
The Generalized Degrees of Freedom of the
Interference Relay Channel with Strong

Interference
Soheyl Gherekhloo, Anas Chaaban, and Aydin Sezgin

Chair of Communication Systems
RUB, Germany

Email: {soheyl.gherekhloo, anas.chaaban, aydin.sezgin}@rub.de

Abstract—The interference relay channel (IRC) under strong
interference is considered. A high-signal-to-noise ratio (SNR)
generalized degrees of freedom (GDoF) characterization of the
capacity is obtained. To this end, a new GDoF upper bound is
derived based on a genie-aided approach. The achievability of
the GDoF is based on cooperative interference neutralization.
It turns out that the relay increases the GDoF even if the
relay-destination link is weak. Moreover, in contrast to the
standard interference channel, the GDoF is not a monotonically
increasing function of the interference strength in the strong
interference regime.

I. INTRODUCTION

Information theoretic results indicate that relays increase
the achievable rate of a point-to-point system [1]. Even
wireless networks, where interference caused by concurrent
transmissions is the main challenging problem, benefit from
the deployment of relays which provide multiplicative gains
in terms of achievable rates. A multiplicative gain can be
shown by comparing the generalized degrees of freedom
(GDoF) of a network with and without a relay. The GDoF is
an information theoretic measure which was introduced in the
context of the basic interference channel by Etkin et al. in [2]
and is a useful approximation for the capacity of a network
in the high signal-to-noise ratio (SNR) regime. The benefit
of a relay in the IC was also shown in [3] by studying the
GDoF of the so-called interference relay channel (IRC), an
elemental network which consists of two transmitters (TX),
two receivers (RX) and a relay (see Fig. 1). The authors of [3]
considered the case in which the source-relay link is weaker
than the interference link. Complementary to [3], the goal
of this work is to study the impact of a relay on the GDoF
when the source-relay link is stronger than the interference
link under the condition that the interference itself is strong.
Thus, associated with the result in [3], the characterization
of the GDoF for the strong interference regime is completed.
By comparing the GDoF of the IRC with that of the IC, we
observe an increase in the GDoF even if the relay-destination
link is weak. Even more surprising, the analysis shows that
in the strong interference regime the GDoF can decrease as
a function of the interference strength, which is a behavior
not observed in the IC. The results are interesting, given the
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previous results in [4] indicated that the degrees of freedom
(DoF) of the IRC, a special and important case of the GDoF,
is not increased at all by the use of relays (DoF = 1).

For the achievability, we use a transmission strategy which
is a combination of decode-forward [1], compute-forward [5],
and a strategy named “cooperative interference neutraliza-
tion” (CN) which is a modified version of the strategy in [6].
While in the setup considered in [6], the destinations receive
interference only from the relays, in our fully connected IRC,
the destinations receive interference from both the relay and
the undesired transmitter. Our CN strategy is designed to
deal with both interferers. Since our IRC is fully connected,
we utilize block-Markov coding [7]. The relay is causal, and
therefore, it is only able to neutralize the interference from
the previously decoded blocks. This constitutes yet another
major difference with [6]. Moreover, [6] only considered
the deterministic channel. In this work, we design the CN
scheme for the Gaussian channel by using nested lattice codes
[5]. These codes are used in order to enable the relay to
decode the sum of codewords [5] which is then scaled and
transmitted in such a way that reduces interference at both
receivers.

A new upper bound on the sum capacity is derived based
on a genie aided complementing existing upper bounds from
[3] to fully characterize the GDoF.

The rest of the paper is organized as follows. In Section II,
we introduce the notations and the Gaussian IRC. The main
result of the paper is summarized in Section III. Then, in
Section IV, the new upper bound is proved. In Section V, the
proposed transmission scheme is motivated by considering
the linear-high SNR deterministic channel model, followed
by details on the relaying strategy “CN” and the achievability
scheme for the Gaussian case. In Section VI, we discuss the
reason of decreasing behavior of the GDoF versus interfer-
ence strength by studying the transmission scheme in details.
Finally, we conclude in Section VII.

II. MODEL DEFINITION

Let us first define the notations which are used in this
paper. We denote a length-n sequence (x1, . . . , xn) by xn.
The functions C(x) and C+(x) are defined as

C(x) = 1/2 log(1 + x), C+(x) = (C(x))
+
, (1)
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Fig. 1: System model for the symmetric Gaussian IRC .

where (x)+ = max{0, x}. A Gaussian distribution with
mean µ and variance σ2 is denoted as N (µ, σ2).

A. System Model
The information theoretic model of the IRC is shown in

Fig. 1. Transmitter i (TXi), i ∈ {1, 2}, has a message mi

which is a random variable uniformly distributed over the set
Mi , {1, . . . , 2nRi} for its respective receiver (RXi). The
message is encoded into a codeword xni = fi(mi), where
xik, k = 1, . . . , n, is a realization of a real valued random
variable Xij . The transmitters must satisfy a power constraint
given by

1

n

n∑
j=1

E[X2
ij ] ≤ P. (2)

In time instant k, the relay receives

yrk = hsx1k + hsx2k + zrk, (3)

where hs denotes the real valued channel gain of the source-
relay channel. Moreover, zrk represents the additive Gaus-
sian noise at the relay with zero mean and unit variance
(Zr ∼ N (0, 1)). The relay is causal, which means that the
transmitted symbol xrk at time instant k is a function of the
received signals at the relay in the previous time instants, i.e.
xrk = frk(yk−1

r ). The average transmit power of the relay
cannot exceed P . The received signals at the destinations are
given by

yjk = hdxjk + hcxlk + hrxrk + zjk, j 6= l (4)

where j, l ∈ {1, 2}, and hd, hc, hs, and hr represent the
real valued channel gains of the desired, interference, source-
relay, and relay-destination channels, respectively. The addi-
tive noise at the receivers is Zj ∼ N (0, 1). The probability of
error, achievable rates R1, R2, capacity region C are defined
in the standard Shannon sense [8]. The sum capacity is the
maximum achievable sum-rate which is given by

CΣ = max
(R1,R2)∈C

RΣ, (5)

where RΣ = R1 + R2. Clearly, the sum capacity of the
channel depends on the channel gains.

Since the focus of the paper is on the GDoF of the IRC,
we need to define the following parameters. Let α, β, and γ
be defined as

α =
log(Ph2

c)

log(Ph2
d)

β =
log(Ph2

r)

log(Ph2
d)

γ =
log(Ph2

s)

log(Ph2
d)
. (6)
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Fig. 2: A comparison of the GDoF of the IRC (where β = 2
and γ = 3) and IC. The GDoF of the IRC is the minimum
of the illustrated upper bounds.

Then, the GDoF of the IRC, d(α, β, γ) is defined as

d(α, β, γ) = lim
Ph2

d→∞

CΣ(α, β, γ)
1
2 log(Ph2

d)
. (7)

This paper studies the IRC with strong interference h2
c > h2

d.
According to (6), the strong interference regime corresponds
to α > 1. The next section summarizes the main result of
the paper.

III. SUMMARY OF THE MAIN RESULT

In this work, we derive a new upper bound for the GDoF
of the IRC which is given in Lemma 1.

Lemma 1. The GDoF of the IRC is upper bounded by

d ≤α+ β. (8)

The proof of the new upper bound is given in Section IV.
In addition to the new GDoF upper bound, we use some
known upper bounds for the IRC which are derived in [3].
These upper bounds are restated in Lemma 2.

Lemma 2. The GDoF of the IRC is upper bounded by

d ≤ min{2 max{1, β}, 2 max{1, γ},
max{α, β}+ (γ − α)+, γ + α}. (9)

Then, these upper bounds are compared with the achiev-
able sum-rate given in Lemma 3, whose proof is deferred to
Section V.

Lemma 3. Let R(w)
cn , R(l)

cf , Rcm, and Rdf be the rates
associated with the sub-messages referred to as the wth coop-
erative interference neutralization message, the lth compute-
forward message, the common message, and the decode-
forward message, respectively. A sum-rate RΣ is achievable
with

RΣ = 2

(
W∑

w=1

R(w)
cn +

L∑
l=1

R
(l)
cf +Rcm +Rdf

)
, (10)



if the constraints (59)-(63), and (52)-(58) are satisfied under
power constraints (51) and (65).

Using the parameters in (6) in addition to the definition
of the GDoF, we convert the sum-rate in Lemma 3 into the
achievable GDoF of the IRC. Finally, by comparing this
achievable GDoF expression, with the upper bounds given in
Lemma 1 and Lemma 2, we get the GDoF in Theorem 1.
Notice that the GDoF of the IRC with 1 ≤ α and γ ≤ α is
characterized completely in [3]. The result for the remaining
part of the strong interference regime is presented in the
following Theorem.

Theorem 1. The GDoF of the IRC with 1 < α < γ is given
by

d = min{2 max{1, β},max{α, β}+ γ − α, γ + α, α+ β}
(11)

In order to see the impact of the relay, we compare the
derived GDoF of the IRC with the GDoF of the IC in the
strong interference regime given in [2]

dIC = min{α, 2}. (12)

In Fig. 2, the new and the known GDoF upper bounds
for the IRC and the GDoF of the IC are illustrated. As
it is shown in this figure, the new upper bound is more
binding than the old one for some values of α. Therefore,
the new upper bound is required in addition to the known
upper bounds for characterizing the GDoF of the IRC. The
minimum of the upper bounds gives us the GDoF of the IRC.
Moreover, comparing the GDoF expression in Theorem 1
with (12), we conclude that the GDoF performance of the
IRC is better than the IC. This increase is also obtained
even if the relay-destination link is weak (β < 1) (cf. (11)).
The other important observation is the decreasing behavior
of the GDoF versus α in some cases. This observation is
interesting because, to the authors’ knowledge, this is the
first case where a decreasing GDoF behavior is observed in
the strong interference regime. This is in contrast to the IC
and X-channel with strong interference where the GDoF is
a nondecreasing function of α [2], [9]. The reason of this
behavior can be understood by studying the transmission
scheme in the discussion in Section VI.

IV. NEW UPPER BOUND (PROOF OF LEMMA 1)

In this section, we prove the upper bound given in Lemma
1. To do this, we give Sn = hrX

n
r +Zn as side information

to both receivers, where Zn is i.i.d. N (0, 1), independent of
all other random variables. Moreover, we give Y n

1 and m1

to receiver 2. Then, using Fano’s inequality, the chain rule,

and the independence of m1 and m2, we write

n(R1 +R2 − εn) (13)
≤ I(m1;Y n

1 , S
n) + I(m2;Y n

2 , S
n, Y n

1 ,m1) (14)
= I(m1;Sn) + I(m1;Y n

1 |Sn) + I(m2;m1)

+ I(m2;Sn|m1) + I(m2;Y n
1 |Sn,m1)

+ I(m2;Y n
2 |Sn,m1, Y

n
1 ) (15)

= I(m1,m2;Sn) + I(m1,m2;Y n
1 |Sn) (16)

+ I(m2;Y n
2 |Sn,m1, Y

n
1 ). (17)

Now, consider every term in (17) separately. The first term
in (17) can be rewritten as

I(m1,m2;Sn) ≤ I(m1,m2, X
n
r ;Sn) (18)

≤nC(Ph2
r). (19)

The second term in (17) is given by

I(m2,m1;Y n
1 |Sn) (20)

≤ I(m2,m1, X
n
r ;Y n

1 |Sn) (21)
= h(Y n

1 |Sn)− h(Y n
1 |Sn,m1,m2, X

n
r ) (22)

= h(Y n
1 − Sn|Sn)− h(Y n

1 − hrXn
r |Sn,m1,m2, X

n
r )
(23)

= h(hdX
n
1 + hcX

n
2 + Zn

1 − Zn|hrXn
r + Zn) (24)

− h(Zn
1 |hrXn

r + Zn,m1,m2, X
n
r ) (25)

(a)

≤ h(hdX
n
1 + hcX

n
2 + Zn

1 − Zn)− h(Zn
1 ) (26)

≤ nC
(
1+P

(
h2
d + h2

c

))
, (27)

where in (a), we dropped the conditioning in the first term
because it does not increase the entropy. Moreover, in the
second term in (a), we dropped the conditions because
they are all independent from Zn

1 . Finally, the third term
is rewritten as

I(m2;Y n
2 |Sn,m1, Y

n
1 ) (28)

= h(Y n
2 |Sn,m1, Y

n
1 )− h(Y n

2 |Sn,m1, Y
n
1 ,m2) (29)

= h(Y n
2 − Sn|Sn,m1, Y

n
1 − Sn)− h(Y n

2 |Sn,m1, Y
n
1 ,m2)

(a)

≤ h(hdX
n
2 + Zn

2 − Zn|hcXn
2 + Zn

1 − Zn)− h(Zn
2 )

(30)
(b)

≤ h

(
hdX

n
2 + Zn

2 − Zn − hd
hc

(hcX
n
2 + Zn

1 − Zn)

)
− h(Zn

2 )

≤ h
(
Zn

2 −
hd
hc
Zn

1 +

(
hd
hc
− 1

)
Zn

)
− h(Zn

2 ) (31)

≤ nC

(
h2
d

h2
c

+

(
hd
hc
− 1

)2
)
. (32)

Since conditioning does not increase entropy, we drop some
conditions in the first term of (a) and (b). Moreover, we
remove the conditions in the second term of (a) because
they are independent from Zn

2 . Substituting the results in



(19), (27), and (32) into (17), we obtain

R1 +R2 ≤ C

(
h2
d

h2
c

+

(
hd
hc
− 1

)2
)

+ C
(
1 + P

(
h2
d + h2

c

))
+ C(Ph2

r). (33)

Then, using the definition of the GDoF and the parameters
α, β, and γ in (33) results in (8), which concludes the proof.

V. ACHIEVABILITY SCHEME (PROOF OF LEMMA 3)

In order to show Lemma 3, we use cooperative interference
neutralization (CN). Before, explaining the CN strategy, we
summarize the transmission scheme in the following deter-
ministic example.

A. A Toy Example:

For the sake of simplicity, we present an example based
on a linear-deterministic (LD) [10] IRC. The input-output
relations of the LD-IRC are

yj = Sq−ndxj ⊕ Sq−ncxl ⊕ Sq−nrxr, j 6= l (34)

yr = Sq−ns(x1 ⊕ x2), (35)

where xi and yj are binary input and output vectors of length
q = max{nd, nc, nr, ns}. Here, S is a q × q shift matrix
and nd, nc, nr, and ns represent the desired, interference,
relay-destination, and source-relay channels, respectively. For
more information about the LD model, the reader is referred
to [10].

In this example (Fig. 3), we fix nd = 2, nc = 3, nr = 6,
and ns = 5. All transmitted and received vectors in time slot
b are given in Fig. 3. The transmit vector of TX1 includes
the information of
• one CF bit
• two current CN bits denoted by time index (b)
• DF bit
• two future CN bits represented by their time index e.g.

(b+ 1).
Since the sum of the future CN bits (b + 1) are received

at the two lower-most bits at the relay, the sum of current
CN bits (b) is always known at the relay from the previous
time slot (b − 1). Therefore, at time slot b the relay knows
x

(w)
1,cn(b) ⊕ x(w)

2,cn(b), where w ∈ {1, 2}. Using this sum, we
can remove the contribution of x(w)

1,cn(b) and x
(w)
2,cn(b) from

ynr (b). Therefore, the relay can decode

• the sum of the CF bits: x(1)
1,cf (b)⊕ x(1)

2,cf (b)

• the sum of future CN bits: x(w)
1,cn(b+ 1)⊕ x(w)

2,cn(b+ 1),
w ∈ {1, 2}

• the DF bits: x1,df (b), x2,df (b).
The relay forwards these known bits in the next time slot in
the order shown in Fig. 3.

The receivers use backward decoding. Assuming that the
decoding process of y2(b + 1) is successful at RX2, the
receiver is able to obtain
• x1,df (b)

• x
(1)
1,cf (b)⊕ x(1)

2,cf (b)

In the next step, RX2 decodes the first three bits of y2(b).
While x2,df (b) is desired for RX2, the other ones are required
in the next decoding step for interference cancellation. The
receiver decodes x(1)

1,cf (b) and adds it to x(1)
1,cf (b)⊕x(1)

2,cf (b) to
obtain the desired bit x(1)

2,cf (b). Next, the receiver removes the
interference of x(1)

2,cf (b) and x1,df (b) from y2(b) and decodes
x

(1)
2,cn(b) which is also desired. Finally, the contribution of
x

(1)
2,cn(b) is removed from the last bit of vector y2(b) and
x

(2)
2,cn(b) is decoded. Due to the symmetry, RX1 does the

same decoding process. Notice that the receivers decode the
CN bits successively bit by bit. This will lead to the idea
of rate splitting of the CN message in the Gaussian case
considered in the next subsection.

B. Cooperative interference neutralization:

Cooperative interference neutralization (CN) is a relaying
strategy which was introduced recently in [11], [12] and [13].
In this strategy, the transmitters and the relay transmit in such
a way that the interference from the undesired transmitter is
neutralized at the receiver.

We introduce rate splitting to the original CN strategy [11].
For the sake of simplicity, we discuss a CN strategy with
only two splits. Consider a block of transmission b, where
b ∈ {0, . . . , B} for some B ∈ N. TX1 wants to send
the messages m1(1), . . ., m1(B) in B ∈ N blocks of
transmission to RX1. First, TX1 splits its message m1(b) into
two parts, i.e. m(1)

1,cn(b) and m(2)
1,cn(b) and then encodes them

using nested lattice codes. TX1 and TX2 use the same nested-
lattice codebook (Λ

(w)
f,cn,Λ

(w)
c,cn) with rate R

(w)
cn and power

P
(w)
cn , where Λ

(w)
c,cn denotes the coarse lattice, Λf,cn denotes

the fine lattice, and w is the split index (w ∈ {1, 2}). For
more details about nested lattice-codes, the reader is referred
to [5], [14] and [15]. The transmitters encode their messages
into length-n codewords λ(w)

i,cn(b) from the nested lattice code
(Λ

(w)
f,cn,Λ

(w)
c,cn). Then, they construct the following signals

x
(w),n
i,cn (b) =

(
λ

(w)
i,cn(b)− d(w)

i,cn

)
mod Λ(w)

c,cn, (36)

where d
(w)
i,cn is n-dimensional random dither vector. Since

the length of all sequences in the paper is n, we drop the
superscript n in the rest of the paper since it is clear from
the context. The transmitted signal by TX1 is given by

x1(b) =

2∑
w=1

x
(w)
1,cn(b) +

√
P

(w)
cnF

Pw
cn

x
(w)
1,cn(b+ 1), (37)

where b = 1, . . . , B − 1, and P (w)
cnF denote the power of the

future signal of the wth split, respectively. Notice that we
need to consider an initialization block (b = 0) in which
the transmitter sends only the future information. Moreover,
in the last block b = B, the users send only their current
information. The other user constructs the transmit signals in
the same way. The relay is interested only in the modulo-sum
of the future CN codewords, which is

(λ
(w)
1 (b+ 1) + λ

(w)
2 (b+ 1)) mod Λ(w)

c,cn (38)



Fig. 3: An example for linear deterministic IRC with nd = 2, nc = 3, nr = 6, and ns = 5. The scheme is shown for time
slot b. Only RX2 is shown for clarity.

in block b. Let us assume that the decoding process at the
relay was successful in block b− 1. Therefore, the modulo-
sum of the current codewords is known at the relay at the end
of block b− 1. The relay constructs hs(x

(w)
1,cn(b) + x

(w)
1,cn(b))

from (λ
(w)
1 (b)+λ

(w)
2 (b)) mod Λ

(w)
c,cn as shown in [16]. Then,

the relay removes it from the received signal in block b. Next,
the relay decodes the modulo-sum of the future codewords
corresponding to w = 1 and then for w = 2 successively as
follows. First, sum of the signals corresponding to w = 1 is
decoded while treating the signals w = 2 as noise. Then, the
relay removes the interference caused by w = 1. Next the
relay decodes the sum of the signals w = 2. Using the result
of [17], we conclude that the relay can decode the sum of
the future CN codewords successively, if the rate satisfies

R(w)
cn ≤ C+

(
P

(w)
cnFh

2
s∑2

i=w+1 2P
(i)
cnFh

2
s + 1

− 1

2

)
. (39)

The decoded mod-Λ(w)
c,cn sum has power P (w)

cn as the original
nested-lattice code. In every block b = 1, . . . , B, the relay
sends

xr(b) = −
2∑

w=1

hc
hr

[
(λ

(w)
1,cn(b) + λ

(w)
2,cn(b)) mod Λ(w)

c,cn

]
︸ ︷︷ ︸

−x(w)
r,cn(b)

.

(40)

RX1 wants to decode λ(w)
1 (b) by performing backward de-

coding. Assume now that the future desired CN signal is
decoded successfully and is known at the destination. Thus,
RX1 removes it from the received signal, and then divides
the remaining signal by hc and adds the dither d(w)

2,cn. Then,
it calculates the quantization error with respect to Λ

(w)
c,cn.

Similar to the decoding at the relay, the destination decodes
the codeword corresponding to the first split, and then after

removing its interference, it decodes the codeword of the
second split. The decoding of λ(1)

1,cn(b) is as follow(
y1

hc
+ d2

)
mod Λ(1)

c,cn (41)

=
[
x

(1)
2,cn(b) + x(1)

r,cn(b) + ỹ
(1)
1,cn(b) + d

(1)
2,cn

]
mod Λ(1)

c,cn

=
[(
λ

(1)
2,cn(b)− d(1)

2,cn

)
mod Λ(1)

c,cn (42)

−
(
λ

(1)
1,cn(b) + λ

(1)
2,cn(b)

)
mod Λ(1)

c,cn (43)

+ỹ
(1)
1,cn(b) + d

(1)
2,cn

]
mod Λ(1)

c,cn (44)

=
[
−λ(1)

1,cn + ỹ
(1)
1,cn(b)

]
mod Λ(1)

c,cn. (45)

where ỹ(1)
1,cn(b) is the remaining part of the received signal

given in (46) at the top of the next page. In this way, RX1

can decode λ(1)
1,cn(b) successfully if the rate constraint in (47)

is satisfied with w = 1.

R(w)
cn ≤ (47)

C

 P
(w)
cn h2

c
2∑

i=w

P
(i)
cn h2

d + h2
c

(
2

2∑
i=w+1

P
(i)
cn +

2∑
i=1

P
(w)
cnF

)
+ 1

− 1


After decoding λ

(1)
1,cn(b), the signal ỹ(1)

1,cn(b) can be recon-
structed as follows[

[−λ(1)
1,cn(b) + ỹ

(1)
1,cn(b)] mod Λ(1)

c,cn + λ
(1)
1,cn

]
mod Λ(1)

c,cn

=
[
ỹ

(1)
1,cn(b)

]
mod Λ(1)

c,cn = ỹ
(1)
1,cn(b), (48)

where the last equality holds with high probability for some
power allocations P (1)

cn ≥ P (2)
cn [18]. By using ỹ(1)

1,cn(b), RX1

decodes the second CN split with the rate constraint in (47)
where w = 2. Then, RX1 proceeds backwards till block 1.



ỹ
(1)
1,cn(b) =

2∑
w=1

hd
hc
x

(w)
1,cn(b) +

[
x

(2)
2,cn(b) + x(2)

r,cn(b)
]

+

2∑
w=1

√
P

(w)
cnF

P
(w)
cn

x
(w)
2,cn(b+ 1) +

1

hc
z1(b). (46)

C. Overall transmission scheme:

The overall transmission scheme is a combination of CN,
CF, and DF with the appropriate power allocation. Consider
a block of transmission b, where b ∈ {0, . . . , B} for some
B ∈ N.

D. Message splitting:

First, TX1 splits its message m1(b) as follows:
• a decode-forward message m1,df (b) with rate Rdf ,

which is treated as in [19];
• a common message m1,cm(b) with rate Rcm, which is

treated as in a multiple access channel at the destina-
tions;

• W CN messages m(w)
1,cn(b) with rate R(w)

cn , where w =
1, . . .W ;

• L compute-forward messages m(l)
1,cf (b); with rates R(l)

cf ,
where l = 1, . . . , L. These messages are treated as in
[3].

E. Encoding

The DF message m1,df is encoded using a Gaussian ran-
dom code with a power Pdf into x1,df . Similarly, the common
message m1,cm is encoded using a Gaussian random code
with a power Pcm into x1,cm. Each CN message m(w)

1,cn is
encoded into x(w)

1,cn using a nested-lattice code (Λ(w)
f,cn,Λ

(w)
c,cn)

with power P
(w)
cn . Moreover, each CF message m

(l)
1,cf is

encoded into x(l)
1,cf using a nested-lattice code (Λ(l)

f,cf ,Λ
(l)
c,cf )

with power P (l)
cf . TX2 performs the same encoding using the

same nested-lattice codebooks. The signal sent by TX1 in
block b ∈ {1, . . . , B − 1} is given by

x1(b) =

W∑
w=1

x(w)
1,cn(b) +

√
P

(w)
cnF

P
(w)
cn

x
(w)
1,cnF (b+ 1)

 (49)

+ x1,df (b) + x1,cm(b) +

L∑
l=1

x
(l)
1,cf (b), (50)

The power constraint is satisfied if

W∑
w=1

P (w)
cn︸ ︷︷ ︸

Pcn

+

W∑
w=1

P
(w)
cnF︸ ︷︷ ︸

PcnF

+

L∑
l=1

P
(l)
cf︸ ︷︷ ︸

Pcf

+Pdf + Pcm ≤ P. (51)

F. Relay processing

The relay starts by removing the contribution
of the current CN signals as described in
subsection V-B. The relay decodes the messages in
the following order [m1,cm,m2,cm], u

(1)
cf , . . . , u

(L)
cf ,

[m1,df ,m2,df ], u
(1)
cn , . . . , u

(W )
cn , where u

(j)
cf , and u

(j)
cn denote

the modulo-sum of the CF and CN codewords corresponding

to jth split, respectively. The rate constraints for successful
decoding at the relay are given by

Rcm ≤ C
(

h2
sPcm

2h2
s(Pcf + PcnF + Pdf ) + 1

)
(59)

2Rcm ≤ C
(

2h2
sPcm

2h2
s(Pcf + PcnF + Pdf ) + 1

)
, (60)

R
(l)
cf ≤ C

+

(
h2
sP

(l)
cf

2h2
s(
∑L

i=l+1 P
(i)
cf + PcnF + Pdf ) + 1

− 1

2

)
(61)

Rdf ≤ C
(

h2
sPdf

2h2
sPcnF + 1

)
, 2Rdf ≤ C

(
2h2

sPdf

2h2
sPcnF + 1

)
(62)

R(w)
cn ≤ C+

(
h2
sP

(w)
cnF

2h2
s

∑W
i=w+1 P

(w)
cnF + 1

− 1

2

)
. (63)

The relay encodes the DF messages and all modulo-sum of
the CF into length-n codewords xr,df and xr,cf using a Gaus-
sian random codebook with powers Pr,df , Pr,cf and rates
2Rdf , Rr,cf , respectively. Moreover, x(w)

r,cn is constructed as
in (40). Due to the causality, the relay sends the DF, CF, and
CN signals in the next transmission block as follows

xr(b) = xr,cf (b) + xr,df (b)− hc
hr

W∑
w=1

x(w)
r,cn(b), (64)

where b = 1, . . . , B−1. Moreover, the relay needs to satisfy
the following power constraint

Pr,cf + Pr,df +
h2
c

h2
r

W∑
w=1

P (w)
cn︸ ︷︷ ︸

Pr,cn

≤ P. (65)

G. Decoding

First, RX1 starts decoding at the end of the last block B.
It decodes the messages in the following order

[m1,cm,m2,cm]→ mr,df → m
(1)
2,cf → mr,cf → m

(2)
2,cf . . .

→ m
(L)
2,cf → m

(1)
1,cn . . .→ m

(W )
1,cn. (66)

Notice that, if hc > hr, RX1 receives the CF signal from TX2

on a higher power level than xr,cf . Therefore, RX1 needs to
decode the CF message of TX2 i.e. m(1)

2,cf before that of the
relay mr,cf . In the opposite case, if hc < hd, the optimal
decoding order is vice versa. Therefore, the second to Lth
split of CF messages are all decoded after mr,cf . Similar
to CN, we need L − 1 splits for CF messages to perform
the successive decoding. The rate constraints for successive
decoding at the destination are given in (52)-(58).



Rcm ≤ C
(

h2
dPcm

(h2
d + h2

c) [Pcf + Pcn] + h2
cPcnF + h2

r [Pr,cf + Pr,cn + Pr,df ] + 1

)
(52)

2Rcm ≤ C
(

(h2
d + h2

c)Pcm

(h2
d + h2

c) [Pcf + Pcn] + h2
cPcnF + h2

r [Pr,cf + Pr,cn + Pr,df ] + 1

)
(53)

2Rdf ≤ C
(

h2
rPr,df

(h2
d + h2

c) [Pcf + Pcn] + h2
cPcnF + h2

r [Pr,cf + Pr,cn] + 1

)
(54)

R
(1)
cf ≤ C

 h2
cP

(1)
cf

h2
d [Pcf + Pcn] + h2

c

(
PcnF + Pcn +

∑L
l=2 P

(l)
cf

)
+ h2

r [Pr,cf + Pr,cn] + 1

 (55)

Rr,cf ≤ C

 h2
rPr,cf

(h2
d + h2

c)
[∑L

l=2 P
(l)
cf + Pcn

]
+ h2

cPcnF + h2
rPr,cn + 1

 (56)

R
(l)
cf ≤ C

 h2
cP

(l)
cf

(h2
d + h2

c)Pcn + h2
c

(
PcnF +

∑L
i=l+1 P

(i)
cf

)
+ h2

d

∑L
i=l P

(i)
cf + h2

rPr,cn + 1

 (57)

R(w)
cn ≤ C

 h2
rP

(w)
r,cn

h2
d

∑W
i=w P

(w)
cn + h2

c

(
PcnF +

∑W
i=w+1 P

(w)
cn

)
+ h2

c

∑W
i=w+1 P

(w)
cn + 1

− 1

 (58)

VI. DISCUSSION

In this section, we highlight the reason of the decrease
of the GDoF versus interference strength in some cases
(see Fig. 2). To this end, we study the optimal transmission
schemes for different interference strength with 1 < α < β
and with β < γ and β < 2α.

First, consider the case that the capacity of the TX-relay
channel is higher than twice that of the capacity of the
interference channel (α < γ/2). In this case, the transmission
scheme is a combination of the CN and the DF strategies.
From the transmission scheme, we know that the sum of
current CN signals is available at the relay. Therefore, the
relay is able to remove this sum before decoding the DF
codeword. The relay encodes the DF codeword into xr,df
and the sum of the CN codewords into xr,cn. The received
signal at RX1 which is a superposition of the signals from
TX1, TX2, and the relay, is shown in Fig. 4(a). Note that the
illustrations in Fig. 4 can be understood in a similar manner
as in the linear deterministic model. A detailed description of
such signal illustrations can be found in [11]. Since xr,df is
received at the destination on a higher power level than the
interference signal, it is decoded first. By using backward
decoding, the RX reconstructs x2,df from xr,df and cancels
its interference. As it can be seen in Fig. 4(a), the GDoF
assigned to the DF signal cannot exceed β−α. Moreover, it is
shown in Fig. 4(a) that the relay CN signal (xr,cn) is received
on the same power level as the undesired CN signal (x2,cn).
Therefore, x2,cn is neutralized by the superposition with xr,cn
and RX is able to decode its desired CN signal completely.
Since in the CN strategy, we neutralize the interference
signal, the GDoF of the CN signal cannot be higher than
α (See Fig. 4(a)).

As it is shown, the relay uses its resources for neutral-
izing the interference (CN) and sending extra signals (DF).

Roughly speaking, while a strong relay-RX channel (β) is
required for forwarding extra signals, a strong TX-relay
channel (γ) is needed to provide the future signals to the
relay. In this region (α < γ/2), the capacity of the TX-relay
channel is high enough for sending all current and future
signals to the relay, which can then perform as a cognitive
relay. Now, suppose that the strength of the interference
channel increases. Then, the TX’s will use their strong
channel to relay to provide more future signal (by exploiting
the empty power levels under x1,cnF and x2,cnF in Fig. 4(a)).
Therefore, the relay becomes more capable to neutralize the
interference. While the relay will assign more power levels
to neutralize the interference, the remaining power levels for
extra signals (DF) will be reduced. Therefore, the GDoF of
the CN signal increases while that of the DF signal decreases.
Since the CN signal is desired at both users while the DF
signal is desired only at RX2, the overall GDoF increases
versus α. The increase of the GDoF stops, when α = γ/2.
At this point, the capacity of the TX-relay channel is exactly
twice that of the interference channel. This is shown in
Fig. 4(b). Now, let the interference strength increase further.
Obviously, the TX’s will not be able to forward more future
signal to the relay. Therefore, the relay cannot neutralize the
interference completely. In order to avoid reception of the
future signal (x2,cnF ) over the noise level (the 0 level in
Fig. 4(c)) and to align the CN signals of the relay with that
of the undesired transmitter, we decrease the GDoF of the
CN signal. Note that reducing the GDoF of the CN can cause
that the GDoF of the DF signal exceeds the GDoF of the CN
signal. In this case, TX2 needs to assign some power levels
over x2,cn to the DF signal which is not desired at RX1. To
avoid this, we need to decrease the GDoF of the DF signal
as it is shown in Fig. 4(c). By reducing the GDoF of the
CN and DF signals, some empty power levels appear, which



(a) 2α < γ and the achievable GDoF
is β + α.

(b) 2α = γ and GDoF is α +
β = γ + β − α.

(c) 2α > γ and the GDoF is β+γ−
α

Fig. 4: The received signal at RX1 is illustrated for three different cases when β < γ. The interference gets stronger from
the case (a) to (c). While in (a), the transmission scheme uses the interference to enhance the GDoF, in (c), the scheme
cannot derive benefit from the increase of the interference to enhance the GDoF.

are used for adding CF signals (x1,cf , x2,cf , and xr,cf in
Fig. 4(c)). While the increase of the GDoF of the CN signals
compensate the decrease of that of the CF signals, reducing
the GDoF of the DF signal causes a decrease in the overall
GDoF versus α when γ/2 < α < β.

In summery, this analysis shows that the relay uses its
resources to remove the interference by neutralization and
cancellation. Moreover, the remaining resources are utilized
for forwarding extra signals. When the interference gets
stronger, the relay reduces the GDoF of the extra signals
in order to be able to remove the interference completely.
This explains the non-increasing behavior of the GDoF versus
interference strength in this region.

VII. CONCLUSION

We characterized the GDoF of the IRC in the strong
interference regime. To this end, we proposed a new upper
bound for the GDoF of the IRC which is required in
addition to some old upper bounds. Moreover, we suggested
a transmission scheme which achieves the upper bound.
This scheme is a combination of compute-forward, decode-
forward, and cooperative interference neutralization. The
achievability scheme is shown for a toy example based on
the linear-deterministic model. The new relaying strategy
“cooperative interference neutralization” is extended for the
Gaussian channel by using nested lattice codes.
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