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ABSTRACT
Radio resource sharing mechanisms are key to ensuring good per-
formance in wireless networks. In their seminal paper [1], Tassiu-
las and Ephremides introduced the Maximum Weighted Scheduling
algorithm, and proved its throughput-optimality. Since then, there
have been extensive research efforts to devise distributed imple-
mentations of this algorithm. Recently, distributed adaptive CSMA
scheduling schemes [2] have been proposed and shown to be op-
timal, without the need of message passing among transmitters.
However their analysis relies on the assumption that interference
can be accurately modelled by a simple interference graph. In this
paper, we consider the more realistic and challenging SINR inter-
ference model. We present the first distributed scheduling algo-
rithms that (i) are optimal under the SINR interference model, and
(ii) that do not require any message passing. They are based on
a combination of a simple and efficient power allocation strategy
referred to as Power Packing and randomization techniques. We
first devise algorithms that are rate-optimal in the sense that they
perform as well as the best centralized scheduling schemes in sce-
narios where each transmitter is aware of the rate at which it should
send packets to the corresponding receiver. We then extend these
algorithms so that they reach throughput-optimality.

1. INTRODUCTION
The throughput experienced on a given link in wireless networks

is affected by the interference generated by the transmitters of other
links. Interference management constitutes the main issue in the
design of simple and efficient resource allocation (or Multiple Ac-
cess Control) algorithms for such networks. Solving this issue be-
comes even more challenging when links have to share radio re-
sources in a distributed manner. Distributed power control [3, 4] is
often used (e.g. in cellular systems) to tackle this issue. How-
ever, when links strongly interfere each other, power control is
inefficient as the set of rates that can be simultaneously achieved
on the competing links exhibits non-convexities. For such sce-
narios, scheduling transmissions over time is much more efficient
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and results in a much larger rate region. Most existing MAC algo-
rithms for WLANs, Mesh, and AdHoc networks are scheduling al-
gorithms: transmitters only decide when to be active, and when ac-
tive, they use a single power level, often the maximum power level.
In their seminal paper [1], Tassiulas and Ephremides proposed the
queue-length based Maximum Weighted Scheduling (MWS) algo-
rithm, and proved its throughput-optimality (meaning that it can
stabilize the network whenever this is at all possible). However
the MWS algorithm is centralized, and often requires to repeatedly
solve instances of NP-hard optimization problems.

Over the last two decades, there have been important research ef-
forts towards the design of low-complexity and distributed versions
of the MWS algorithm (refer to the related work section for refer-
ences). Recently, in [2, 5–7], simple and throughput-optimal adap-
tive versions of CSMA have been proposed. These algorithms en-
joy the property of being fully distributed, in the sense that they do
not require any kind of message passing among the various trans-
mitters. However their analysis and performance guarantees rely on
the strong assumption that interference can be modelled as a sim-
ple undirected graph (in the interference graph, vertices represent
links, and an edge between two links mean that these links cannot
be simultaneously activated). In particular, this simplistic interfer-
ence model cannot account for the well-known hidden and exposed
terminal problems, and more generally does not accurately capture
the very nature of interference. In this paper, we revisit the design
of efficient and distributed MAC protocols under the more realis-
tic SINR interference model. Specifically, we aim at answering the
following question:

Can we devise fully distributed and optimal scheduling algo-
rithms for wireless networks under the SINR interference model?

By fully distributed, we mean that transmitters are not allowed to
exchange any signalling message, and the only feedback available
at a given transmitter is the level of interference measured at the
corresponding receiver (just as in classical distributed power con-
trol mechanisms [3, 4]). Optimal may have several meanings. To
discuss the different versions of optimality, let us first introduce the
notion of rate region defined as the set of rates that can be simul-
taneously achieved on the various links using some (centralized)
scheduling algorithms. (i) Rate-optimality: in this case, transmit-
ters always have packets to send, i.e., they are fully backlogged. An
algorithm is rate-optimal, if it can achieve any rate vector within the
rate region. (ii) Throughput-optimality: in this case, each transmit-
ter receives, in its (infinite) buffer, packets arriving according to a
stationary ergodic process with fixed average rate. An algorithm is
throughput-optimal if it stabilizes1 all buffers as long as the mean
arrival rate vector belongs to the largest open set contained in the

1The assumptions made on the packet arrival processes and the no-
tion of stability are described in Section 7.

ar
X

iv
:1

30
5.

03
84

v1
  [

cs
.I

T
] 

 2
 M

ay
 2

01
3



rate region.
In this paper, we show that surprisingly, the answer to the above

question is positive, and develop fully distributed and rate-optimal
scheduling algorithms. We also demonstrate how these algorithms
can be used towards the design of throughput-optimal scheduling
schemes. In the proposed framework, we first divide time into
frames consisting of a fixed number of slots. Each transmitter is
then allowed to adapt the power levels used in the various slots of
a frame to achieve the rate it is targeting. Our solution is based
on a simple power control mechanism, referred to as Power Pack-
ing (PP). Under this mechanism, each transmitter aims at achiev-
ing its target rate while minimizing the number of slots actually
used, hence leaving as many radio resources as possible to the other
transmitters. PP algorithms are shown to be rate-optimal when two
links compete for the use of resources. However, in more general
networks and in some rare scenarios, they may fail at achieving
certain rate vectors that could have been realized using centralized
scheduling. By just adding to the algorithms some level of random-
ization in the power allocation, we overcome this issue and recover
rate-optimality. All the proposed algorithms are simple and do not
require any message passing: each transmitter adapts its power lev-
els in the various slots depending on the observed interference lev-
els. To our knowledge, the proposed algorithms constitute the first
scheduling schemes that are fully distributed (no message passing)
and optimal under the SINR interference model.

The paper is organized as follows:
(i) In Section 2, we present a brief overview of the existing liter-
ature on distributed resource allocation algorithms in wireless net-
works.
(ii) In Sections 3 and 4, we present our generic framework, Power
Packing algorithms and explain their rationale.
(iii) We establish the rate-optimality of Iterative Power Packing al-
gorithms for 2-link networks in Section 5.
(iv) For more general networks, we explain, in Section 6, why It-
erative Power Packing algorithms may in some rare cases fail. To
solve this issue, we introduce some Perturbed versions of Iterative
PP algorithms and show their rate-optimality.
(v) In Section 7, we show how our rate-optimal algorithms can be
adapted to achieve throughput-optimality.
vi) Finally, in Section 8, we illustrate the efficiency of our algo-
rithms using numerical experiments.

2. RELATED WORK
There have been, over the last two decades, a tremendous re-

search effort towards the design of distributed resource sharing mech-
anisms in wireless networks under various interference models (see
e.g. surveys [8, 9]). For the simplistic interference graph model,
researchers have developed scheduling algorithms that implement
the celebrated throughput-optimal MWS algorithm [1] in a dis-
tributed manner. Some of these algorithms use message passing,
see e.g. [10], some others do not require message passing, e.g. as
the adaptive versions of CSMA, see e.g. [2, 5–7].

In this paper, we are interested in the more realistic SINR in-
terference model. This model has also attracted a lot of attention
recently, see e.g. [11–14]. For example in [12], the authors derive
utility-optimal power control schemes, but the achieved rate region
is restricted to that achieved by power control only. In [13, 14],
the authors design schemes also enabling time sharing, and hence
scheduling. These schemes implement the MWS algorithm, but re-
quire message passing (basically, a transmitter need to know its im-
pact on the throughputs on other links). In a series of papers [15–
17], Bambos et al. design power control algorithms that ressem-
ble Foschini-Miljanic algorithm [3, 4] in the sense that the power

update at a transmitter only depends on the measured interference
level, and on some local queue size. These schemes are fully dis-
tributed, and seem to realize time sharing when needed. However,
their optimality has not been established, and there may be network
examples where these schemes are not optimal.

3. MODELS AND PRELIMINARIES

3.1 Network model
We consider a network consisting ofN interfering links (transmitter-

receiver pairs). We are primarily interested in the design of rate-
optimal algorithms, and so each link i has a target rate requirement
Rti (corresponding to the QoS requirements of the underlying ap-
plication). To achieve this target rate, link-i transmitter may adapt
its transmission power pi. The transmission power at any trans-
mitter cannot exceed Pmax. Links interfere, and we assume here
that each receiver treats interference as noise. Let gji denote the
channel gain from link-j transmitter to link-i receiver. Thermal
noise is Gaussian, with power N0. Under these assumptions, the
maximum rate that link i can achieve can be written as: ri(p) =

f
(

giipi
N0+

∑
j 6=i gjipj

)
, where f(·) is an increasing positive concave

function, typically f(x) = W log(1 + x), and p = (p1, . . . , pN ).

Notation. Let U be a subset of RN+ . We denote by conv(U) the
convex hull of U , and by ∂U the Pareto-boundary of U : x ∈ ∂U
iff x ∈ U and ∀y ∈ U , y ≥ x coordinate-wise implies that x = y.
We further define Ū = {r ∈ RN+ : ∃R ∈ U ,∀i, ri ≤ Ri} as the
smallest coordinate-convex set containing U . 1 = (1, . . . , 1).

3.2 Power control vs. Scheduling
We define Rpc

1 = {r(p) : ∀i, pi ∈ [0, Pmax]} as the set of
vectors representing rates that can be achieved on the various links
using power control. This set is known to be non-convex, and may
exhibit different types of shapes, depending on the values of gains
(gij , i, j), i.e., on the network geometry. Let S1 = {r(p) : ∀i, pi ∈
{0, Pmax}} be the set of vectors representing link rates achieved
using binary power control, i.e., for any i, link-i transmitter either
remains silent or transmits at maximum power Pmax. S1 is referred
to as the set of schedules. The set Rsched of link rates that can be
achieved by switching schedules over time is the convex hull of S1:
Rsched = conv(S1). Now we may allow transmitters to use both
power control and time sharing. In this case, the set of achievable
rate vectors is R = conv(Rpc

1 ). In general, both power control
and time sharing are required, in the sense that we may have for
the same network: Rpc

1 ( R andRsched ( R. We illustrate these
observations in Figure 1, where we depict the Pareto-boundaries
∂Rpc

1 and ∂Rsched of the set Rpc
1 and Rsched, respectively, for

different interference scenarios. When links strongly interfere each
other, time sharing (scheduling) is enough, whereas when interfer-
ence becomes weaker, power control may be necessary. In this
paper, our goal is to design fully distributed algorithms enabling
the various links to reach their target rates Rt = (Rt1, . . . , R

t
N ),

provided that Rt ∈ Rsched.

3.3 Multi-slot systems
To share radio resources among links, we divide time into frames.

Each frames consists of a fixed numberM of time slots of equal du-
rations. If each transmitter is allowed to use different power levels
on the various slots, the rates R(p) achieved on the various links
can be written as:

Ri(p) =
1

M

M∑
m=1

f(
giipim

N0 +
∑
j 6=i gjipjm

), ∀i,



∂Rsched

1 1
1

2
2

r2

r1
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1

2

Figure 1: Rate regions under power control and scheduling:
strong (left) and weak (middle and right) interference cases.

where p = (pim, i = 1, . . . , N,m = 1, . . . ,M) and pim is the
power level used by link-i transmitter on the m-th slot in each
frame. The set of achievable rates using such multi-slot power con-
trol is then: Rpc

M = {R(p) : ∀i,∀m, pim ∈ [0, Pmax]}. Rpc
M can

also be expressed as combinations of rate vectors in Rpc
1 : Rpc

M =

{r : ∃sm ∈ Rpc
1 ,m = 1, . . . ,M : r = 1

M

∑M
m=1 sm}. Observe

that we do not impose any constraint on the total power used by a
transmitter per frame.

Now consider scenarios where transmitters are allowed, in a given
slot, either to use maximum power Pmax or to remain silent. As
earlier, we may define a set SM of schedules:

SM = {R(p) : ∀i, ∀m, pi,m ∈ {0, Pmax}}.

Sharing time among the various schedules in SM increases the set
of achievable rates, i.e., S1 ⊂ SM . Observe that the set of achiev-
able rates on the various links using a single schedule in SM is S̄M
is the smallest coordinate convex set containing SM . The various
notions of rate regions and their Pareto-boundaries are illustrated
in Figure 2.

Note that designing distributed radio resource allocation schemes
achieving any Rt ∈ Rsched is difficult for this requires to identify
the various proportions of time schedules in SM are used. Design-
ing schemes achieving any Rt ∈ S̄M may seem easier because in
this case we only need to identify a single schedule in SM satisfy-
ing the rate requirements.

As stated in the following lemma, when the number of slots per
frame is large, we can achieve the largest rate region R by just
implementing power control per slot, and Rsched by choosing a
fixed schedule from SM . All proofs are presented in appendix.

LEMMA 3.1. limM→∞Rpc
M = R, limM→∞ S̄M = Rsched.

Here limM→∞AM = B means that for every point R ∈ B,
there exists a sequence of points (XM ,M ≥ 1) such that XM ∈
AM for all M , and limM→∞XM = R.

In practice, we observe that the introduction of frames, even of
small sizes, considerably increases the rate region: in other words,
the sequence of sets S̄M , M = 1, 2, ... rapidly approachesRsched.
Based on this observation and on previous lemma, we use the fol-
lowing strategy to design distributed resource allocation schemes
approximately achieving rates in Rsched: (i) We select a frame
size M so that S̄M provides a good approximation of Rsched, e.g.
M = 16; (ii) we devise distributed resource allocation schemes
achieving any rate vector in S̄M .

4. POWER PACKING

Figure 2: Rate regions under power control (top-right, top-left)
and scheduling (bottom-right, bottom-left) in multi-slot sys-
tems. For scheduling, the black dots correspond to the Pareto-
boundary of S4. The network for figures on the left (resp. right)
corresponds to gains gij = 1, ∀i, j (resp. g11 = 2000, g12 = 0.4,
g22 = 0.6, g21 = 0.4), N0 = 0.1, Pmax = 1.

In this section, we present power packing algorithms for the
multi-slot systems introduced in the previous section. When exe-
cuting such algorithm, a transmitter aims at minimizing the number
of slots actually used (a slot is used on a link, if the corresponding
transmitter selects a strictly positive power level in this slot) while
achieving the target rate. To run power packing algorithms, trans-
mitters just need to measure the interference generated by other
transmitters in the slots composing a frame.

4.1 Algorithms
Let Iim(p) denote the interference perceived at link-i receiver

during the m-th slot of the frame, given the power allocation p =
(pjm)j,m: Iim(p) = N0 +

∑
j 6=i gjipjm. We also introduce hi :

[0, Pmax]M ×RM+ → R+ that gives the rate on link i as a function
of link-i transmitter power levels, and perceived interference levels
in the various slots: hi(pi, Ii) = 1

M

∑M
m=1 f

(
pimgii
Iim

)
.

4.1.1 Power Packing (PP) algorithm
Power packing algorithm is executed by a transmitter in response

to the observed interference levels in the various slots of a frame.
The principle of power packing is to sequentially fill with power
slots in increasing order of perceived interference and until the tar-
get rate is reached. If the latter cannot be reached, the transmitter
just remains silent in all slots. The algorithm, whose pseudo-code
is presented below, is illustrated in Figure 3.

PP algorithm. (Executed at link-i transmitter)

Input: target rate Rti , interference levels Ii = (Iim)m.

1. Compute the rate R̄i = hi(Pmax1, Ii) achieved using maxi-
mum power in each slot,

2. If R̄i < Rti : select power allocation pi = (0, . . . , 0);



Figure 3: Example of power allocation obtained after power
packing algorithm - frame size M = 4.

3. If R̄i ≥ Rti : order slots in increasing interference levels:
let σ be a permutation of {1, . . . ,M} such that Iiσ(1) ≤
. . . , Iiσ(M). Define

m̃ = min{m :
1

M

m∑
k=1

f(
Pmaxgii
Iiσ(k)

) ≥ Rti}.

Select the unique power allocation pi such that: ∀m < m̃,
piσ(m) = Pmax, ∀m > m̃, piσ(m) = 0, andRti = hi(pi, Ii).

4.1.2 Binary Power Packing (BPP) algorithm
The PP algorithm has a binary version, where the transmitter is

allowed in a given slot to either use full power Pmax or remain
silent. BPP algorithm is identical to PP algorithm, except for step
3 where the power allocation differs: If R̄i ≥ Rti , the transmitter
uses the power allocation piσ(m) = Pmax1{m≤m̃}.

4.2 Game theoretical interpretation
We now provide a game theoretical perspective on PP and BPP

algorithms. Consider a noncooperative game played by theN trans-
mitters. Each transmitter competes rationally against the others by
selecting a power allocation across the M available slots. The set
of strategies available to any transmitter consists of all possible
power allocation across slots. In the case where transmitters can
use any power level between 0 and Pmax, the set of strategies is
P = {pi : ∀m, pim ∈ [0, Pmax]}, whereas in case of binary power
control, this set reduces to PB = {pi : ∀m, pim ∈ {0, Pmax}}.
The utility function Ui(p) of transmitter i is defined as follows:
Ui(p) = C× 1{Ri(p)≥Rt

i}
−
∑M
m=1

pimgii
Iim(p)

, where C is a positive

constant such that C >
∑M
m=1 Pmaxgii/N0, for any link i. We

denote by G(Rt) (resp. GB(Rt)) the game defined above when the
set of strategies is P (resp. PB). It can be easily shown that with
our choice of utility functions, the PP and the BPP algorithms exe-
cuted by link-i transmitter can be interpreted as the best response to
the power allocations p−i = (pjm)j 6=i,m used by the other trans-
mitters. In other words, assume that the power allocation pj used
by link-j transmitter is fixed for all j 6= i. These allocations re-
sult in interference levels (Iim)m at link-i receiver. For example,
the power allocation obtained when link-i transmitter executes PP
algorithm under these conditions solves the following optimization
problem: maximize Ui(qi, p−i), over qi ∈ P .

5. TWO LINK CASE: ITERATIVE POWER
PACKING

In this section, we restrict our attention to two-link networks. We
propose and analyze the convergence of Iterative Power Packing
(IPP) algorithms. The latter consist in letting transmitters sequen-
tially update their power allocation using PP or BPP algorithms.

5.1 IPP and IBPP algorithms
To define IPP and IBPP algorithms, we first introduce a sequence

s = (s[t])t≥1, s[t] ∈ {1, 2}, defining the order in which transmit-
ters update their power allocation. We assume that the sequence
satisfies the following property, stating that each transmitter gets to
update its power allocation an infinite number of times:

(P1) ∀t ≥ 1, ∃t1, t2 ≥ t: s[t1] = 1 and s[t2] = 2.

This property is referred to as liveness property in game theory. A
sequence of updates satisfying this property is in principle easy to
generate in a distributed manner, for example using independent
Poisson clocks with identical rate at the various transmitters. Refer
to §6.1 for more details. We are now ready to define IPP algorithm:

IPP algorithm.

Input: target rate vector Rt, update sequence s, initial power allo-
cation p[0].

For each step t ≥ 1: Let i = s[t].

1. Link-i transmitter measures interference levels Ii(p[t−1]) =
(Iim(p[t− 1])m in the different slots;

2. Link-i transmitter runs PP algorithms with inputs Rti and
Ii(p[t− 1]).

IPP algorithm has a binary version, IBPP algorithm, obtained
by just replacing PP algorithm by the BPP algorithm in the above
pseudo-code. IPP and IBPP algorithms correspond to the best re-
sponse dynamics or Nash dynamics of the games G(Rt) and GB(Rt),
respectively. They can easily be implemented in a fully distributed
manner: when a transmitter updates its power allocation, it only
needs to measure interference levels on the various slots and to
know its own target rate.

5.2 Convergence
To study the convergence of IPP and IBPP algorithms, we in-

troduce the notion of repulsive power allocation. We say that p =
(p1, p2) ∈ [0, Pmax]2M is repulsive if and only if there exist a per-
mutation σ of {1, . . . ,M} and two integersm1,m2 ∈ {0, 1, . . . ,M+
1} such that for allm ∈ {1, . . . ,M} (i)m ≤ m1 implies p1σ(m) =
Pmax, and m > m1 + 1 implies p1σ(m) = 0, (ii) m ≥ m2 implies
p2σ(m) = Pmax and m < m2 − 1 implies p2σ(m) = 0.

The set of rate vectors that can be achieved using repulsive power
allocation is then defined as:

RIPP
M = {R ∈ R2

+ : ∃p repulsive: R = R(p)}

In the case the power allocation is binary, we similarly define:

RIBPP
M = {R ∈ R2

+ : ∃p ∈ {0, Pmax}2M repulsive: R ≤ R(p)}

In what follows, we show that RIPP
M (resp. RIBPP

M ) is the rate
region achieved under IPP (resp. IBPP) algorithm.

THEOREM 5.1. Let Rt ∈ RIPP
M (resp. ∈ RIBPP

M ). Then from
any initial power allocation, IPP (resp. IBPP) algorithm con-
verges to a repulsive power allocation p ∈ [0, Pmax]2M (resp.
p ∈ {0, Pmax}2M ) such that Rt = R(p) (resp. Rt ≤ R(p)).

From a game theoretical perspective, this result states that if
Rt ∈ RIPP

M , then the Nash dynamics converge to a pure Nash Equi-
librium corresponding to a repulsive power allocation and achiev-
ing the target rates Rt. Figure 4 illustrates the rate regionsRIPP

M .



Figure 4: Rate regions obtained through IPP algorithm.

We do not represent RIBPP
M , because in fact, RIBPP

M = S̄M .
This can be shown by applying the following argument: Let p be
a binary power allocation; modify this allocation such that (i) the
number of slots used by each transmitter is not changed, and (ii)
the new allocation is repulsive. It is easy to see that the new al-
location provides greater rates to all transmitters. notice however
that RIPP

M is smaller than Rpc
M : this is true when the initial rate

region Rpc
1 has concave parts – see Fig. 4 (right). In this case,

some points of the Pareto-boundary of Rpc
M can only be achieved

by non-repulsive power allocations of the type p = (x1, Pmax1),
where x ∈ [0, Pmax].

To conclude this section, one can show (as in Lemma 1) that
RIPP
M andRIBPP

M approximateRsched (when M is large).

LEMMA 5.2. limM→∞RIPP
M = Rsched, limM→∞RIBPP

M =
R̄sched.

As a consequence, any target rate vector Rt inside Rsched can
be achieved either using IPP or IBPP algorithm, provided that the
frame size is large enough. In other words, IPP or IBPP algo-
rithms are approximately rate-optimal in 2-link networks (we will
give a more precise definition of what we mean by "approximately
rate=optimal" in the next section).

6. MULTIPLE LINK CASE: ITERATIVE PER-
TURBED POWER PACKING

In this section, we consider general networks with more than two
links. We first explain why IPP or Binary-IPP may fail at converg-
ing for some specific target rates in Rsched. We then present two
binary power control algorithms to overcome this issue.

An example of networks and target rates where IPP does not
work is as follows. Consider a network consisting of 3 links shar-
ing the same receiver (Access Point scenario), and let M = 3
slots. The two first transmitters are close to the receiver, whereas
the third one is further away. Assume that the target rates can be
achieved by the unique following power allocation: p1 = p2 =
(Pmax, Pmax, 0) and p3 = (0, 0, Pmax). This happens for exam-
ple if Rt3 = 1

3
f(Pmaxg33

N0
), and Rt3 > f( Pmaxg33

N0+Pmaxgi3
), i = 1, 2

(in words, the third link cannot accomodate any kind of interfer-
ence). Now the problem stems from the fact that if transmitters 1
and 2 select their allocation using PP first, then they would pick
p1 = (Pmax, Pmax, 0), p2 = (0, 0, Pmax). The third transmitter
on the other hand needs to be alone in a slot to be satisfied (i.e., to
achieve its target rate), but it cannot, and hence remains silent. The
issue with IPP is actually common to all distributed power control
protocols. A transmitter that causes low interference to others, but
that is strongly interfered by others, has difficulties indicating its
state to others through power control. Similarly, a link that cannot

suffer much from interference has difficulties in gauging the impact
of its power allocation on other links.

The proposed solution to this problem marries Power Packing
principle and randomization. PP is used to (quickly) reach a fea-
sible power allocation, when PP can indeed go there. We believe
that in most cases PP actually finds a feasible allocation. Random-
ization only helps IPP algorithm when the latter cannot converge to
the desired allocation. Thus, the proposed schemes can be thought
of as the perturbed version of IPP algorithm.

6.1 Iterative Perturbed Binary PP algorithm
The key idea of the algorithm is to force transmitters that are

satisfied but whose power allocation is not compatible with any
globally feasible allocation to explore other power allocations. This
exploration is here triggered when unsatisfied transmitters create
enough interference so that the target rate of satisfied links cannot
be achieved anymore. The algorithm works as follows. First we
generate a sequence of transmitters selected to update their power
allocation over the frame. Then the power updates satisfy rules that
we describe below.

Update sequences. As for IPP and IBPP algorithms, transmitters
update their power allocation sequentially. The sequence of updates
is driven by s = (s[t])t≥0, assumed here to satisfy the following
property:

(P2) (s[t])t≥0 is a stationary ergodic Markov chain with state space
{1, . . . , N}, such that P[s[t] = i] > 0 for all transmitter i.

A sequence satisfying (P2) may be generated when updates are trig-
gered by independent Poisson clocks of identical rates, say ν, at the
various transmitters. To be more specific, when the clock of a trans-
mitter ticks, the latter starts a power update at the next frame. When
the common clock rate is relatively low (compared to the inverse of
the frame duration), it is very unlikely that updates at two trans-
mitters overlap (the convergence of our algorithms holds even in
case of unfrequent update overlapping – in fact convergence takes
a finite number of updates, and so we just need that such sequence
of updates occurs with positive probability). Under the above sce-
nario, observe that for each new update, the selected transmitter
is selected uniformly at random, so that (P2) is satisfied. Note also
that the time between updates occur at instants of a Poisson process
of mean rate Nν.

Updating rules. When an unsatisfied transmitter is picked for a
possible update, it picks a power allocation as per the Binary-PP
algorithm with probability (w.p.) (1 − α1), and picks a random
allocation w.p. α1. A random power allocation can be obtained by
using power Pmax on each slot w.p. 1/2 independently of the power
levels used in other slots. When a satisfied transmitter i is selected,
it checks whether its target rate has been achieved because of its
own power allocation decision in the past (βi = 1) or because of
changes in the power allocation by other transmitters (βi = 0). It
can for example happen that an other transmitter decided to remain
silent (applying Binary-PP algorithm), which made i satisfied. In
this case, the power allocation used by i might not be compatible
with any globally feasible allocation, and transmitter i should ex-
plore other allocations. Thus in the algorithm, when βi = 0, i does
not update its power allocation w.p. (1−α2), and chooses a random
power allocation w.p. α2. Parameters α1 and α2 characterize the
level of randomization in the algorithm. In what follows, we always
assume that 0 < α1, α2 < 1. When they are small, the algorithm is
close to the initial IBPP algorithm, and converges very fast to a fea-
sible allocation if IBPP can find one, but the algorithm would then
take more time to identify a feasible allocation that IBPP cannot
reach. The pseudo-code of the algorithm is presented below.



Iterative Perturbed Binary-PP (IPB-PP) algorithm.

Input: target rate vector Rt, update sequence s, power allocation
p[0], β[0] ∈ {0, 1}K .

For each step t ≥ 1: Let i = s[t].

1. Tx imeasures interference levels Ii(p[t−1]) in the different
slots.

2. Tx i updates its power allocation to pi[t]:

(i) IfRi(p[t−1]) < Rti), then pi[t] is obtained as per BPP
algorithm with inputs Rti and Ii(p[t− 1]) w.p. 1− α1

and is a random power allocation w.p. α1;

(ii) Else If (βi[t− 1] = 0), pi[t] = pi[t− 1] w.p. (1−α2)
and pi[t] is random w.p. α2;

Else pi[t] = pi[t− 1].

4. Tx i sets βi[t] = 1 ifRi(pi[t], p−i[t−1]) ≥ Rti , and βi[t] =
0 otherwise.

We prove the convergence of IPB-PP under the following as-
sumption. Let U(p) denote the set of unsatisfied links under binary
power allocation p.

(A1) For any power allocation p such that U(p) 6= ∅ and U(p) 6=
{1, . . . , N}, either there exists i ∈ U(p) such that for
R(Pmax, p−i) ≥ Rti , or for p′ such that p′i = Pmax1 for all
i ∈ U(p) and p′i = pi for i /∈ U(p), U(p) ( U(p′).

The assumption states that for any given power allocation p, ei-
ther there exists a unilateral change in the power allocation of an
unsatisfied transmitter that makes it satisfied, or when unsatisfied
transmitters all select Pmax1, at least one other link becomes un-
satisfied.

THEOREM 6.1. If there exists a binary power allocation p? such
that R(p?) ≥ Rt, if (A1) holds, then from any initial condition,
IPB-PP algorithm converges almost surely to a power allocation p
such that R(p) ≥ Rt.

The previous theorem does not lead to the rate-optimality of IPB-
PP algorithm. Although the algorithm performs well in practice,
there are still some target rate vectors that it cannot reach. This
is typically the case where one link has very low target rate, in
which case, assumption (A1) may not be satisfied (the correspond-
ing transmitter can be hardly affected by interference). Next we
propose a rate-optimal algorithm whose principles are similar to
those of IPB-PP algorithm.

6.2 Interference-Triggered algorithm
The next algorithm follows the same design principles as IPB-

PP algorithm. However, the way satisfied transmitters are forced to
explore other power allocations is different: they explore new allo-
cations if they perceive significant changes in interference. More
precisely, exploration is triggered when the change in the sum of
the interference measured in the various slots exceeds a threshold
δ. The pseudo-code of this new algorithm is presented below.

Interference-Triggered IPB-PP (IT-IPB-PP) algorithm.

Input: target rate vector Rt, update sequence s, power allocation
p[0], previous interference levels I last[0] ∈ RK+ .

For each step t ≥ 1: Let i = s[t].

1. Tx imeasures interference levels Ii(p[t−1]) in the different
slots.

2. Tx i updates its power allocation to pi[t]:

(i) IfRi(p[t−1]) < Rti), then pi[t] is obtained as per BPP
algorithm with inputs Rti and Ii(p[t− 1]) w.p. 1− α1

and is a random power allocation w.p. α1;

(ii) Else If |
∑M
m=1 Iim(p[t−1])−I lasti [t−1]| > δ, pi[t] =

pi[t− 1] w.p. (1− α2) and pi[t] is random w.p. α2;
Else pi[t] = pi[t− 1].

4. Tx i sets I lasti [t] =
∑M
m=1 Iim(p[t− 1]).

We prove the convergence of the algorithm under the following
assumption on δ.

(A2) For every set U 6= ∅ or {1, . . . , N}, there exists a set U ′ 6=
∅ satisfying (1) U ∩ U ′ = ∅ and (2) for every j ∈ U ′,
MPmax

∑
i∈U gij > δ.

Assumption (A2) states that any set U of transmitters can be
"heard" by at least one link in Uc = {1, . . . , N} \ U . Note that as
long as gij > 0 for every i, j, for any δ > 0, one can find a frame
size M (large enough) such that (A2) is satisfied. In this sense, the
assumption is not restrictive: one may choose δ depending on the
sensitivity of receivers, and then tune M so that (A2) holds.

THEOREM 6.2. If there exists a binary power allocation p? such
that R(p?) ≥ Rt, and if with our choices of δ and M , (A2) holds,
then from any initial condition, IT-PIB-PP algorithm converges al-
most surely to a power allocation p such that R(p) ≥ Rt.

The above theorem states that if Rt ∈ S̄M and if (A2) holds,
then IT-IPB-PP algorithm converges to a feasible power allocation.
Now combining, this result with that of Lemma 3.1, we deduce that
IT-PIB-PP is approximately rate-optimal. To be more precise, for
ε ∈ (0, 1), we say here that an algorithm is ε-rate-optimal if it can
achieve any rate vector Rt such that Rt + ε1 ∈ Rsched.

COROLLARY 6.3. For any ε > 0, and any threshold δ > 0,
there exsists a frame size M(ε, δ) such that if M ≥ M(ε, δ), IT-
IPB-PP algorithm is ε-rate-optimal.

7. THROUGHPUT-OPTIMALITY
In the previous section, we developed an approximately rate-

optimal and fully distributed scheduling scheme. We now turn our
attention to scenarios where each transmitter is equipped with an
infinite buffer where it stores packets before sending them, and we
address the design of throughput-optimal and distributed schedul-
ing algorithms. We first describe our assumptions on the arrival
processes, and on the notion of system stability.

Arrival processes. We assume that packets arrive in transmitter-
i’s buffer according to an i.i.d. process. Let Ai[t] denote the
number of bits arriving in transmitter-i’s buffer during frame t.
(Ai[t])t≥0 forms an sequence of i.i.d. random variables such that
Ai[t] ≤ A <∞ for all i and t. The mean arrival rate (per frame) at
transmitter i is denoted by λi = E[Ai[t]]. Let λ = (λ1, . . . , λN ).
Finally, we assume that arrival processes are independent across
transmitters.

Stability. Let Qi[t] denote the number of bits in transmitter-i’s
buffer at the beginning of frame t. It evolves as: Qi[t + 1] =
max(0, Qi[t] + Ai[t] − Si[t]), where Si[t] is the number of bits
sent during frame t. Let B denote the time required to empty all



queues, i.e., B = inf{u : u ≥ 0, Qi[u] = 0,∀i}. We say that
the system is stable if E[B|Q[0]] < ∞ for all initial queue vector
Q[0] = (Q1[0], . . . , QN [0]) such thatQi[0] <∞, for all i. We say
that an algorithm is ε-throughput optimal if it stabilizes the system
whenever λ+ ε1 ∈ Rsched.

We use IT-IPB-PP algorithm to design approximately throughput-
optimal and fully distributed scheduling schemes.

7.1 Known arrival rates
If each transmitter i is aware of its arrival rate λi, this design is

straightforward: each transmitter i selects a target rate Rti slightly
bigger than λi, and we then run the IT-IPB-PP algorithm with these
target rates, even when its queue is empty (using dummy packets).
Under this strategy, after convergence of the IT-IPB-PP algorithm
(which occurs after a finite time with finite mean), queues behaves
independently and each of them has an arrival rates strictly less than
its fixed service rate, which ensures stability. Next we make these
statements precise.

LEMMA 7.1. Let M be a frame size such that IT-IPB-PP is
(ε/2)-rate-optimal. Assume that λ − ε1 ∈ Rsched. Then under
IT-IPB-PP algorithm with target rate vector Rt = λ+ (ε/2)1, the
system is stable.

The above lemma simply states that IT-IPB-PP algorithm pro-
vides an ε-throughput-optimal algorithm, if each transmitter knows
its arrival rate. ε can be made as small as desired by increasing the
frame size M .

7.2 Unknown arrival rates
When the arrival rate λi is not known, transmitter i estimates it.

When its estimate is precise enough, it selects a target rate appropri-
ately (again slightly bigger than its estimated arrival rate) and then
runs the IT-IPB-PP algorithm with this target rate. More precisely,
for any i, let λi[t] = 1

t

∑t
s=1Ai[s] and let µ = ε/8. Further de-

fine the interval ek = [2(k − 1)µ, 2kµ). The target rate vector is
continuously updated as follows: for any i,

if λi[t] ∈ ek, then Rti[t] = (4k + 1)µ/2.

When λi lies in the interior for some ek, since λi[u] → λi a.s.
as u → ∞, after a finite time Ti, Rti[t] does not change any-
more. In appendix we briefly explain how the case λi = 2kµ
can be handled. The following lemma then relies on the facts that
Rti[Ti] ∈ (λi, λi + ε/2) and E[Ti] <∞ (proved in appendix):

LEMMA 7.2. Let M be a frame size such that IT-IPB-PP is
(ε/2)-rate-optimal. Assume that λ−ε1 ∈ Rsched, and that IT-IPB-
PP algorithm is executed jointly with the above target rate update
algorithm. Then the system is stable.

According to the above lemma, the proposed joint target rate up-
date and scheduling algorithm is ε-throughput-optimal. It is worth
remarking that this algorithm proceeds in three phases: in the first
phase, each transmitter aims at identifying a target rate that is just
strictly greater than the arrival rate of bits in its buffer; in the sec-
ond phase, IT-IPB-PP algorithm finds a power allocation compat-
ible with the target rate vector; and finally, transmitters apply this
power allocation, and queues empty. Also note that our algorithm
is not designed so as to adapt to changing traffic conditions (i.e.,
changes in the arrival rates). A way to devise adaptive algorithms
would be to let each transmitter continuousloy updates its target
rate, depending on its observed queue length. To study such queue
length based algorithm, one would need to understand the interac-
tion between dynamics of the queues and of our IT-IPB-PP algo-
rithm, which would require a significantly more involved analysis.

8. NUMERICAL EXPERIMENTS
In this section, we present simulation results to illustrate the

rate-optimality of IPB-PP and IT-IPB-PP algorithms. For all ex-
periments, the sensitivity parameter δ in IT-IPB-PP algorithm is
fixed. We first experiment with a 3-link network. The network
geometry is such that transmitters 1 and 2 strongly interfere link
3, whereas transmitter 3 does not produce much interference, i.e.,
g13 = g23 = 60, g31 = g32 < 1, and the other gains are equal to 1.
The target rate vector is chosen so that it cannot be reached by sim-
ple iterative Power Packing. It corresponds to a power allocation
close to p1 = p2 = (Pmax, Pmax, 0), p3 = (0, 0, Pmax). Fig. 5
shows the convergence time (in number of updates) of IPB-PP and
IT-IPB-PP algorithms as a function of the exploration rate α1 (we
choose α2 = α1). The convergence time is averaged over 10,000
simulations starting from random power allocations. The conver-
gence time rapidly grows either when the exploration rate is close
to 0, or when it becomes too large. In the former, the algorithms
behave like Binary-IPP, and cannot find a feasible allocation. In
the latter, the algorithms get closer to a random search algorithm,
and the convergence time explodes. Hence, in IPB-PP and IT-IPB-
PP algorithms, it is clear that both Power Packing and randomiza-
tion components are crucial: PP accelerates the convergence and
randomization helps where PP fails at identifying a feasible allo-
cation. It is worth noting that when the target rate vector can be
achieved through simple Power Packing (without randomization),
the convergence of the algorithm is very fast.
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Next we consider randomly generated networks by placing 10
links on a 2D square (gains are computed using a path loss expo-
nent equal to 3). For each generated network topology, we further
generate 104 target rate vectors in SM . For each vector we analyze
the convergence time if the latter remains less than 104 updates.
We use two metrics for comparison: (1) the average (over topolo-
gies and rate vectors) number of updates required for convergence,
given that it remains less than 104, and (2) the proportion of rate
vectors for which the algorithm does not converge in less 104 up-
dates.

We first investigate the performance of our algorithms when the
frame size M varies. Here we fix α1 = α2 = 0.1. Figure 6(a)
shows that asM increases, the proportion of rate vectors not reached
by the algorithms rapidly decreases. For IT-IPB-PP, all vectors are
achieved when M = 16, illustrating the rate-optimality of the al-
gorithm. Note that this is not the case of IPB-PP, as we predicted.
Figure 6(b) shows how the convergence time varies with M . IT-
IPB-PP seems to conevrge faster, and for both algorithms the con-
vergence speed is increased when M grows large.

We now challenge our algorithms, and evaluate their performance
when the frame size is not sufficient to guarantee the rate-optimality
of IT-IPB-PP: we fix M = 8, and vary the exploration rate α1. In
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Figure 7: Performance of IPB-PP and IT-IPB-PP - M = 8

Figure 7(a), we observe that in this case, the convergence time in-
creases when α1 decreases, which again ilustrates the importance
of the Power Packing component in the algorithms. In Figure 7(b),
the proportion of rate vectors not reached by the algorithms within
104 updates seem to increase as α1 increases, which indicates the
negative effect of an aggressive random exploration.

9. CONCLUSION
This paper presents the first distributed scheduling algorithms

that are optimal under the realistic SINR interference model, and
do not require message passing among transmitters. The fact that
algorithms combining such properties exist in surprising. Our solu-
tion is based on combining a simple power allocation strategy, and
randomization techniques. Without randomization, the power allo-
cation scheme could not, alone, achieve all parts of the throughput
region (although numerical experiments show that it reaches a vast
majority of it), and hence randomization is needed. We actually
believe that randomization is always needed, i.e., no deterministic
resource allocation scheme can be optimal. It would be interesting
to formally establish this result. We are also interested in studying
the convergence time of our iterative power allocation scheme, and
its impact on actual queueing delays.
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APPENDIX
Proof of Lemma 3.1
We prove limM→∞Rpc

M = R. limM→∞ S̄M = Rsched can be
proved analogously. Let R ∈ R. Since R = conv(Rpc

1 ) ⊂ RN ,
by Caratheodory’s theorem, there exist a finite set
{r1, . . . , rN+1} of (N+1) points inRpc

1 and positive real number
λ1, . . . , λN+1 such that: R =

∑N+1
j=1 λjrj , and∑N+1

j=1 λj = 1.



For any j = 1, . . . , N + 1, let pj ∈ [0, Pmax]N denote the
vector representing power levels used by the various transmitters
to achieve rate vector rj . Now for M ≥ 1, we propose the fol-
lowing power allocation across the M slots of a frame: for all
j = 1, . . . , N + 1, power levels pj are used for bMλjc slots
(where bxc is the largest integer smaller than or equal to x). The
power allocation is arbitrary for the remaining slots. Using this
power allocation, the achieved rate vector UM satisfies the follow-
ing component-wise inequality: UM ≥

∑N+1
j=1

bMλjc
M
× rj .

Note that limM→∞
bMλjc
M

= λj for all j, and thus
limM→∞ UM ≥ R. 2

Proof of Theorem 5.1
We prove the convergence of IPP algorithm (the proof of the con-
vergence of Binary-IPP is similar and easier). Let s be a sequence
of updates satisfying property (P1). Without loss of generality, we
can assume that s[2t] = 1 and s[2t + 1] = 2, for all t ≥ 0 (i.e.,
transmitters alternatively apply PP algorithm). We denote by p[t]
the power allocation after the t-th update, and abuse the notation
by writing R[t] = R(p[t]). It can be readily seen that (i) after
both transmitters update once, i.e., for t ≥ 2, the power alloca-
tion p[t] is σ-repulsive (repulsive under the slot permutation σ), for
a fixed given permutation σ of slots; (ii) R1[2t] ∈ {0, Rt1} and
R2[2t − 1] ∈ {0, Rt2} for any t ≥ 1. Observation (i) can be
easily proved by induction on t. Given the permutation σ, we in-
troduce the following notation: let p1, p′1 ∈ [0, Pmax]M , we write
p1 ≤σ p′1 if for all m, p1σ(m) ≤ p′1σ(m).

Now let Rt ∈ RIPP
M . Let p? = (p?1, p

?
2) be a σ-repulsive power

allocation such that R(p?) = Rt. We establish the convergence of
IPP algorithm to Rt by investigating various possible initial condi-
tions.
Case 1: At time 2t, p1[2t] = 0. This means that after an update,
link-1 transmitter actually chooses to remain silent. Without loss of
generality, we assume that t = 0. We show by induction property
(Nt), stating that the sequence of power allocations is monotoni-
cally increasing, and that the target rates are alternatively achieved
on links 1 and 2:
Property (Nt): p1[2t − 2] ≤σ p1[2t] ≤σ p?1, R1[2t] = Rt1,
p2[2t − 3] ≤σ p2[2t − 1] ≤σ p?2, R2[2t − 1] = Rt2 (with the
convention that p2[−1] = 0).

Let us prove (N1). We have p1[0] = 0. Then at time 1, link-2
transmitter applies PP algorithm, and selects allocation p2[1] such
that R2[1] = Rt2. Observe that link 2 has no interference, so that
p2[1] ≤σ p?2. Then link-1 transmitter updates its power allocation.
Since p2[1] ≤σ p?2, it can choose an allocation p1[2] such that
R1[2] = Rt1 and p1[1] ≤σ p?1. Thus (N1) holds. Now assume that
(Nt−1) holds, and let us prove (Nt). At time 2t, link-1 transmitter
updates its power, and since p2[2t − 1] ≤σ p?2, it can choose an
allocation p1[2t] such that R1[2t] = Rt1 and p1[2t] ≤σ p?1. The
same argument applied for link-2 transmitter allows to finish the
proof of (Nt).

Now p[t] is monotonically increasing (w.r.t. ≤σ), and hence
it converges. Remark that because of monotonicity, after a finite
number of updates, the number of slots used by transmitter 1 or
2 is fixed. Hence after these numbers are fixed, the transmitters
just update power on a single slot (always the same). The updates
correspond to the synchornous version of Foschini-Miljanic algo-
rithm, and hence converge to a feasible solution. In other words, if
limt→∞ p[t] = p′, then R(p′) = Rt.

The case where at time 2t+ 1, p2[2t+ 1] = 0, is similar to Case
1.
Case 2: At time 2t + 1, R2[2t + 1] = Rt2 and R1[2t + 1] ≤ Rt1.

Without loss of generality, asume that t = 0. Link-1 transmitter
updates its power at time 2. There are two cases:
(i) R1(Pmax1, p2[1]) < Rt1, in which case, p1[2] = 0, and we re-
turn to Case 1;
(ii) R1(Pmax1, p2[1]) ≥ Rt1, in which case, p1[2] is such that
R1[2] = Rt1 and p1[2] ≥σ p1[0] (because R1[1] < R1[2]). Now
we have R2[2] ≤ Rt2 because interference increased for link 2.
We can show using induction arguments just as those used in Case
1 that the power allocation is monotonically increasing until one
transmitter saturates and becomes silent. In the latter case, we are
back to Case 1. If transmitters never reset their power, we have
convergence towards the target rates (using the same argument as
in Case 1).

The case where at time 2t, R1[2t] = Rt1 and R2[2t] ≤ Rt2, is
similar to Case 1.

Case 3: At time 2t + 1, R2[2t + 1] = Rt2 and R1[2t + 1] > Rt1.
In this case again, we can show convergence using monotonicty ar-
guments exactly as in previous cases. Note that in this case, power
allocations are monotonically decreasing. The case where at time
2t, R1[2t] = Rt1 and R2[2t] > Rt2 is of course similar. 2

Proof of Theorem 6.1
Since the update sequence satisfies (P2),
x[t] = (s[t], p[t], β[t])t≥0 is an homogenous Markov chain with
finite state space. Observe that a set {(s, p,1), s ∈ {1, . . . , N}}
constitutes a communication class of this Markov chain if R(p) =
Rt (in such states, all links are satisfied, and do not update their al-
locations anymore). To prove the theorem, we just need to show
that from any initial state, at least one of these communication
classes are accessible, i.e., we construct a finite sequence of state
transitions occuring with positive probability and leading to one of
the aforementioned communication classes. To construct such a
path, we use the fact that from any state, all transmitters are picked
for possible a power update with positive probability. We also use
the fact that if tx i is chosen for an update, and either its target rate
is not satisfied or its βi is equal to 0, then tx i can pick any power
allocation with positive probability.

W.l.o.g. we may assume that U(p[0]) 6= ∅ and that there is no
tx i ∈ U(p[0]) that can update its allocation and become satisfied.
Indeed if this is not the case, we pick this tx. With positive probail-
ity, it updates its power allocation to Pmax1 and becomes satisfied.
We repeat this procedure: pick an unsatisifed tx that can become
satisfied, and let it use Pmax1. From allocation p[0], power levels
have been only increased, and so we end up at a state where there
is no unsatisifed tx that can become satisified by unilateral power
update.

Our constructed path consists of phases, indexed by k = 0, 1, 2, ....
At the beginning of phase k, the set of unsatisfied links whose trans-
mitters is not using allocation Pmax1 is denoted by Vk. Phase
k consists in letting links from Vk select allocation Pmax1 (this
occurs with positive probability because these links are not statis-
fied). Note first that V0 6= ∅, for by assumption (A1), when tx from
U(p[0]) use Pmax1, one satisfied link becomes unsatisfied. Such
an update requires that at least a tx from U(p[0]) is able to increase
interference, and hence is not already using allocation Pmax1. We
prove similarly that at the beginning of phase k ≥ 1, either Vk 6= ∅
or every transmitter uses Pmax1. Assume that Vk = ∅, which
means that all unsatisfied transmitters use Pmax1. Hence unsat-
isfied transmitters cannot change their power allocation either to
become satisfied or to disatisfy one link. From (A1), we deduce
that all links are unsatisfied, and hence all use Pmax1. In summary
after at most N phases, all links are unsatisfied and use allocation



Pmax1.
After all links have become unsatisfied, we add the following

phase. We pick tx one after the other once. When tx i is picked,
either it is unsatisfied, or due to power updates of previous trans-
mitters, it has become satisfied, but the value of its parameter βi is
0 (because it was not picked earlier in this phase). Hence when tx
i is picked, it will update its power allocation. With positive prob-
ability, it selects p?i . After the last tx is picked, each tx is satisfied,
but the βi’s may not be all equal to 1. Finally we add a last phase:
only the tx’s i such that βi = 0 are picked, and they again select
power allocation p?i . Thus we constructed a positive probability
path from any state to a state where every tx is satisfied and will
not update its power again. 2

Proof of Theorem 6.2
The proof is similar to that of Theorem 6.1.
y[t] = (s[t], p[t], I last[t])t≥0 is an homogeneous Markov chain
with finite state space. A set {(s, p, I), s ∈ {1, . . . , N}} consti-
tutes a communication class of this Markov chain if R(p) ≥ Rt

(in such states, all links are satisfied, and do not update their allo-
cations anymore). We show that these classes are accessible, and
from any state, we build a positive probability path towards one of
these classes.

Let y[0] be any initial state of the Markov chain. As in the proof
of Theorem 6.1, w.l.o.g. we may assume that U(p[0]) 6= ∅ and
that there is no tx i ∈ U(p[0]) that can update its allocation and
become satisfied. Let U0 = U(p[0]). By (A2), there exists a max-
imal set U1 6= ∅ such that U0 ∩ U1 = ∅ and for every j ∈ U ′,
MPmax

∑
i∈U0

gij > δ. Set U1 is maximal in a sense that no set
U ′ ⊃ U1 satisfies (A2) for the set U0. Similarly, we recursively
define Uw as the maximal set satisfying (A2) for the set ∪w`=1U`
if ∪w`=1U` 6= {1, . . . , N}. Let W : ∪W`=1U` = {1, . . . , N}. Note
that such W exists and is less than or equal to N . Also note that
the sets U`’s define a partition of {1, . . . , N}.

Our constructed path consists of phases, indexed by k = 0, 1, 2, ....
We show that we can build these phases with positive probability
such that:
(i) In each phase, all tx’s are selected once; tx’s from U0 are se-
lected first, then tx’s from U1, and so on. (ii) In phase k, the tx’s
not in Uk+1 ∪ . . . ∪ UW do not update their power allocation. (iii)
In phase 2k, each tx i updating its allocation selects pi = 0. In
phase 2k + 1, they select Pmax1.
(iv) there is a phase that ends with all tx having power allocation 0.
If this construction is valid, then from the state where all tx remain
silent, we conclude as in the proof of Thoerem 6.1: we let each tx
pick p?i , and run two phases to align the variables I lasti .

We now justify (i)-(ii)-(iii)-(iv). (i)-(ii) are immediate (s satis-
fies (P2), and a tx may always pick the same allocation as before
with positive probability). Note that because of (i), in each phase,
each tx i updates its value of I lasti . In phase 0, all tx’s in U0 are
unsatisfied, they update their power, and all choose 0 with positive
probability. At the beginning of phase 1, tx’s in U0 are unsatisfied,
and pick Pmax1; after that, from (A2), any tx i in U1 noticed the
increased interference in its parameter I last, and hence update its
power allocation with positive probability - it selects Pmax1. In
phase 2, tx’s in U0 are still not satisfied because from their perspec-
tive, interference has increased compared to that perceived initially;
they can then update their allocations again and this time select 0
power. This will be noticed by tx’s in U1, that again will update
their allocations and select 0 power. In phase 3, tx’s in U0 and U1

will select allocation Pmax1, which will be noticed by tx’s U2. The
latter will then select allocation Pmax1. Repeating this argument,

we justify (iii). (iv) is readily deduced from (iii). 2

Proof of Lemma 7.1
Let T be the time at which the IT-IPB-PP has converged. Since
T is the absorbing time of a finite state Markov chain, we have
E[T ] <∞. Now at T , a worst case (sample-path wise) is obtained
by assuming that in each queue i, there are AT + Qi[0] bits to
be served. From T , queues behave independently, and are also
independent of the r.v. T . Thus the system is stable if and only
if each queue is stable. It remains to prove that each queue i is
stable. W.l.o.g., assume that at time 0, queue i has AT + Qi[0]
bits to be served, and let Bi = inf{u : Qi(u) = 0}. Define
λi[u] = 1

u

∑u
s=1Ai[s]. Let δ = Rti − λi > 0. We have:

P[Bi ≥ u] ≤ P[AT +Qi[0] + uλi[u] ≥ uRti]

≤ P[
AT +Qi[0]

u
+ λi[u]− λi ≥ δ]

≤ P[
AT +Qi[0]

u
≥ δ

2
] + P[λi[u]− λi ≥

δ

2
]

≤ P[
AT +Qi[0]

u
≥ δ

2
] + c1e

−c2u,

where the last inequality is obtained using Hoeffding’s inequality
(c1, c2 > 0). We deduce that E[Bi] =

∑∞
u=1 P[Bi ≥ u] < ∞,

and queue i is stable. 2

Proof of Lemma 7.2
We just need to prove here that E[Ti] <∞ and Rti[Ti] ∈ (λi, λi +
ε/2). After establishing these results, we can apply the same proof
as that of Lemma 7.1. Indeed, note that after maxi Ti, at each
transmitter, the target rate is fixed and greater than the arrival rate;
also observe that E[maxi Ti] ≤

∑
i E[Ti].

We only consider that λi lies in the interior of ek for some k.2

Thus, there exists δ > 0 such that δ-neighborhood of λi lies in ek.
Let Tδ = inf{t : supu≥t |λi[u] − λi| < δ}. Note that for every
t ≥ Tδ , λi[t] ∈ ek and thus Rti[t] = (4k + 1)µ/2. Also observe
that Ti ≤ Tδ . We show that E[Tδ] <∞. Consider P{Tδ > t} and
note that

P{Tδ > t} = P{∪∞u=t+1{|λi[u]− λi| ≥ δ}}

≤
∞∑

u=t+1

P{|λi[u]− λi| ≥ δ}

≤
∞∑

u=t+1

c1e
−c2u ≤ c1

c2
e−c2t.

The last inequality follows from Hoeffding’s inequality (c1, c2 >
0). Now, E[Tδ] =

∑∞
t=1 P{Tδ ≥ t} ≤

∑∞
t=1

c1
c2
e−c2t < ∞.

Hence, E[Ti] < ∞. Finally, from the fact that λi ∈ ek and
Rti[Ti] = (4k+ 1)µ/2, we simply deduce that Rti[Ti] ∈ (λi, λi +
ε/2).

2

2The case where λi may lie on the boundary of some ek can be
handled similarly by choosing a slightly more complex target rate
update algorithm: we consider two partitions of R+, (ek)k≥1 and
(fk)k≥0 where fk = ek + µ/2 for k ≥ 1 and f0 = [0, µ/2). We
consider the same rate update, but switch partition when λi[t] falls
into a different interval than that of λi[t−1]. Using this, after λi[t]
concentrates around λi, we do not switch partition anymore, and
λi lies in the interior of an interval of the partition.
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