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Abstract—This paper investigates the capacity of a channel To the best of our knowledge, however, the capacity of
in which information is conveyed by the timing of consecutie pufferless SSTQs in the context of timing channels has not
packets passing through a queue with independent and iderially oo explored in prior work. And while the bufferless SSTQ

distributed service times. Such timing channels are commdn L . .
studied under the assumption of a work-conserving queue. In SNares some similarities with the buffered SSTQ n [7], wié wi

contrast, this paper studies the case of a bufferless queudat S€e€ that analyzing its capacity presents some new chafiemge
drops arriving packets while a packet is in service. Under the absence of a one-to-one correspondence between irggomin
this bufferless model, the paper provides upper bounds on # and departing packets.
capacity of timing channels and establishes achievable res for In this paper, we make the following contributions to the
the case of bufferless M/M/1 and M/G/1 queues. In particular . . L .
it is shown that a bufferless M/M/1 queue at worst suffers les capacity ?”a'},’s's of _t'm'n_g Channels deSC”bed_ by bufﬁsrle.
than 10% reduction in capacity when compared to an M/M/1 SSTQs with iid service times. First, we describe the maxi-
work-conserving queue. mum likelihood (ML) decoder for decoding timing messages
transmitted through a bufferless queue. Second, we provide
a single-letter upper bound on the channel capacity under
Timing channels convey information by the timing ofarbitrary service distributions for the case of iid interial
consecutive packets — rather than by their contents. Symdicket times. Next, we provide a single-letter upper bound
channels not only arise in many engineering contexts, suahd a looser closed-form upper bound on the channel capac-
as covert communication§][1].1[2] and sensor netwofks [3ty under arbitrary service distributions. Finally, we pide
but can also provide a reasonable abstraction of interactiachievability results for bufferless M/M/1 and M/G/1 qusue
in biological systems[]4]. In addition, information thetice using information density methodS [10]. In particular, for
understanding of timing channels can potentially help tecit the bufferless M/M/1 queue, achievable rates are shown to
the challenging problem of causal inference in systems avherincide with our outer bound. In addition, it is shown that
causal relationships are determined by timing informafjn a bufferless M/M/1 queue at worst suffers less than 10%
[el. reduction in achievable rate when compared to an M/M/1
The study of information theoretic timing channels begagueue with infinite buffer[]7].
in the seminal papef[7], which characterizes the capadity o We conclude with a brief discussion of other related work
a timing channel described by a single-server timing queoea timing channels. The setup studied [ [7] corresponds
(SSTQ) with independent and identically distributed (iidjo a continuous timing channel. A discrete-time version of
service times. In particular, we have from [7] that the cétyac this timing channel is analyzed i [11], [12]. 16 [13],]14],
of an SSTQ with iid exponential service time#M/1 queue) the authors revisited the timing channel of [7] and provided
is equal toe~! nats per average service time. capacity analysis from the viewpoint of point processes. Fi
In this paper, we are also interested in studying the capaaitally, extensions of_[[7] for the case when the distributidn o
of a timing channel described by an SSTQ. However, Bervice times has bounded support is investigated in [18] an
contrast to[[7], our focus is onfaufferlessSSTQ that discards for the case of a compound timing channel described by a
incoming packets while a packet is in service. Bufferledandem of queues is analyzed in[[16]. In all these works,
SSTQs, despite their apparent simplicity, are effectiveath- however, the fundamental assumption is that the queues are
ematically modeling some systems including protein sysithe work conserving.
networks[[8]. Our interest in bufferless SSTQs is relatethe®  The rest of the paper is organized as follows. In Sedfibn I,
mutual information in tweet sequences. Suppose Bob rexzeivee provide an overview of our system, describe the optimal
tweets from Alice and occasionally tweets in response. &/hiteceiver, and provide a formal definition of capacity in our
formulating a response, Bob ignores subsequent tweets freatup. Sectiof Tl derives outer bounds on the timing capaci
Alice. In this model, we can view Alice’s tweets as arrivalshat hold for all arrival processes. Section IV provideseout
and Bob’s tweets as departures from a queue. The time Badunds for specific arrival processes and service timeilalistr
spends formulating a response is the service time of a twéiens. Sectiof V investigates achievable rates in our systed
admitted to the system. While the bufferless SSTQ is a simglempares them to the outer bounds obtained in Secfiohs Il
model, it provides a starting point for characterizing howatm and[TM. Concluding remarks are in Sectionl VI.
information can be gleaned from tweet timing data. Note that we usefx(-) to denote the probability density
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* T T T T T T B. Decoder
Al Ay A3z Ay As A
So W, Sy W; S ®W, S3 At the receiver, the decoder observes the inter-departure
<>T(>< ”””””””””””” D R { times Dy, Dy,---,D,, where D, is the departure time of
' ' packet0 and D;, i > 0, denotes the time between packet
Do D, D, D departures — 1 ands. These inter-departure times are used

in estimating the indeX” € {1,--- , M} corresponding to the
Fig. 1. One realization of the input and output sequence efdpstem transmitted message. A decoding error occurs whea U. In

is illustrated. The arrows with hollow arrowheads show tlekets arriving the pufferless queue the subset of arrivals that are ashinitt
at the server that are dropped, the arrows with solid arradéieshow the '

packets that enter the server, and the lines with circlespshow the packets into service is denoted by the subsequehge= 0k, -

departing the server. such that
m 1—1
function (PDF) of random variablé&. Similarly fyy(-|) is fi = min m';AJ ;DJ =0 @)
the conditional PDF o givenY'. In addition,exp(-) denotes . _ .
the inverse oflog z: exp(logz) = . denotes the index of the packet 0 admitted to service. The
time that the server is idle between departui@nd the next
Il. SYSTEM MODEL arrival is represented bi¥;. Since the queue in our system

The basic idea of the timing channel il [7] is to us|s blocking and has no buffer, the idling timé’; can be

. ) . epresented as a deterministic function of the message inde
packet inter-arrival times to the server to encode a messa@ﬁP

) ) and prior departure®} as
The receiver, based on the departure times of packets from P P 0

the server, decides which message has been transmitted. In , k
contrast to[[V], we consider a channel that consists of desing Wi(U,Dy) = Ay, — > D;. 2
server bufferless queue with a zero packet waiting room.nJpo j=1 3=0

arrival at an idle server, a packet immediately enters &ervi For ease of notation, we us&; (U7, D) and the shorthant’;
otherwise, if the server is busy with a previous packet, th§terchangeably. The relationship between departure fime

i1 7

incoming packet is blocked and discarded. ~ and the corresponding idling time and service time is
In the following, we useS; to denote the service time i
of the i*" packet admitted to service. As is customary in D; =W;_1(U,Dy ") + Si. )

quguing systems, we assume that se_rvice_ times are iid rand@&?ﬂvalent to[[2) and{3), we can explicitly represé¥it and
variables, independent of packet arrival times. Thus werrefDZ_ as functions of the arrival timed?° and past departures
to the timing channel induced by the (bufferless) queue witgi-1.

service timeS as the (bufferless) timing channgl In Fig.[d, 0

one realization of the input and output sequences, inctudin . kit U
arriving, dropped and departing packets, is illustratedenn Wi(A®, D) =Y A; =Dy, 4)
our setup. =1 =0
D; = W; 1 (A, Dy 1) + ;. (5)
A. Encoder
The transmitted message is represented by the discretéfter n codeword packets are received, the MAP decoder
uniform index U € {1,---,M}. At the transmitter, each observes the departure timé; = dj and finds the most

messagel/ = u will be encoded into an infinite sequenceprobable codeword
of packet inter-arrival timesd, = (Ag =0, Ay 1, Ay2, ) oy  mm

where 4,, ; is the inter-arrival time between packets— 1 u(dg) = argmgxP[U = ulDy = dy] )
and j in codewordu. We refer to the packet submitted ato have been transmitted. Since the codewords are equiproba

time Ao = 0 as packet zero. This packet carries no timingle, we can rewrite[{6) as the maximum likelihood problem
information and serves only to initialize the system. Samiy,

we refer to packetsl,2,... as codeword packets as their u(dgy) = arg max [y [dg|u] (7
inter-arrival times define the codewords. We note that using n .

a codeword with infinite length is not a new phenomenon and = argmax fpoldo] H Foupi-tv (dildy " u] . (8)
has been applied in[17] to ARQ systems where they design an i=1

infinite length codeword and transmit a part of it to the reeei i i1

or in [18] where an infinite length codeword is transmitted an = arg mgxz log fp,1pi—1,v [daldg ] ©)

in the receiver, after observing each packet, the decoding i =1

performed. SinceW;_, = W;_1(U, Dj ") is a deterministic function of



U, D(ifl, Before stating a converse for our system, we need the
- following lemmas.
—1
fDi,\Dé’l,U [dildg ", u]

= foypi-tuw, s (dsldi" u, wii ] (10) Lemma 1. The mutual information between the input code-
T i— word and the output departure times satisfies
= fSi,\Défl,U,Wif1 [dl —wi_1|d0 l,u,wi_l} (11) F:I P
= fs; [di = wia(u,dg )] (12) I(AF; D) = (M(Wiy + Si| Dy = h(Sh)) . (21)
Note that [(IL) holds sinc®; = w; 1 + S; given W;_; = =1
w;—; and that [(IR) follows sinceS; is independent of Proof: By the chain rule
U,D§ " W1 (U, D). Combining [®) and{d12) and writing
i—1 n )
w;—1 explicitly as a function ofu andd;; *, we obtain [(A%; D) = I(A%; Do) + ZI(A?O;D”DBA). (22)
i=1
m 1—1
udg) = argmalengS —wim(udy )] (13) Since Dy = Sy, which is independent of the code packet
) = arrivals A°,
C. Capacity

In this work, we aim to compute the capacity of the buffer- I(AT%; Do) = I(AT; 50) = 0. (23)

less timing channel. While each decoded message convBiareover,
log, M bits of information, the time required by the receiver A% D Di-1
to decode a message depends on the packet departure times. { 7 Dil s )

particular, we assume that the receiver decodes aftendgbger = h(D;| D) — h(D;| A%, D) (24)
the departures ofi codeword packets. The expected time — h(Wi_1 + 51.|D3—1) — h(Wi_1 + Si|A%°, Dé—l) (25)
required to observe these departures is = W(Wi_y + Si| DY) — h(Si| A%, DEY Wi y) (26)
" — : DY — KB(S.
T, =S E[D,] = B[S + ZE s 4 = Wit SilDym) = h(S). (27)
i=0

Note that[(Z6) holds sincd$°, D! deterministically specify

Following [{], [1€] the achievable rate and the capacity foil; _; using [4); [2¥) holds sinceS; is independent of the
our system are defined as follows. arrlvals A$°, the prior departure®{ ' and the idle period
Definition 1. If for every v > 0, a sequence of codewords Wi-1. The lemma follows from[(22)[(23) an@.{27). -

froma Cdeebli)Ok \fffv'tw lenltrles EXIStSdWI'[I:(logM n) [T d> Lemma 2. The mutual information between the input code-
£ — v tor all sufficiently largen, and the correspon N9 word and the output departure times satisfies
maximum probability of errog,, satisfyinglim,, .. €, = 0,

then the rateR is achievable. The maximum rat®B that = g (28)
satisfies this definition is called the capacity of the timing Z: Wi-1;Wi1 + 5i)
channel and is denoted . -
Proof: Based on Lemmal 1,
I1l. CONVERSETHEOREMS .
We follow the approach of[7] in deriving a converse. Using I(AT°; D§) = Z (R(Wi1 + S;|DEY) — h(S;))
P, to denote the probability of a decoding error, we observe i=1
that Fano’s inequality[[20, sec. 2.10] and equiprobalile
imply < Z Wi1 + 5i) — h(Si)) - (29)
HU|V) < H(F.) + P.log M, (15)  Note that [[2P) holds since conditioning reduces entropm
< . . . .
< H(Pe) + enlog M, (16) To develop universal bounds valid for all arrival and segvic
< log2 + ey log My, (17) processes, we follow the approach[in [7] and define

=log2 + e, logM,, + H{U) —log M,,, (18)

cla)= sup I(X;X +59) (30)
where we assume tha&f (P.) < log2. We can conclude that Efxz]ga
log M,, < 1 [I(U;V) +log?2] (19) whereX is independent of. We note that(a) is a monotone
l—en concave function in the argumedt and that this will provide
< 1 [I(AS°; DR +log 2], (20) a universal upper bound on the capacity of the timing channel
L—en We start with a relaxation of Lemnia 2.

where [20) follows from the data processing lemmal [20,
sec. 2.8]. Lemma 3. The mutual information between the input code-



word and the output departure times satisfies
I(A?; D) < (B [Wiq)). (31)

Proof: Lemmal2 and[(30) imply

1(A§°;D(;)<ZI i1 Wis1 +55) (32)
=1
< sup I(X;; X+ S)) (33)
X;>0

=1 B[X;]<E[W;_1]

i e (34)

i=1

Now using Lemmd13 , we can define a general conver@é’

which is parallel to[[7, Thm. 2].

Theorem 1. The timing channelS with E [S] = 1/u has
capacity

_ c(%)
C <C(S) =sup +—7F- (35)
A>0x Ty
Proof: Let
(1 —e,)log M,
Ry = (36)
Combining [I#), [(2D), and Lemnia 3 yields
Ly EW,;_ log 2

"SI BT IS
Defining A,;* = L 3" | E [W;_1], concavity ofc(a) implies
(3

+ 82 1) log2
R, < 771) T < sup 1C(A)1 + o8 . (38)
T A>0 x + m n/p
The claim follows as: — occ. [ ]

distribution. As a resultlog(e) + log(a + E [S]) — h(S) is an
upper bound omr(a). A universal upper bound on the capacity
of the system can now be stated.

Theorem 2. The bufferless timing queugwith E [S] =1/u
has capacity

O < %a h(S) < lOg (1/,&), (41)
exéc();%(es))a h(S) > log (1/,11) :

Proof: Based on Theoreid 1 and Lemina &, defined
in (36) satisfies
loge + log (% + ﬁ) — h(S)
R, <sup 7 T
A>0 RN m
taking the derivative of the upper bound in¥42) with
respect toA~!, the optimal\ will satisfy

h(S) = 1og< =+ 1). (43)

Since )\ is a nonnegative number, whéiiS) < log(1/u), the
supremum is approached as! — 0 and the universal upper
bound will be

(42)

R, < ufloge +log(1/u) — h(S)]. (44)
Otherwise,
loge
= oxp ((S)) )
[

IV. QUEUE-SPECIFICOUTER BOUNDS

We note that Lemmdd 1 ahd 2 make no particular assump-
tions regarding the statistical structure of the arrividlswever,
in the absence of such assumptions, memory in the arrivals
can induce idling timed¥; that are difficult to characterize.
To go further, we focus on the special case of codebooks

We can further loosen Theoreilh 1 by making use of thgith iid inter-arrival times. With iid inter-arrivals, eactime

following lemma.

Lemma 4. For a timing channelS, c(a) defined in [(3D)
satisfies

c(a) <log(e) +log(a+ E[S]) — h(S). (39)
Proof: Based on[(30), we have
cla)= sup h(X +8)—h(S9). (40)
E[X]<a
X>0

Notice thath(X +.5) subject to the constrainfs [ X] < « and

a packet enters service, the queue undergoes a renewal. In
particular, theith renewal point marks the beginning of a
service timeS; and a set of subsequent iid packet inter-arrival
times Ay, +1, Ak, +2, ... such that the distributions of; and
{Ax,+;} are sufficient to evaluate the distribution of the num-
ber of packet arrivals that are dropped during the service as
well as the idling timd¥V; that follows the service completion.
Because service times and inter-arrival times are bothaiid,
renewal occurs at the end of the idling period when the next
arrival is admitted. We note that; depends orb;; however

the renewal implies thatSy, Wo), (S1, W1),- -+, (Sn, Wa)

X >0 and fixed service distribution will be maximized whertonstitute independent tuples. This observation yields th

X + S has exponential distribution with rate: + E [S])

[20]. The proof now follows from the entropy of an exponen-

tial distribution.

following outer bound for iid inter-arrivals.

Theorem 3. With iid inter-arrival times identical toA, the

However, there is no guarantee that for any given Sem@gﬁerless timing channef has capacityC' satisfying

distribution, there exists a nonnegative random variakth w
E [X] < a such that its summation witl§ has exponential

I(W; W +5)

Cga(A,S)EiE[W]+E[S],

(46)



where W is independent of but has the idling time distri-

bution induced by4 and S. % ol
Proof: Since each service initiation marks a renewa gm, ( VIS Biocking aurer boumnd|
Lemmal2 reduces to
I(AT; DG) < nI(Wi_1; Wioq1 + S5). 47
In addition, [1%) yields
T = E[So] +n(E[Wia] + E[Si]) - (48)

Combining [20), [47) and(48) yields
nI(Wi,l; Wi,1 + Sl) + 10g2

n < . (49) ok
E [So] +n (E[W;—1] + E[S;]) o 1 2 3 4 s

The claim follows as» — oc. |

In general, computing the PDF d# is nontrivial as it Fig. 2. Comparison between the bufferlefi/1 and M/M/1 queue upper
can involven-fold convolutions of the PDF ofd;. Thus, the bounds for0 < A/u < 10 where X is the arrival rate angk is the service
primary use of Theorerl] 3 is the case when theform a ;?E\z/;/e}lr.]e M/M/1 upper bound coincides with the achievabte far M/M/1
rate A Poisson arrival process. In this case, the idling times
W, are exponentia(\) random variables independent §f
and the queueing system is an M/G/1 single server bufferlegg,ost coincide fop < A< 0.2.
queue. For Poisson arrivals, the outer bodf{d!, S) reduces
to a straightforward numerical evaluation 6fi/; W + 5.

As a special case, we analyze the M/M/1 queue in which
the service time is exponential with rate In this caseS will While the upper bounds in Sectiong Ill and IV make use of
have entropy the maximization of the mutual information between idling

h(S) :1Oge+10gl (50) time and inter-departure time, the only parameters in our
H control for coding purposes are the inter-arrival timesoider
and D = W + S will have the hypoexponential distribution for our system to achieve the Theoréin 2 upper bound, two
conditions must be fulfilled: 1) The inter-departure timeassin
“— (eM—er),  d>0, (51) beiidSOh(Wy_1+Sk| D) = h(Wj_1+Sk) which leads to
equality in [28); 2) The inter-arrival times must be disttied
and entropyh(D) = hnypo(A, p). Since I(W; W + S) = sych that asymptotically, the induced idling time maxirsize

R

V. ACHIEVABILITY

h(D) — h(S), Theoren(B yields the outer bound (@H). The first condition is satisfied only when the servioesti
T(A.S) = R(\ 52 is exponential; Otherwise, the relationship betwé&énand.S;
(4, 5) ) (2) would create dependency between consecutive inter-depart
where times D; and D;;1. When S has exponential distribution,
hhypo(A, 1) — log e + log p [7Z, Theorem 3] shows that among the distributions with
R\ p) = UA+1/u : (33) E W+ 5] <1/A+1/p, I(W; W+S) is maximized when the

_ distribution of W is a mixture of an exponential with expected
The entropyfinypo( A, 12) cannot be computed in a closed formya)ye ,~1 1 A\~1 and an impulse at the origin. The resulting

Using numerical integration methods, the upper bounid (Sdistribution for inter-departure time will be exponentigith

is computed as a function of/u as shown in Figl2 (see gypacted valugi—! + A~! which is the distribution used in
Appendix(A for proof that[(58) is a function of/ for fixed  Thegren{D. In our system, sind& cannot have zero value,
1) It can be seen from this figure that wheyiy. is close to e apove conditions cannot be satisfied simultaneously and

zero, corresponding to a queue that is idle most of the timgg Theorenfl2 upper bound is not achievable.
the upper bound on capacity is also close to zero; this is to

be expected since the time required to receiveackets will . .

be large in this case. On the other hand, whem> 1, the A. Achievability for the M/M/1 Queue
expected idling time reduce_s,_but more and more packets argo derive achievability results, we use the information
dropped, and it becomes difficult for the receiver to decodnsity method introduced in_[110]. For the bufferless tignin
messages, resulting in a decreasing upper bound on capagjtieue, the information density is given by

Fig.[@ compares the Theordr 2 universal upper bound for Foriace (DE]AX)
the -/M/1 queue to the upper bound derived for M/M/1 queue ias;pp(A77; Dy) = log 6145 Don ! (54)
in 62). It can be seen from this figure that although the fDS( 0)

TheorenT®2 bound is looser thadn [52), the two upper boundé& will employ the following definition and theorem.



Definition 2. The liminf in probability of a sequence of the server processes the packets independent of the arrival
random variables),, is processs; is independent ofA°, D~ W;_, and thus[(63)
holds. Using [(5b) and{63)[_(b4) normalized Gy, can be

liminf -p Cn written as
_ : _ 1
— Sup {a > 0] lim P[Qn < a—9]=0,¥y> 0}' T—iAT‘J;DS (A% Dg)
Lemma 5 ( [10Q]). A sufficient condition for rateR to be n
achievable is existence of some input procdss for which T_ Zlog fs,(Di — Wi_1) —Zlog (fDi(Di))]
n l 1 .
. 1. 0. My
lim inf -p {T_nZA‘fO;D{;(Al §Do)} > R. ﬁ

Zlog fs.(S Zlog (fp.(D 1 ., (64)
We will use Lemmadb to prove the following achievability
result expressed in terms &f(\, 1) given in [53). sinceS; = D; — W;_1. Since thelW; are iid exponential\)

Theorem 4. The M/M/1 bufferless queue with service rate random variables[{38) implies

and arrival rate A has capacity n 1 - 1 (65)

lim — =
C(A 1) > R(A, ).

noo Ty, B[W]+E[S]  1/A+1/u

By the strong law of large numbers]22], it follows frofn{64)

Proof: In the M/M/1 queue, the arrival process is Poissogind [6%) that
with rate A. As noted at the start of Sectign]lV, the queue _ co. n
has a renewal each time a packet enters service. These intgin iage:pg (AT Dg) — h(D) — h(S)
renewal times are of the fori§i; + W; whereS; andW; may "7 Ty LA+1/p
be dependent, buff;, W; are independent of;, W, for j #44. It follows that the liminf in  probability of
For Poisson arrivals, the memorylessness of the expohentig-. . (A°; D)/ T, equalsR(A, u) and thus by Lemmal5,
distribution impliesS; and W; are independent. As a resultrate R(), i) is achievable. u
the inter-departure time®; are iid hypoexponential random Comparing Theorerfil4 and the upper bould (52), we see
variables with PDF given by (50). Hence we can write that the achievable ratB()\, ;) matches the upper bound for

=R(\p) wpl

n the M/M/1 bufferless queue. ThuB(\, 1) is the capacity of
Jpr(dg) = fs,(do) HfDi (dy). (55) the bufferless M/M/1 timing channel with arrival rateand
i=1 service rateu. This M/M/1 capacity is illustrated in Fid.] 2.
It follows from Lemmall that the expected value of thdhe maximum achievable rate il {52) is 0.3340 nats per
information density will be average server time, and the maximum of universal upper
bound is 0.3679 which implies that a bufferless M/M/1 queue
E [ias:py (A5 Dy)| = 1(A°; Dy) (56) at worst suffers less thah0% reduction in achievable rate

n when compared to the universal upper bound.
Z (Wi—1 + Sk) = h(Sk)] (57) Fig.[3 illustrates the achievable upper bound of M/MILL (4)
and the universal upper bound @¥1/1 (52). The-/M/1 upper
( (W +5) = h(S)) (58) bound of "Bits through queues" (BTQ) paper [7, eq. 2.17-R.18
n (hhypo(A, i) —loge +log ) . is plotted for comparison. In these plots< \/u < 1 since
(59) the-/M/1 BTQ requires\ < y for stability. From this plot, we
Furthermore, can see that the maximum value of the upper bound\dfL
is equal to the maximum value eM/1 BTQ which is 0.3679
fpg|ase (dilar®) nats per average service time.

. ) |00 gi—1
= fs0(do) [ fo a0 g (il d ™) (60) 5. Achievability for the M/G/1 queue

=1
o i1 Theorem 5. The M/G/1 bufferless queug with arrival rate
= fs0(do) HfDilAf.,fol,Wifl (dilat®,dy" wir) (61) ) ang average service time [S] = 1/u has capacity
=1
C(\,S) > RO\, ).

= fso(do) | | fs. 1 a0 pi-1w. , (di — wi—1|a(f°,d6_l,wi—1)
’ 1;[1 ATy Proof: The procedure for this proof is along the lines of
(62) the proof of [7, Thm. 7]. We assume the inter-departure times

n - under general service have PDB; (dy), and the arrivals are
= fso(do) [ fs. (di = wi—1(a3®,di")) (63) a rate) Poisson process. We further assume that is the
=1 PDF of the inter-departure times of system with a memoryless

where [61) holds due t§](4), arld{62) follows duelib (5). Sinaerver of ratep (which would be hypoexponential). Now



similar to [7],

iage;pp (AT%; Dg) ~ %4
9py|Age X,
= log ZR81AT (66) 5O
9Dy -
f g 0.3
gDn A Dn D A® R
= log# — log D4 + log ES (67) Qo5
fog|as Iy [y s
In Theoreni#, we showed that 02
1 ogar
liminf -p — log DelAT R\, ). (68)
n— 00 Tn fD'n. 0.1 B
o e e /M/1 BTQ capacity N
We need to prove that 0.05 .IM/1 blocking outer bound ‘,\ J
S EENEERR M/M/1 blocking outer bound N
. 1 9Dr| A 9Dz oL
liminf -p — |log IDgIAT log=—2| > 0. 0 01 02 03 04 05 06 07 08 09
n—oo T, fppiaz [y A
Note that [4B) implies it is sufficient to prove that for ever
) P P )éig. 3. Comparison of”(\) of the "bits through queues" (BTQ) papét [7,
¢>0, Theorem 4], the upper bound for bufferlegdl/1 queue, and the capacity
R(\, ) for the M/M/1 bufferless queue. All the systems have exptiakn
li P 1 ] 9Dy | A ] gDy < -0 service time of ratg. and arrival rate\. Both BTQ and bufferless upper bound
nl_)ngo E 0g fpnias — 108 for | = =] =0. plots have maximum equal to 0.3679 nats per average seiwieevthereas
Dy |As 0 the maximum achievable rate is 0.3340 nats per averagecseinie.

Using the same method ds [7],

1 n| 400 n
I 9Dg|AzF log 9Dy < ¢
n fpy|as foy

timing channels is the lack of a one-to-one correspondence

_p llog 9pp|ase faz fDr < ¢ (69) between packets arriving at and departing from the queue.
gag.pg | Ipzjas fazegpy — This challenge was circumvented by resorting to codewords
with infinite length, with the rate of the code defined using th
=Py, pn 1 log JA¥|Dg < (70) average time it takes to obs_erve the depgrture of_)dewo_rd
rromn fas|py packets. In general, we believe that an information-th@ore

- n . understanding of the setup studied in here will help us adre
= // 9ag oy (@1°1yo) fop (yg)drt* dyg - (71)  he challenge of causal inference in systems, such as @nlin

gase|pp <e~S" fazo|pp social networks, that lack a one-to-one correspondence be-
tween different actions (e.g., tweets versus retweetsjhig
< 6_<"/ faze1pp (@7 1ye ) fop (Yo )das® dyg (72)  regard, this paper discussed the maximum likelihood decode
_ —¢n for decoding timing messages transmitted through a beffer!
=e " (73) . .
queue, provided upper bounds on the channel capacity—
It follows that including a single-letter upper bound and a looser universa
1 9s 4 9o upper bound, and computed ach_ieva_ble rates for bufferless
liminf —p— | log =2~ —log—= | > 0. (74) M/M/1 and M/G/1 queues. Computing tighter upper bounds on
nee Tn ( fog a5 fDS) the capacity and achievable rates fiM/1 and-/G/1 queues
Now using [68) and{74), we see that for evefy> 0, that meet the upper bounds remain areas of future work.
i P | i g (A5 D8) < RO~ ¢ =0,
Thus Theorerfi]5 holds. [ |

It must be noted that this is not necessarily a tight lower
bound similar to[[7]. The result of Theordm 5 shows that the
exponential server has the lowest capacity for a fixed servic APPENDIX
rate among servers with Poisson arrivals.

VI. CONCLUSION

This paper studied the capacity of timing channels desdribe
by bufferless single-server timing queues with iid service In this part, the upper bounf(52) for the M/M/1 queue is
times. One of the main challenges in the analysis of sushown to be only a function gf = A/ for fixed . Initially,



the hnypo(A, i) is rewritten using[(31) as follows:
hhypo()‘a 0]
—/fD(:v) log fp(z)dx

- / fp(z)log [ue*“% (e*“*#)z - 1)] dz (77)

(75)
(76)

—logu+ pE [D]loge — log <ﬁ>

- /fD(:v) log (e_()‘_“)w - 1) dz. (78)
With the change of variablg = (A — ) ,
1
hrypo(A, 1) = —log pu + (1 + ;) loge
p p
~1lo + G(p), (79
g<1_p> e CICN

G (p) /67% (e7¥—1)log(e¥ —1)dy

is a function ofp. Now substituting[{719) in[{33),

loge — plog (Tpp) + (Tpp)QG(p)
1+p

R(/La /\) =H

which proves the claim.
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