.2 −.6 .1

.03 .05 .4







and

b =







10

5

16






+ sin 0.6(t− 1)







.1

.2

.3






.

Agent i knows theith row of the matrix[A(t) b(t) ] at timet− 1 and initializes its statexi(t)

as follows.

x1(1) =







11.5

−1

−2






x2(1) =







1.25

0

0






, x3(1) =







−9

1

2







andzi(t− 1) = A′
i(t)(Ai(t)A

′
i(t))

−1bi(t), i ∈ 3. A plot of the evolution of the two norm of the

tracking errore(t) is shown in the following figure.
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t

|e(t)|2

Fig. 1. |e(t)|2 vs t

VIII. A SYNCHRONOUSOPERATION

In this section we show that with minor modification, the algorithm we have been studying,

namely (2), can be implemented asynchronously. The relevant update rules are given by (38).

Since these rules are defined with respect to different and unsynchronized time sequences, for

convergence analysis one needs to derive a model on which allupdate rules evolve synchronously

with respect to a single time scale. Such a model is given by (39). Having accomplished this, we

then establish the correctness of (38), but only for the casewhen there are no communication

delays. The more realistic version of the problem in which delays are explicitly taken into

account is treated in [10]. The ideas exploited there closely parallel those used to analyze the

asynchronous version of the unconstrained consensus problem treated in [44].

Let t now take values in the real time interval[0.∞). We begin by associating with each agent

i, a strictly increasing, infinite sequence ofevent timesti1, ti2, . . . with the understanding that

ti1 is the time agenti initializes its state and the remainingtik, k > 1 are the times at which

agenti updates its state. Between any two successive event timestik and ti(k+1), xi(t) is held

constant. We assume that for anyk ≥ 1, xi(t) equals its limit from above ast approachestik;

thusxi(t) is constant on each open half interval[tik, ti(k+1)), k ≥ 1.

We assume that fori ∈ {1, 2, . . . , m}, agenti’s event times satisfies

T̄i ≥ ti(k+1) − tik ≥ Ti, k ∈ {1, 2, . . .} (37)

where T̄i and Ti are positive numbers such thatT̄i > Ti. Thus the event times of agenti are
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distinct and the difference between any two successive event times cannot be too large. We

make no assumptions at all about the relationships between the event times of different agents.

In particular, two agents may have completely different unsynchronized event time sequences.

We assume, somewhat unrealistically, that at each of its event times tik, agenti is able to

acquire the statexj(tik) of each of its “neighbors” where by aneighbor of agenti at time tik

is meant any agent in the network whose state is available to agent i at time tik. In the more

realistic version of the problem treated in [10], it is assumed thatxj(tik) is only available to

agenti after a delay which accounts both for transmission time and the fact that the time at

which xj(tik) is acquired is typically some time in betweentik and one of agenti’s subsequent

event times. There are some subtle issues here in setting up an appropriate model; we refer the

reader to [10] for an explanation of what they are and how theyare addressed.

In the sequel, fork > 1 we writeNi(tik) for the set of labels of agenti’s neighbors at time

tik while k = 1 we defineNi(ti1) = i. Since agenti is always taken to be a neighbor of itself,

Ni(tik) is never empty.

Prompted by (2), the update rule for agenti we want to consider for the asynchronous case

is

xi(ti(k+1)) = xi(tik)−
1

mi(tik)
Pi



mi(tik)xi(tik)−
∑

j∈Ni(tik)

xj(tik)



 (38)

wherek ≥ 1, and forj ∈ Ni(tik), mi(tik) is the number of labels inNi(tik), and as before,Pi

is the orthogonal projection on the kernel ofAi.

To proceed we need a common time scale on which allm agent update rules can be defined.

For this, lett1 = maxi{ti1} and writeTi for the event times of agenti which are greater than

or equal tot1. Let T denote the set of all event times of allm agents which are greater than

or equal tot1. ThusT is the union of theTi. Relabel the times inT as t1, t2, . . . , tp, . . . so that

tp < tp+1 for p ≥ 1. We define theextended neighbor setof agenti, written N̄i(p), to beNi(tp)

if tp is an event time of agenti. For timestp ∈ T which are not event times of agenti, we

defineN̄i(p) = {i}. Doing this enables us to extend the domain of applicabilityof update rule

(38) from Ti to all of T . In particular, forp ≥ 1,

xi(tp+1) = xi(tp)−
1

m̄i(p)
Pi



m̄i(p)xi(tp)−
∑

j∈N̄i(p)

xj(tp)



 (39)
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where m̄i(p) is the number of indices inN̄i(p). The validity of this formula is a simple

consequence of the assumption that fori ∈ {1, 2, . . . , m}, xi(t) is constant on each open half

interval [tik, ti(k+1)), k ≥ 1.

Observe that (39) is essentially the same as update rule (2) except that extended neighbor

sets replace the original neighbor sets. As with the synchronous case, convergence depends on

connectivity of the graphs determined by the neighbor sets upon which update rules (39) depend.

Accordingly, for eachp ≥ 1 we define theextended neighbor graph̄N(p) to be that directed

graph inGsa which has an arc from vertexj to vertex i if j ∈ N̄i(p). The following is an

immediate consequence of Theorem 1.

Theorem 4:Suppose each agenti updates its statexi(t) according to rule (38). Suppose in

addition that for some positive integerl, the sequence of extended neighbor graphsN̄i(p), p ≥ 1

is repeatedly jointly strongly connected. Then there exists a positive constantλ < 1 for which

all xi(tp) converge to the same solution toAx = b asp → ∞, as fast asλp converges to0.

Perhaps of greatest interest is the situation when the original neighbor graphN(t) is independent

of time. In this case it is possible to address convergence without reference to extended neighbor

graphs.

Corollary 2: Suppose that the original neighbor graphN(t) is independent of time and strongly

connected. Suppose each agenti updates its statexi(t) according to rule (38). Then there exists

a positive constantλ < 1 for which all xi(tp) converge to the same solution toAx = b as

p → ∞, as fast asλp converges to0.

The proof of Corollary 2 depends on the following lemma.

Lemma 6:Suppose that the original neighbor graphN(t) is a constant graphN. For i ∈ m,

let T̄i be an upper bound on the difference between each pair of successive event times of agent

i. Then for any pair of event timesta, tb ∈ T satisfyingtb − ta ≥ max{T̄1, T̄2, . . . , T̄m}, N is a

spanning subgraph of the composed graphN̄(b) ◦ N̄(b− 1) · · · ◦ N̄(a).

Proof of Lemma 6: Let Ni denote the neighbor set of agenti. For i ∈ m, ti(j+1) − tij ≤ T̄i ≤

tb − ta, j ≥ 1. Therefore the set{ta, t(a+1), . . . , tb} must contain at least one event timetpi of

each agenti. SinceN̄i(pi) = Ni, i ∈ m, for eachj ∈ Ni there must be an arc fromj to i in

N̄(pi). It follows from the definition ofN, that its arc set must be contained in the union of the

arc sets of the graphs̄N(a), N̄(a+ 1), . . . , N̄(b). But the arc set of the union of a finite number

of graphs inGsa is always a subset of the arc set of their composition [35]. Therefore the lemma
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is true.

Proof of Corollary 2: SetTmax = max{T̄1, T̄2, . . . , T̄m} andTmin = min{T1, T2, . . . , Tm} and

let q be any positive integer for whichTmax ≤ qTmin. Let a andb be positive integers satisfying

b−a = mq. We claim thattb− ta ≥ Tmax. To prove that this is so, suppose the contrary, namely

that tb − ta < Tmax. Then tb − ta < qTmin. But for eachi ∈ m, Tmin is no larger than the time

between any two successive event times of agenti. Thus the closed interval[ta, tb] must contain

at mostq event times of agenti. Since there arem agents,[ta, tb] must contain at mostmq event

times. Thereforeb− a < mq which is a contradiction.

In view of the preceding,tb − ta ≥ Tmax for any positive integersa and b satisfying b −

a = mq. Therefore, by Lemma 6,N must be a spanning subgraph of the composed graphs

N̄(b)◦N̄(tb−1) · · ·◦N̄(a) for all sucha andb. But N is strongly connected so each such composed

graph must be strongly connected as well. Therefore the sequence of graphs̄N(1), N̄(2), . . . is

repeatedly jointly strongly connected by successive subsequences of lengthmq. From this and

Theorem 4 it follows that Corollary 2 is true.

IX. L EAST SQUARES

A limitation of the algorithm we have been discussing is thatit is only applicable to linear

equations for which there are solutions. In this section we explain how to modify the algorithm

so that it can obtain least squares solutions toAx = b even in the case whenAx = b does not

have a solution. As before, we will approach the problem using standard consensus concepts

rather than the more restrictive concepts based on distributed averaging. To keep things simple,

we will assume that theAi are full column rank matrices.

By the least squares solutionto Ax = b is meant a value ofx for which A′Ax = A′b. As

is well known, least squares solutions always exist, even ifAx = b does not have a solution.

It is very easy to verify that a common least squares solutionx to all of the agent equations

Ajx = bj , j ∈ m will not exist unlessAx = b has a solution. Thus if a decentralized least

squares solution toAx = b is to be obtained in accordance with the agreement principle, then

each agent must solve a different problem. To understand what that problem might be, consider

for example the situation in which there are three agents. Suppose that the statexi of agenti is

augmented with two additionaln-vectors, namelyyi andzi and that agents1, 2 and3 are tasked
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to solve the linear equations

A′
1A1x1 + y1 = A′

1b1

A′
2A2x2 + z2 = A′

2b2

A′
3Ax3 − y3 − z3 = A′

3b3

respectively. As we will show, it is always possible for the agents to do this and the same

time to obtain values of thexi, yi and zi for which the three augmented state vectorsx̄i =

[ x′
i y′i z′i ]

′
, i ∈ 3 are the same.

The existence of a vector̄x = [ x′ y′ z′ ]′ for which x̄i = x̄, i ∈ 3, is equivalent to the

existence to a solution to the equationsA′
1A1x+y = A′

1b1, A
′
2Ax+z = A′

2b2, andA′
3A3x−y−z =

A′
3b3. In matrix terms, existence amounts to asking whether or notthe equationMx̄ = q has a

solution where

M =







A′
1A1 I 0

A′
2A2 0 I

A′
3A3 −I −I






and q =







A′
1b1

A′
2b2

A′
3b3






.

Note that by simply adding block rows block rows1 and 2 of [M q ] to block row 3, one

obtains the matrix[ M̄ q̄ ] where

M̄ =







A′
1A1 I 0

A′
2A2 0 I

A′
1A1 + A′

2A2 + A′
3A3 0 0







and

q̄ =







A′
1b1

A′
2b2

A′
1b1 + A′

2b2 + A′
3b3






.

Clearly the set of solutions toMx̄ = q is the same as the set of solutions toM̄x̄ = q̄ because the

matrices[M q ] and[ M̄ q̄ ] are row equivalent. It is obvious that̄M has linearly independent

columns becauseA′
1A1 +A′

2A2 +A′
3A3 is nonsingular; thereforēM is nonsingular. As a result,

a solution toMx̄ = q must exist. Note in addition, that since such a solution mustalso satisfy

M̄x̄ = q̄, x must satisfy(A′
1A1 + A′

2A2 + A′
3A3)x = A′

1b1 + A′
2b2 + A′

3b3 which is the least

squares equationA′Ax = A′b. Thereforex solves the least squares problem.

Recall that the idea exploited earlier in the paper for crafting an algorithm for solvingAx = b,

was that if each agenti were able to compute a solutionxi to its own equationAixi = bi and
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at the same time all agents were able to reach a consensus in that all xi were equal, then

automatically eachxi would necessarily satisfyAxi = b. This led at once to the linear iterations

(2) which provide distributed solutions toAx = b. Since with obvious modification, the same

idea applies to the least squares problem under consideration here, it is clear that the same

approach will lead to linear iterations which provide a distributed solution to the least squares

equationA′Ax = A′b. The update equations in this case are identical with those in (2) except

that in place of andxi andPi one would use thēxi andP̄i whereP̄i is the orthogonal projection

matrix on the kernel of theith block row inM . Under exactly the same the conditions as those

stated in Theorem 1, thexi so obtained will all converge exponentially fast to the desired least

squares solution.

A. Generalization

The idea just illustrated by example, generalizes in a straight forward way to anym agent

network. The first step would be to pick anym vertex graph tree graphT and orient it. Agenti’s

augmented statewould then be of the form̄xi = [ x′
i x′

i1 x′
i2 . . . x′

i(m−1) ]
′ where allxij ∈

Rn. Instead of solvingAixi = bi, agenti would be tasked with solving[A′
iAi hi ⊗ I ] x̄i = A′

ibi

wherehi is theith row of them×(m−1) incidence matrix ofT. At the same time, allm agents

would be expected to reach a consensus in which allx̄i are equal. Were a consensus reached at

a valuex̄ = [ x′ y′1 y′2 . . . y′m ]′, thenx̄ would have to satisfy the equationMx̄ = q where

M =







A′
1A1

... H ⊗ I

A′
mAm






and q =







A′
1b1
...

A′
mbm






.

We claim that a solution toMx̄ = q must exist and that the sub-vectorx within x̄ is the solution

to the least squares problem. To understand why, first note that the block rows ofH ⊗ I sum

to zero because the rows ofH sum to zero. Thus ifE is product of elementary row matrices

which adds the first(m − 1) block rows ofH ⊗ I to the last, thenE(H ⊗ I) must be of the

form

E(H ⊗ I) =

[

D

0

]

nm×(m−1)n

whereD is a square matrix. MoreoverD must be nonsingular because therank E(H ⊗ I) =

rank H ⊗ I and rank H ⊗ I = (m − 1)n. This last rank identity is a consequence of the fact
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that the rank of an incidence matrix of anm vertex connected graph, namelyrank H, equals

m− 1.

Next observe that the set of solutions toMx̄ = q is the same as the set of solutions to

EMx̄ = Eq. But

EM =













A′
1A1

... D

A′
m−1Am−1

A′A 0













and Eq =













A′
1b1
...

A′
m−1bm−1

A′b













.

MoreoverEM is obviously nonsingular so a solution toEMx̄ = Eq and consequentlyMx̄ = q

exists. Note in addition, that since such a solution must also satisfyEMx̄ = Eq, x must satisfy

A′Ax = A′b. Thereforex solves the least squares problem.

We have just shown that if each agenti updates its augmented statex̄i(t) along a path for which

[A′
iAi hi ⊗ I ] x̄i(t) = A′

ibi, so that̄xi(t) reaches a limit which agrees with the augmented states

of all other agents, then the limiting value of the sub-vector xi(t) will solve the least squares

problem. The agent update equations for accomplishing thisare identical to those in (2) except

that in place of andxi and Pi, agenti would use thex̄i and P̄i where P̄i is the orthogonal

projection matrix on the kernel of[A′
iAi hi ⊗ I ]. Under exactly the same the conditions as

stated in Theorem 1, thexi so obtained will all converge exponentially fast to the desired least

squares solution.

Although the algorithm just described solves the distributed least squares problem, it has

several shortcomings. First, there must be a network wide design step in whichT is specified;

this conceivably can be accomplished in a distributed manner. Second, the size of the augmented

state vector of each agent isnm which does not scale well with the number of agents in the

network. It is possible to significantly improve on the scaling problem if neighbor relations are

time invariant and there is bi-directional communication between neighbors. How to do this will

be addressed in another paper.

X. CONCLUDING REMARKS

In this paper we have described a distributed algorithm for solving a solvable linear equation

and given necessary and sufficient conditions for it to generate a sequence of estimates which

converge to a solution exponentially fast. For the case whenthe equation admits a unique solution,
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we have derived an expression for a worst case geometric convergence rate. We have shown that

with minor modification, the algorithm can track the solution to Ax = b if A andb change with

time, provided the rates of change of these two matrices are sufficiently small. We have show that

the same algorithm can function asynchronously provided there are no communications delays

and we have sketched a new idea for obtaining least squares solutions toAx = b which can be

used even ifAx = b has no solution.

We have left a number of issues opened for future research. One is to figure out what the

relationship is between the parameterρ which appears in the convergence rate boundρ, and

a conditioning number ofA. Another is to more tightly quantify the relationship between the

variations inA and b in the event they are time varying, and the tracking errore. Yet another

is to modify the least squares algorithm discussed in§IX to reduce the amount of information

which needs to be transmitted between agents. This last issue will be addressed in a future paper.
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