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Abstract—This paper investigates the capacity of a channel
in which information is conveyed by the timing of consecutive
packets passing through a queue with independent and identically
distributed service times. Such timing channels are commonly
studied under the assumption of a work-conserving queue. In
contrast, this paper studies the case of a bufferless queue that
drops arriving packets while a packet is in service. Under
this bufferless model, the paper provides upper bounds on the
capacity of timing channels and establishes achievable rates for
the case of bufferless M/M/1 and M/G/1 queues. In particular,
it is shown that a bufferless M/M/1 queue at worst suffers less
than 10% reduction in capacity when compared to an M/M/1
work-conserving queue.

I. I NTRODUCTION

Timing channels convey information by the timing of
consecutive packets – rather than by their contents. Such
channels not only arise in many engineering contexts, such
as covert communications [1], [2] and sensor networks [3],
but can also provide a reasonable abstraction of interactions
in biological systems [4]. In addition, information theoretic
understanding of timing channels can potentially help us attack
the challenging problem of causal inference in systems where
causal relationships are determined by timing information[5],
[6].

The study of information theoretic timing channels began
in the seminal paper [7], which characterizes the capacity of
a timing channel described by a single-server timing queue
(SSTQ) with independent and identically distributed (iid)
service times. In particular, we have from [7] that the capacity
of an SSTQ with iid exponential service times (·/M/1 queue)
is equal toe−1 nats per average service time.

In this paper, we are also interested in studying the capacity
of a timing channel described by an SSTQ. However, in
contrast to [7], our focus is on abufferlessSSTQ that discards
incoming packets while a packet is in service. Bufferless
SSTQs, despite their apparent simplicity, are effective inmath-
ematically modeling some systems including protein synthesis
networks [8]. Our interest in bufferless SSTQs is related tothe
mutual information in tweet sequences. Suppose Bob receives
tweets from Alice and occasionally tweets in response. While
formulating a response, Bob ignores subsequent tweets from
Alice. In this model, we can view Alice’s tweets as arrivals
and Bob’s tweets as departures from a queue. The time Bob
spends formulating a response is the service time of a tweet
admitted to the system. While the bufferless SSTQ is a simple
model, it provides a starting point for characterizing how much
information can be gleaned from tweet timing data.

To the best of our knowledge, however, the capacity of
bufferless SSTQs in the context of timing channels has not
been explored in prior work. And while the bufferless SSTQ
shares some similarities with the buffered SSTQ in [7], we will
see that analyzing its capacity presents some new challenges in
the absence of a one-to-one correspondence between incoming
and departing packets.

In this paper, we make the following contributions to the
capacity analysis of timing channels described by bufferless
SSTQs with iid service times. First, we describe the maxi-
mum likelihood (ML) decoder for decoding timing messages
transmitted through a bufferless queue. Second, we provide
a single-letter upper bound on the channel capacity under
arbitrary service distributions for the case of iid inter-arrival
packet times. Next, we provide a single-letter upper bound
and a looser closed-form upper bound on the channel capac-
ity under arbitrary service distributions. Finally, we provide
achievability results for bufferless M/M/1 and M/G/1 queues
using information density methods [10]. In particular, for
the bufferless M/M/1 queue, achievable rates are shown to
coincide with our outer bound. In addition, it is shown that
a bufferless M/M/1 queue at worst suffers less than 10%
reduction in achievable rate when compared to an M/M/1
queue with infinite buffer [7].

We conclude with a brief discussion of other related work
on timing channels. The setup studied in [7] corresponds
to a continuous timing channel. A discrete-time version of
this timing channel is analyzed in [11], [12]. In [13], [14],
the authors revisited the timing channel of [7] and provided
capacity analysis from the viewpoint of point processes. Fi-
nally, extensions of [7] for the case when the distribution of
service times has bounded support is investigated in [15] and
for the case of a compound timing channel described by a
tandem of queues is analyzed in [16]. In all these works,
however, the fundamental assumption is that the queues are
work conserving.

The rest of the paper is organized as follows. In Section II,
we provide an overview of our system, describe the optimal
receiver, and provide a formal definition of capacity in our
setup. Section III derives outer bounds on the timing capacity
that hold for all arrival processes. Section IV provides outer
bounds for specific arrival processes and service time distribu-
tions. Section V investigates achievable rates in our system and
compares them to the outer bounds obtained in Sections III
and IV. Concluding remarks are in Section VI.

Note that we usefX(·) to denote the probability density
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Fig. 1. One realization of the input and output sequence of the system
is illustrated. The arrows with hollow arrowheads show the packets arriving
at the server that are dropped, the arrows with solid arrowheads show the
packets that enter the server, and the lines with circles on top show the packets
departing the server.

function (PDF) of random variableX . Similarly fX|Y (·|·) is
the conditional PDF ofX givenY . In addition,exp(·) denotes
the inverse oflog x: exp(log x) = x.

II. SYSTEM MODEL

The basic idea of the timing channel in [7] is to use
packet inter-arrival times to the server to encode a message.
The receiver, based on the departure times of packets from
the server, decides which message has been transmitted. In
contrast to [7], we consider a channel that consists of a single-
server bufferless queue with a zero packet waiting room. Upon
arrival at an idle server, a packet immediately enters service;
otherwise, if the server is busy with a previous packet, the
incoming packet is blocked and discarded.

In the following, we useSi to denote the service time
of the ith packet admitted to service. As is customary in
queuing systems, we assume that service times are iid random
variables, independent of packet arrival times. Thus we refer
to the timing channel induced by the (bufferless) queue with
service timeS as the (bufferless) timing channelS. In Fig. 1,
one realization of the input and output sequences, including
arriving, dropped and departing packets, is illustrated under
our setup.

A. Encoder

The transmitted message is represented by the discrete
uniform index U ∈ {1, · · · ,M}. At the transmitter, each
messageU = u will be encoded into an infinite sequence
of packet inter-arrival timesAu = (A0 = 0, Au,1, Au,2, · · · )
whereAu,j is the inter-arrival time between packetsj − 1
and j in codewordu. We refer to the packet submitted at
time A0 = 0 as packet zero. This packet carries no timing
information and serves only to initialize the system. Similarly,
we refer to packets1, 2, . . . as codeword packets as their
inter-arrival times define the codewords. We note that using
a codeword with infinite length is not a new phenomenon and
has been applied in [17] to ARQ systems where they design an
infinite length codeword and transmit a part of it to the receiver
or in [18] where an infinite length codeword is transmitted and
in the receiver, after observing each packet, the decoding is
performed.

B. Decoder

At the receiver, the decoder observes the inter-departure
times D0, D1, · · · , Dn where D0 is the departure time of
packet0 and Di, i > 0, denotes the time between packet
departuresi − 1 and i. These inter-departure times are used
in estimating the indexV ∈ {1, · · · ,M} corresponding to the
transmitted message. A decoding error occurs whenV 6= U . In
the bufferless queue, the subset of arrivals that are admitted
into service is denoted by the subsequencek0 = 0, k1, · · ·
such that

ki = min







m|

m
∑

j=1

Aj −

i−1
∑

j=0

Dj > 0







(1)

denotes the index of the packeti > 0 admitted to service. The
time that the server is idle between departurei and the next
arrival is represented byWi. Since the queue in our system
is blocking and has no buffer, the idling timeWi can be
represented as a deterministic function of the message index
U and prior departuresDi

0 as

Wi(U,D
i
0) =

ki+1
∑

j=1

AU,j −

i
∑

j=0

Dj . (2)

For ease of notation, we useWi(U,D
i
0) and the shorthandWi

interchangeably. The relationship between departure timeDi

and the corresponding idling time and service time is

Di = Wi−1(U,D
i−1
0 ) + Si. (3)

Equivalent to (2) and (3), we can explicitly representWi and
Di as functions of the arrival timesA∞

1 and past departures
Di−1

0 :

Wi(A
∞
1 , Di

0) =

ki+1
∑

j=1

Aj −

i
∑

j=0

Dj , (4)

Di = Wi−1(A
∞
1 , Di−1

0 ) + Si. (5)

After n codeword packets are received, the MAP decoder
observes the departure timesDn

0 = dn0 and finds the most
probable codeword

u∗(dn0 ) = argmax
u

P [U = u|Dn
0 = dn0 ] (6)

to have been transmitted. Since the codewords are equiproba-
ble, we can rewrite (6) as the maximum likelihood problem

u∗(dn0 ) = argmax
u

fDn
0
|U [dn0 |u] (7)

= argmax
u

fD0
[d0]

n
∏

i=1

fDi|D
i−1

0
,U

[

di|d
i−1
0 , u

]

. (8)

= argmax
u

n
∑

i=1

log fDi|D
i−1

0
,U

[

di|d
i−1
0 , u

]

. (9)

SinceWi−1 = Wi−1(U,D
i−1
0 ) is a deterministic function of



U,Di−1
0 ,

fDi|D
i−1

0
,U

[

di|d
i−1
0 , u

]

= fDi|D
i−1

0
,U,Wi−1

[

di|d
i−1
0 , u, wi−1

]

(10)

= fSi|D
i−1

0
,U,Wi−1

[

di − wi−1|d
i−1
0 , u, wi−1

]

(11)

= fSi

[

di − wi−1(u, d
i−1
0 )

]

. (12)

Note that (11) holds sinceDi = wi−1 + Si given Wi−1 =
wi−1 and that (12) follows sinceSi is independent of
U,Di−1

0 ,Wi−1(U,D
i−1
0 ). Combining (9) and (12) and writing

wi−1 explicitly as a function ofu anddi−1
0 , we obtain

u∗(dn0 ) = argmax
u

n
∑

i=1

log fSi

[

di − wi−1(u, d
i−1
0 )

]

. (13)

C. Capacity

In this work, we aim to compute the capacity of the buffer-
less timing channel. While each decoded message conveys
log2 M bits of information, the time required by the receiver
to decode a message depends on the packet departure times. In
particular, we assume that the receiver decodes after observing
the departures ofn codeword packets. The expected time
required to observe these departures is

Tn =

n
∑

i=0

E [Di] = E [S0] +

n
∑

i=1

E [Wi−1 + Si] . (14)

Following [7], [19] the achievable rate and the capacity for
our system are defined as follows.

Definition 1. If for every γ > 0, a sequence of codewords
from a codebook withMn entries exists with(logMn) /Tn >
R − γ for all sufficiently largen, and the corresponding
maximum probability of errorǫn satisfying limn→∞ ǫn = 0,
then the rateR is achievable. The maximum rateR that
satisfies this definition is called the capacity of the timing
channel and is denoted byC.

III. C ONVERSETHEOREMS

We follow the approach of [7] in deriving a converse. Using
Pe to denote the probability of a decoding error, we observe
that Fano’s inequality [20, sec. 2.10] and equiprobableU
imply

H(U |V ) ≤ H(Pe) + Pe logMn (15)

≤ H(Pe) + ǫn logMn (16)

≤ log 2 + ǫn logMn (17)

= log 2 + ǫn logMn +H(U)− logMn, (18)

where we assume thatH(Pe) ≤ log 2. We can conclude that

logMn ≤
1

1− ǫn
[I(U ;V ) + log 2] (19)

≤
1

1− ǫn
[I(A∞

1 ;Dn
0 ) + log 2] , (20)

where (20) follows from the data processing lemma [20,
sec. 2.8].

Before stating a converse for our system, we need the
following lemmas.

Lemma 1. The mutual information between the input code-
word and the output departure times satisfies

I(A∞
1 ;Dn

0 ) =

n
∑

i=1

(

h(Wi−1 + Si|D
i−1
0 )− h(Si)

)

. (21)

Proof: By the chain rule,

I(A∞
1 ;Dn

0 ) = I(A∞
1 ;D0) +

n
∑

i=1

I(A∞
1 ;Di|D

i−1
0 ). (22)

Since D0 = S0, which is independent of the code packet
arrivalsA∞

1 ,

I(A∞
1 ;D0) = I(A∞

1 ;S0) = 0. (23)

Moreover,

I(A∞
1 ;Di|D

i−1
0 )

= h(Di|D
i−1
0 )− h(Di|A

∞
1 , Di−1

0 ) (24)

= h(Wi−1 + Si|D
i−1
0 )− h(Wi−1 + Si|A

∞
1 , Di−1

0 ) (25)

= h(Wi−1 + Si|D
i−1
0 )− h(Si|A

∞
1 , Di−1

0 ,Wi−1) (26)

= h(Wi−1 + Si|D
i−1
0 )− h(Si). (27)

Note that (26) holds sinceA∞
1 , Di−1

0 deterministically specify
Wi−1 using (4); (27) holds sinceSi is independent of the
arrivals A∞

1 , the prior departuresDi−1
0 and the idle period

Wi−1. The lemma follows from (22), (23) and (27).

Lemma 2. The mutual information between the input code-
word and the output departure times satisfies

I(A∞
1 ;Dn

0 ) ≤

n
∑

i=1

I(Wi−1;Wi−1 + Si). (28)

Proof: Based on Lemma 1,

I(A∞
1 ;Dn

0 ) =

n
∑

i=1

(

h(Wi−1 + Si|D
i−1
0 )− h(Si)

)

≤

n
∑

i=1

(h(Wi−1 + Si)− h(Si)) . (29)

Note that (29) holds since conditioning reduces entropy.

To develop universal bounds valid for all arrival and service
processes, we follow the approach in [7] and define

c(a) ≡ sup
X≥0

E[X]≤a

I(X ;X + S) (30)

whereX is independent ofS. We note thatc(a) is a monotone
concave function in the argumenta, and that this will provide
a universal upper bound on the capacity of the timing channel.
We start with a relaxation of Lemma 2.

Lemma 3. The mutual information between the input code-



word and the output departure times satisfies

I(A∞
1 ;Dn

0 ) ≤

n
∑

i=1

c (E [Wi−1]) . (31)

Proof: Lemma 2 and (30) imply

I(A∞
1 ;Dn

0 ) ≤

n
∑

i=1

I(Wi−1;Wi−1 + Si) (32)

≤
n
∑

i=1

sup
Xi≥0

E[Xi]≤E[Wi−1]

I(Xi;Xi + Si) (33)

=

n
∑

i=1

c (E [Wi−1]) . (34)

Now using Lemma 3 , we can define a general converse
which is parallel to [7, Thm. 2].

Theorem 1. The timing channelS with E [S] = 1/µ has
capacity

C ≤ C(S) ≡ sup
λ>0

c( 1
λ
)

1
λ
+ 1

µ

. (35)

Proof: Let

Rn =
(1 − ǫn) logMn

Tn

. (36)

Combining (14), (20), and Lemma 3 yields

Rn ≤
1
n
[
∑n

i=1 c(E [Wi−1]) + log 2]
E[S0]

n
+ 1

n

∑n
i=1 (E [Wi−1] + E [Si])

. (37)

Definingλ−1
n = 1

n

∑n
i=1 E [Wi−1], concavity ofc(a) implies

Rn ≤
c( 1

λn
) + log 2

n

1
λn

+ 1
µ

≤ sup
λ>0

c( 1
λ
)

1
λ
+ 1

µ

+
log 2

n/µ
. (38)

The claim follows asn → ∞.
We can further loosen Theorem 1 by making use of the

following lemma.

Lemma 4. For a timing channelS, c(a) defined in (30)
satisfies

c(a) ≤ log(e) + log(a+ E [S])− h(S). (39)

Proof: Based on (30), we have

c(a) = sup
E[X]≤a
X≥0

h(X + S)− h(S). (40)

Notice thath(X+S) subject to the constraintsE [X ] ≤ a and
X ≥ 0 and fixed service distribution will be maximized when
X + S has exponential distribution with rate(a+ E [S])−1

[20]. The proof now follows from the entropy of an exponen-
tial distribution.

However, there is no guarantee that for any given service
distribution, there exists a nonnegative random variable with
E [X ] ≤ a such that its summation withS has exponential

distribution. As a result,log(e) + log(a+E [S])− h(S) is an
upper bound onc(a). A universal upper bound on the capacity
of the system can now be stated.

Theorem 2. The bufferless timing queueS with E [S] = 1/µ
has capacity

C ≤







log e+log( 1
µ )−h(S)

µ−1 , h(S) < log (1/µ) ,
log e

exp(h(S)) , h(S) ≥ log (1/µ) .
(41)

Proof: Based on Theorem 1 and Lemma 4,Rn defined
in (36) satisfies

Rn ≤ sup
λ>0

log e+ log
(

1
λ
+ 1

µ

)

− h(S)

1
λ
+ 1

µ

. (42)

By taking the derivative of the upper bound in (42) with
respect toλ−1, the optimalλ will satisfy

h(S) = log

(

1

λ∗
+

1

µ

)

. (43)

Sinceλ is a nonnegative number, whenh(S) < log(1/µ), the
supremum is approached asλ−1 → 0 and the universal upper
bound will be

Rn ≤ µ [log e+ log(1/µ)− h(S)] . (44)

Otherwise,

Rn ≤
log e

exp (h(S))
. (45)

IV. QUEUE-SPECIFICOUTER BOUNDS

We note that Lemmas 1 and 2 make no particular assump-
tions regarding the statistical structure of the arrivals.However,
in the absence of such assumptions, memory in the arrivals
can induce idling timesWi that are difficult to characterize.
To go further, we focus on the special case of codebooks
with iid inter-arrival times. With iid inter-arrivals, each time
a packet enters service, the queue undergoes a renewal. In
particular, theith renewal point marks the beginning of a
service timeSi and a set of subsequent iid packet inter-arrival
timesAki+1, Aki+2, . . . such that the distributions ofSi and
{Aki+j} are sufficient to evaluate the distribution of the num-
ber of packet arrivals that are dropped during the service as
well as the idling timeWi that follows the service completion.
Because service times and inter-arrival times are both iid,a
renewal occurs at the end of the idling period when the next
arrival is admitted. We note thatWi depends onSi; however
the renewal implies that(S0,W0) , (S1,W1) , · · · , (Sn,Wn)
constitute independent tuples. This observation yields the
following outer bound for iid inter-arrivals.

Theorem 3. With iid inter-arrival times identical toA, the
bufferless timing channelS has capacityC satisfying

C ≤ C(A,S) ≡
I(W ;W + S)

E [W ] + E [S]
, (46)



whereW is independent ofS but has the idling time distri-
bution induced byA andS.

Proof: Since each service initiation marks a renewal,
Lemma 2 reduces to

I(A∞
1 ;Dn

0 ) ≤ nI(Wi−1;Wi−1 + Si). (47)

In addition, (14) yields

Tn = E [S0] + n (E [Wi−1] + E [Si]) . (48)

Combining (20), (47) and (48) yields

Rn ≤
nI(Wi−1;Wi−1 + Si) + log 2

E [S0] + n (E [Wi−1] + E [Si])
. (49)

The claim follows asn → ∞.
In general, computing the PDF ofW is nontrivial as it

can involven-fold convolutions of the PDF ofAi. Thus, the
primary use of Theorem 3 is the case when theAi form a
rate λ Poisson arrival process. In this case, the idling times
Wi are exponential(λ) random variables independent ofS,
and the queueing system is an M/G/1 single server bufferless
queue. For Poisson arrivals, the outer boundC(A,S) reduces
to a straightforward numerical evaluation ofI(W ;W + S).

As a special case, we analyze the M/M/1 queue in which
the service time is exponential with rateµ. In this case,S will
have entropy

h(S) = log e + log
1

µ
(50)

andD = W + S will have the hypoexponential distribution

fD(d) =
µλ

µ− λ

(

e−λd − e−µd
)

, d ≥ 0, (51)

and entropyh(D) = hhypo(λ, µ). Since I(W ;W + S) =
h(D)− h(S), Theorem 3 yields the outer bound

C(A,S) = R(λ, µ) (52)

where

R(λ, µ) ≡
hhypo(λ, µ)− log e+ logµ

1/λ+ 1/µ
. (53)

The entropyhhypo(λ, µ) cannot be computed in a closed form.
Using numerical integration methods, the upper bound in (52)
is computed as a function ofλ/µ as shown in Fig. 2 (see
Appendix A for proof that (53) is a function ofλ/µ for fixed
µ). It can be seen from this figure that whenλ/µ is close to
zero, corresponding to a queue that is idle most of the time,
the upper bound on capacity is also close to zero; this is to
be expected since the time required to receiven packets will
be large in this case. On the other hand, whenλ ≫ µ, the
expected idling time reduces, but more and more packets are
dropped, and it becomes difficult for the receiver to decode
messages, resulting in a decreasing upper bound on capacity.

Fig. 2 compares the Theorem 2 universal upper bound for
the ·/M/1 queue to the upper bound derived for M/M/1 queue
in (52). It can be seen from this figure that although the
Theorem 2 bound is looser than (52), the two upper bounds
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Fig. 2. Comparison between the bufferless·/M/1 and M/M/1 queue upper
bounds for0 < λ/µ < 10 whereλ is the arrival rate andµ is the service
rate. The M/M/1 upper bound coincides with the achievable rate for M/M/1
as well.

almost coincide for0 < λ/µ < 0.2.

V. ACHIEVABILITY

While the upper bounds in Sections III and IV make use of
the maximization of the mutual information between idling
time and inter-departure time, the only parameters in our
control for coding purposes are the inter-arrival times. Inorder
for our system to achieve the Theorem 2 upper bound, two
conditions must be fulfilled: 1) The inter-departure times must
be iid soh(Wk−1+Sk|D

k−1
1 ) = h(Wk−1+Sk) which leads to

equality in (28); 2) The inter-arrival times must be distributed
such that asymptotically, the induced idling time maximizes
(35). The first condition is satisfied only when the service time
is exponential; Otherwise, the relationship betweenWi andSi

would create dependency between consecutive inter-departure
times Di and Di+1. When S has exponential distribution,
[7, Theorem 3] shows that among the distributions with
E [W + S] ≤ 1/λ+1/µ, I(W ;W+S) is maximized when the
distribution ofW is a mixture of an exponential with expected
valueµ−1 + λ−1 and an impulse at the origin. The resulting
distribution for inter-departure time will be exponentialwith
expected valueµ−1 + λ−1 which is the distribution used in
Theorem 2. In our system, sinceW cannot have zero value,
the above conditions cannot be satisfied simultaneously and
the Theorem 2 upper bound is not achievable.

A. Achievability for the M/M/1 Queue

To derive achievability results, we use the information
density method introduced in [10]. For the bufferless timing
queue, the information density is given by

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 ) = log

fDn
0
|A∞

1
(Dn

0 |A
∞
1 )

fDn
0
(Dn

0 )
. (54)

We will employ the following definition and theorem.



Definition 2. The liminf in probability of a sequence of
random variablesQn is

lim inf
n→∞

-p Qn

= sup
{

α > 0| lim
n→∞

P [Qn ≤ α− γ] = 0, ∀γ > 0
}

.

Lemma 5 ( [10]). A sufficient condition for rateR to be
achievable is existence of some input processA∞

1 for which

lim inf
n→∞

-p

[

1

Tn

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 )

]

≥ R.

We will use Lemma 5 to prove the following achievability
result expressed in terms ofR(λ, µ) given in (53).

Theorem 4. The M/M/1 bufferless queue with service rateµ
and arrival rateλ has capacity

C(λ, µ) ≥ R(λ, µ).

Proof: In the M/M/1 queue, the arrival process is Poisson
with rate λ. As noted at the start of Section IV, the queue
has a renewal each time a packet enters service. These inter-
renewal times are of the formSi +Wi whereSi andWi may
be dependent, butSi,Wi are independent ofSj ,Wj for j 6= i.
For Poisson arrivals, the memorylessness of the exponential
distribution impliesSi andWi are independent. As a result,
the inter-departure timesDi are iid hypoexponential random
variables with PDF given by (50). Hence we can write

fDn
0
(dn0 ) = fS0

(d0)

n
∏

i=1

fDi
(di). (55)

It follows from Lemma 1 that the expected value of the
information density will be

E
[

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 )
]

= I(A∞
1 ;Dn

0 ) (56)

=

n
∑

k=0

[h(Wk−1 + Sk)− h(Sk)] (57)

= n (h(W + S)− h(S)) (58)

= n (hhypo(λ, µ) − log e+ logµ) .
(59)

Furthermore,

fDn
0
|A∞

1
(dn0 |a

∞
1 )

= fS0
(d0)

n
∏

i=1

fDi|A∞
1

,D
i−1

0

(

di|a
∞
1 , di−1

0

)

(60)

= fS0
(d0)

n
∏

i=1

fDi|A∞
1

,D
i−1

0
,Wi−1

(

di|a
∞
1 , di−1

0 , wi−1

)

(61)

= fS0
(d0)

n
∏

i=1

fSi|A∞
1

,D
i−1

0
,Wi−1

(

di − wi−1|a
∞
1 , di−1

0 , wi−1

)

(62)

= fS0
(d0)

n
∏

i=1

fSi

(

di − wi−1(a
∞
1 , di−1

0 )
)

, (63)

where (61) holds due to (4), and (62) follows due to (5). Since

the server processes the packets independent of the arrival
process,Si is independent ofA∞

1 , Di−1
0 ,Wi−1, and thus (63)

holds. Using (55) and (63), (54) normalized byTn can be
written as

1

Tn

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 )

=
1

Tn

[

n
∑

i=1

log (fSi
(Di −Wi−1))−

n
∑

i=1

log (fDi
(Di))

]

=
n

Tn

1

n

[

n
∑

i=1

log (fSi
(Si))−

n
∑

i=1

log (fDi
(Di))

]

, (64)

sinceSi = Di −Wi−1. Since theWi are iid exponential(λ)
random variables, (48) implies

lim
n→∞

n

Tn

=
1

E [W ] + E [S]
=

1

1/λ+ 1/µ
. (65)

By the strong law of large numbers [22], it follows from (64)
and (65) that

lim
n→∞

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 )

Tn

=
h(D)− h(S)

1/λ+ 1/µ
= R(λ, µ) wp 1.

It follows that the liminf in probability of
iA∞

1
;Dn

0
(A∞

1 ;Dn
0 )/Tn equalsR(λ, µ) and thus by Lemma 5,

rateR(λ, µ) is achievable.
Comparing Theorem 4 and the upper bound (52), we see

that the achievable rateR(λ, µ) matches the upper bound for
the M/M/1 bufferless queue. ThusR(λ, µ) is the capacity of
the bufferless M/M/1 timing channel with arrival rateλ and
service rateµ. This M/M/1 capacity is illustrated in Fig. 2.
The maximum achievable rate in (52) is 0.3340 nats per
average server time, and the maximum of universal upper
bound is 0.3679 which implies that a bufferless M/M/1 queue
at worst suffers less than10% reduction in achievable rate
when compared to the universal upper bound.

Fig. 3 illustrates the achievable upper bound of M/M/1 (4)
and the universal upper bound of·/M/1 (52). The·/M/1 upper
bound of "Bits through queues" (BTQ) paper [7, eq. 2.17-2.18]
is plotted for comparison. In these plots,0 < λ/µ < 1 since
the ·/M/1 BTQ requiresλ ≤ µ for stability. From this plot, we
can see that the maximum value of the upper bound of·/M/1
is equal to the maximum value of·/M/1 BTQ which is 0.3679
nats per average service time.

B. Achievability for the M/G/1 queue

Theorem 5. The M/G/1 bufferless queueS with arrival rate
λ and average service timeE [S] = 1/µ has capacity

C(λ, S) ≥ R(λ, µ).

Proof: The procedure for this proof is along the lines of
the proof of [7, Thm. 7]. We assume the inter-departure times
under general service have PDFgDn

0
(dn0 ), and the arrivals are

a rateλ Poisson process. We further assume thatfDn
0

is the
PDF of the inter-departure times of system with a memoryless
server of rateµ (which would be hypoexponential). Now



similar to [7],

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 )

= log
gDn

0
|A∞

1

gDn
0

(66)

= log
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1

fDn
0
|A∞

1

− log
gDn

0

fDn
0

+ log
fDn

0
|A∞

1

fDn
0

. (67)

In Theorem 4, we showed that

lim inf
n→∞

-p
1

Tn

log
fDn

0
|A∞

1

fDn
0

= R(λ, µ). (68)

We need to prove that

lim inf
n→∞
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[

log
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0
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1
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0
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1

− log
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0
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0

]

≥ 0.

Note that (48) implies it is sufficient to prove that for every
ζ > 0,

lim
n→∞
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1
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(

log
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0
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1
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0
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− log
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≤ −ζ

]

= 0.

Using the same method as [7],
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= PgA∞
1

,Dn
0

[

1

n
log

gA∞
1

|Dn
0

fA∞
1

|Dn
0

≤ −ζ

]

(70)

=

¨
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It follows that

lim inf
n→∞
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log
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0
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1

fDn
0
|A∞

1

− log
gDn

0

fDn
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≥ 0. (74)

Now using (68) and (74), we see that for everyζ′ > 0,

lim
n→∞

P

[

1

Tn

iA∞
1

;Dn
0
(A∞

1 ;Dn
0 ) ≤ R(λ, µ)− ζ′

]

= 0.

Thus Theorem 5 holds.
It must be noted that this is not necessarily a tight lower

bound similar to [7]. The result of Theorem 5 shows that the
exponential server has the lowest capacity for a fixed service
rate among servers with Poisson arrivals.

VI. CONCLUSION

This paper studied the capacity of timing channels described
by bufferless single-server timing queues with iid service
times. One of the main challenges in the analysis of such
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Fig. 3. Comparison ofC(λ) of the "bits through queues" (BTQ) paper [7,
Theorem 4], the upper bound for bufferless·/M/1 queue, and the capacity
R(λ, µ) for the M/M/1 bufferless queue. All the systems have exponential
service time of rateµ and arrival rateλ. Both BTQ and bufferless upper bound
plots have maximum equal to 0.3679 nats per average service time whereas
the maximum achievable rate is 0.3340 nats per average service time.

timing channels is the lack of a one-to-one correspondence
between packets arriving at and departing from the queue.
This challenge was circumvented by resorting to codewords
with infinite length, with the rate of the code defined using the
average time it takes to observe the departure ofn codeword
packets. In general, we believe that an information-theoretic
understanding of the setup studied in here will help us address
the challenge of causal inference in systems, such as (online)
social networks, that lack a one-to-one correspondence be-
tween different actions (e.g., tweets versus retweets). Inthis
regard, this paper discussed the maximum likelihood decoder
for decoding timing messages transmitted through a bufferless
queue, provided upper bounds on the channel capacity—
including a single-letter upper bound and a looser universal
upper bound, and computed achievable rates for bufferless
M/M/1 and M/G/1 queues. Computing tighter upper bounds on
the capacity and achievable rates for·/M/1 and ·/G/1 queues
that meet the upper bounds remain areas of future work.

APPENDIX

In this part, the upper bound (52) for the M/M/1 queue is
shown to be only a function ofρ = λ/µ for fixed µ. Initially,



the hhypo(λ, µ) is rewritten using (51) as follows:

hhypo(λ, µ) (75)

= −

ˆ

fD(x) log fD(x)dx (76)

= −

ˆ

fD(x) log
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µe−µx ρ
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= − logµ+ µE [D] log e − log
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ρ
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)

−

ˆ

fD(x) log
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dx. (78)

With the change of variabley = (λ− µ)x,

hhypo(λ, µ) = − logµ+

(

1 +
1

ρ
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log e

− log
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ρ
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)

+
ρ

(1− ρ)
2G (ρ) , (79)

where

G (ρ) =

ˆ

e−
y

ρ−1

(

e−y − 1
)

log
(

e−y − 1
)

dy

is a function ofρ. Now substituting (79) in (53),

R(µ, λ) = µ
log e− ρ log

(

ρ
1−ρ

)

+
(

ρ
1−ρ

)2

G (ρ)

1 + ρ

which proves the claim.
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