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Abstract

We analyze the following group learning problem in the cahta opinion diffusion: Consider a network
with M users, each facingy options. In a discrete time setting, at each time step, eaeh ehoosed< out of
the N options, and receive randomly generated rewards, whosstista depend on the options chosen as well
as the user itself, and are unknown to the users. Each ussntaimaximize their expected total rewards over a
certain time horizon through an online learning process, & sequence of exploration (sampling the return of
each option) and exploitation (selecting empirically gagdions) steps. Different from a typical regret learning
problem setting (also known as the class of multi-armed tgndblems), the group of users share information
regarding their decisions and experiences in a broadcasbrie The challenge is that while it may be helpful
to observe others’ actions in one’s own learning (i.e., sdeloand learning), what is considered desirable option
for one user may be undesirable for another (think of reatgurhoices), and this difference in preference is in
general unknown a priori. Even when two users happen to teveame preference (e.g., they agree one option
is better than the other), they may differ in their absolw@uation of each individual option.

Within this context we consider two group learning scergrid@) users with uniform preferences and (2)
users with diverse preferences, and examine how a userdsloounbktruct its learning process to best extract
information from other’s decisions and experiences so asdgimize its own reward. Performance is measured
in weak regret, the difference between the user’s total reward and therceivam a user-specific best single-
action policy (i.e., always selecting the set of optionsegating the highest mean rewards for this user). Within

each scenario we also consider two cases: (i) when useramyeHull information, meaning they share the
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actual rewards they obtained from their choices, and (iiemvinsers exchange limited information, e.g., only
their choices but not rewards obtained from these choicessiéw the gains from group learning compared to

individual learning from one’s own choices and experiences

I. INTRODUCTION

We analyze the following group learning problem in the canhtaf opinion diffusion: Consider a
network with M users, each facingy options. In a discrete time setting, at each time step, eaeh u
choosesK out of the N options, and receive randomly generated rewards, whosstistadepend on
the options chosen as well as the user itself, and are unkimwe users. Each user aims to maximize
its expected total reward over a certain time horizon thhoaig online learning process, i.e., a sequence
of exploration (sampling the return of each option) and eitation (selecting empirically good options)
steps. Taken separately, an individual user’s learningge® may be mapped into a standard multi-armed
bandit (MAB) problem which has been extensively studie@, sg., [5], [2], [3].

Our interest in this study, however, is on how an individsidéarning process may be affected by
“second-hand learning”, i.e., by observing how others enghoup act. The challenge is that while it may
be helpful to observe others’ actions to speed up one’s oamileg, what is considered desirable option
for one may be undesirable for another (think of restauréioices: one Yelp user's recommendation
may or may not be useful for another), and this differencereigrence is in general unknown a priori.
Moreover, even when two users happen to have the same predefe.g., they agree one option is
better than the other), they may differ in their absoluteigtibn of each individual option (again think
of restaurant choices: two Yelp users may agree restauraatb&tter than B, but one user may rate
them 5 and 4 stars respectively, while the other may rate themnd 3 stars, respectively).

Consequently it seems that if an individual wants to takesigthactions into account in its own
learning process, it would also need to figure out whetheir {references are aligned, which may
add to the overhead in the learning process. This raisesnteeesting question of whether learning
from group behavior is indeed beneficial to an individual] #so what type of learning algorithm can
effectively utilize the group information in addition tasibwn direct observations. This is what we aim
to address in this paper.

We will assume that users are heterogeneous in generalwib@n using the same option they

obtain rewards driven by different random processes witfleréint mean values. We then consider two



scenarios. (1) In the first, users haweform preference ordering of the V options. This means that even
though they may value each options differently, they alwanefer the same set of options. (2) In the
second, users hawkverse preference orderings of the IV options, meaning that one user’s best options
are not so for another. Within each scenario we also consideicases: (i) when users exchange full
information, meaning they disclose the actual rewards titggined from their choices, and (ii) when
users exchange limited information, e.g., only their chsibut not rewards obtained from these choices.
For each of these cases we examine how a user should consdrlearning process to best extract
information from other’s decisions and experiences so asdrimize its own reward. Performance is
measured inveak regret, the difference between the user’s total reward and thercedvam a user-
specific best single-action policy (i.e., always selectimg set of options generating the highest mean
rewards for this user).

This problem can also be viewed as a learning problem withestmal information (or side informa-
tion in some literature), see e.d.] [4]) [7]]) [6]. Howeverthese studies statistical information linking a
user’s own information and the side information is requirethe following sense. Denote by a user’s
observation and by the side information (say shared information from otherrsjsehe knowledge
of the conditional probability of observing (i.e., p(X|Y)) needs to be given or assumed. In contrast,
we do not require such statistical information; instead wan@ne how a user can estimate and learn
from the shared, and possibly imperfect side information.

The paper is organized as follows. Sectidn Il gives the systodel. Sectiong Il and IV analyze
the uniform and diverse preference scenarios, respegtideimerical results are presented in Section

Vland Sectioi MI concludes the paper.

[I. PROBLEM FORMULATION AND SYSTEM MODEL

Consider a system or network 8f users indexed by the sbt= {1,2,..., M} and a set of available
options denoted by? = {1,2,..., N}. The system works in discrete time indexed by 1,2, .... At
each time step a user can choose upktooptions. For uset an option; generates an IID reward
denoted by random variabl&?, with a mean reward given by;i = E[X;?]. We will assume that
pi # uh, 1 # 3, € U, i.e., different options present distinct values to a uBer.simplicity of notations

we will denote the set of tofx” options (in terms of mean rewards) for usexs N}, and its complement
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N.. Denote bya() the set of choices made by useat timet; the sequencéa’ (¢)},_.»... constitutes
useri’s policy.

Following the classical regret learning literature, welwitlopt theweak regret as a performance
metric, which measures the gap between the total reward dugpme timeT’) of a given learning
algorithm and the total reward of the best single-actioncyajiven a priori average statistics, which in
our case is the sum reward generated by theAopptions for a user. This is formally given as follows

for useri adopting algorithmu:

RT)=T- Y wy =B Y X]] ()

JjENG t=1 jeai(t)
Goal of a learning algorithm is to minimize the above regreiasure.

As mentioned in the introduction, we consider two scenafioghe first case, users share the same
preference ordering over th¥ options, i.e., ifu! >y’ , j1,j> € Q, thenp® > pb Yk # ik e U.

This implies thatNi, = N¥, Vi, k € Y. This will be referred to as theniform preference scenario.

In the second, théiverse preference scenario, users have different preference orderings tneiNt
options. Specifically, in this case we will assume that Meusers may be classified int@ distinct
groups, indexed by the sét= {1, 2,..., G}, with users within the same group (say grdymaving a
unique K -preferred setVi.. Note that even with the same preferred set, users may Heefurtassified
based on the actual ordering of these #dpoptions. Our model essentially bundles these sub-classes
into the same group, provided their tdp choices are the same. This is because as a user is allowed
K choices at a time, further distinguishing their preferenaghin thesek” options will not add to the
performance of an algorithm.

Under each scenario, we further consider two types of in&tion shared/exchanged by the users.
Under the first type, users disclodl information: they not only announce the decisions they made (the
options they chose), but also the observations followirggdlcisions, i.e., the actual rewards received
from those options. Such announcements may be made at thef @ath time step, or may be made
periodically but at a lesser frequency. The second type oh@axge igpartial information where users
disclose only part of decisions and/or observations. Sipally, we will assume that the users only
share their decision information, i.e., the set of choi¢tesy tmade, at the beginning of each time step,

but withhold the actual observation/reward informatiolidiwing the decisions.



IIl. GROUP LEARNING WITH UNIFORM PREFERENCE

Without loss of generality, we will assume that under thefarmn preference ordering we have

o> b > >y, Vi e U.

A. Uniform preference, full information (U_FULL)

This case will be referred to as_ BULL. Under this model users not only broadcast their decisi
within the network, but also release observations of seteoptions’ quality/rewards at the end of each
time step. Since users have the same preference orderiagt asfsumed to be known to the users, it
would seem straightforward that one user could easily I&mm another. The challenge here lies in
the fact that the statistics driving the rewards are nottidehfor all users even when using the same
option. So information obtained from another user may neeblet treated differently from one’s own
observations.

In general the reward useérobtains from optiony may be modeled as

where f(-) is some arbitrary unknown functiony; describes certaimntrinsic or objective value of
option j that is independent of the specific user (e.g., the bandvatith channel, or the rating given
to a restaurant by AAA, and so on); is a noise term, and’; captures user-specific features that
affect theperceived value of this option to usef (e.g., useri’s location information or transceiver
specification which may affect its perceived channel gyatit user:’s dietary origin which may affect
its preference for different types of restaurants). Forpdiicity in this study we will limit our attention

to the following special case of user-specific valuationsese the rewards received by two users from

the same option are given by a linear relationship:
TUCEI (3)

The scaling factoéjfk will be referred to as thelistortion or distortion factor between two users.
Under this model it can be seen that a user could recovercbnbservations from other users for
its own use by estimating the distortion. Consider two usensd &, and option;. Denote byr’(t) the

sample mean reward collected bylirectly itself from option; up to timet. This quantity is not only



available to uset, but also to all other users due to the full information disclosure, and vice versa.
Useri then estimates the distortion between itself and désky 5’k( t) = ri(t)/r¥(¢).

With this quantity we then make the following simple modifioa to the well-known UCB algorithm
introduced in|[38]. In the original UCB (or rather, a trivialuttiple-play extension of it), usefs decision
a‘(t) at timet is entirely based on its own observations. Specifically,otterby »’(¢) the number of
times user has selected optiop up to timet. The original UCB then selects optighat timet, if its

index value given below is among th€ highest:

2logt
ni(t)

UCB index: rj(t) + (4)

Under the modified algorithm (referred to as theRWLL algorithm), option; is selected at time if

its index value defined below is among the highest:

Ein:l XJZ( ) j€ai(m) + Zk;ﬁz Zm 1 5; k( )Xf<m) ’ Ijeak(m) n 2logt

U_FULL index: 2. (5)
Ezeu ](t) Ez‘eu nj(t)
We have the following results on algorithm BULL.
Lemma 3.1: Ve > 0,
P65 (t) — 7% > €) < 1/t% (6)
with d;; being some finite positive constant.
Proof: Proof can be found in AppendixtA. [ |
Theorem 3.2: The weak regret of userunder U FULL is upper bounded by
i 8logt
Ry o () < Z A ] + const.. (7)
jENK
where A! = 5 — .
Proof: Proof can be found in Appendix}B. [

Under the original UCB algorithm _[3] a single user’'s weakretgs upper bounded by (the superscript

1 is suppressed here because the result applies to any sswle u

Rycs(t) < Z [81Ag | + const. (8)

JjENK J




Therefore we see that there is potential gain in group legtriNote however the improvement is not
guaranteed as it appears in an upper bound, which does ne¢gaity imply better performance. The
performance comparison is shown later via simulation.

It can be shown that similar result exists when the full infation is broadcast at periodic intervals

but not necessarily at the end of each time step.

B. Uniform preference, partial information (U_PART)

We now consider the case where users only share their desfagiions, but not their direct obser-
vations. This case (and the associated algorithm) will iermed to as UPART. The difficulty in this
case comes from the fact that to a useeven though other users’ actions reflect an option’s keati
value to them (and by positive association to usiself), the actions do not directly reveal the actual
obserations.

Denote byn,(t) the total number of times optionhas been selected by the entire group up to time
Thenp;(t) == #(tn)l(t) denotes the frequency at which optigns being used by the group up to time
t. This will be referred to as the group recommendation or bienaSeveral observations immediately
follow. Firstly, we havezjEQ B;(t) = 1,Vt. Secondly, as time goes on, we would like better optipns
to increasingly correspond to larggy(t).

With these observations, we construct the following aldponi U_PART, by biasing toward potentially
good options as indicated by the group behavior. Under theART algorithm, optiory is selected at

time ¢ if its index value defined below is among tlié highest:

U_PART index: () — a(1 — Bj(t))\/lotgt +4/ 27305; , 9)

wherea is a weighting factor over the group recommendation.

A few remarks are in order. In the above index expression,ntiédle, bias term serves as a
penalty: a larger group frequengy(¢) means a smaller penalty. But its effect diminisheg exreases.
This reflects the notion that as time goes on a user becomesagingly more confident in its own
observations and relies less and less on the group reconati@md_astly, the weight factar captures
how much the user values the group recommendation comparigsl dwn observations, with a small

value indicating a small weight.



We have the following result on the_BART algorithm.

Theorem 3.3: The weak regret of userunder U PART is upper bounded by

U_parr(t) < Z (WW + const., (10)
j€NK ’
wheree is some arbitrarily small positive number.
Proof: Proof can be found in Appendix}C. [ |
Again, compared to the bounds from the original UCB, we piiaip achieve a better performance
as the bound constant decreases f®oio 6 + ¢ with the group recommendation mechanism, but with

the same cautionary note on the upper bound. The performamog@arison is shown in simulation

results later.

V. GROUP LEARNING WITH DIVERSE PREFERENCES

In this part we consider a more complicated case. Supposs w#hin a group have different tastes
over options and we divide the group of users into multiplb-gtoups based on their preferences.
Different groups have different preference order overmyj i.e., the assumptionf > u > ... >
Wiy, Vi € U would not hold necessarily.

Specifically, allM users are divided int6: groupsg = {1, 2, ..., G}. Users within same group share
same preferences over options; while users from differemigs have different ones. We further assume
the set of topK options differs from group to group. Therefore all togetiverhaveC% different group

preferences and’ < CF.

A. Diverse preferences, full information (D_FULL)

We again estimate the pair-wise distortion factor in a masiailar to the uniform preference case:
~i,k o Z ~k) . . . . . .
67" (t) = rj(t)/7;(t).The resulting DFULL algorithm run by usei then selects, at timg an option;

if its index value given below is among th€ highest:

t i t Ti,k k
. — Xim) - Licgitm) + i D me O ()X (m .I.a m 2100 t
D_FULL index: 2=t X5()  Lieaim) + 2k Z _1 05 (m)XF(m) - Tiean( ) 4 og

dicu n; (t) >icu n; (t)

We have the following result on algorithm_BULL.

(11)



Lemma 4.1: Ve > 0,
P(I6;5(t) = 67" > €) < 1/t (12)

with dp being some finite positive constant.

Theorem 4.2: Under algorithm DFULL, useri’s weak regret is upper bounded by

; 8logt
Rp pur (t) < Z [M _ AJ +- const., (13)
J

jENK

Proof: The proof follows similarly as in the uniform case and theatlstare thus omitted. =

B. Diverse preferences, partial information (D_PART)

As in the case of DFULL we can track for each user;(t) and obtain the frequency of choices
Bj(t), and use this information to perform group classificationuger: then assigns a weight to an
option j given by the ratio With diverse group preferences, the tioecaw sample frequency implies
nothing. For example, group 1 observes option 1 ten timedewdnly have chosen option 2 once;
group 2 picked option 1 for only once while stick with optiorteéh times. It is obvious that group 1
prefers option 1 over option 2 while group 2 prefers optiorHawever if users from each group use
the globally observed frequency, they will assign optiomnil 2 with equal weighq% = 1/2 which
will make the extra group information useless. Thus we neredva mechanism to distinguish different
groups’ preferences.

We introduce the following sample frequency based grouptitjeclassification mechanism. Each
user keeps the same set of statistr'u?@t) as before: the number of times useis seen using option
j. From these a user tries to estimate another’s preferenagdaying the statistics: at timeuseri’s
preference is estimated to be the 8&t(¢), which contains elements/optioisvhose frequency.(t)
is among theK highest of alli’s frequencies. User is then put in the preference grodpvith whose

(known) preferred sedV!; its estimated prefereno@}{(t) is the closest in distance, defined as follows:
Assign useri to groupl* if: 1" = argmax,.; D"'(t) = |Ni () N Nk |, (14)

with ties broken randomly.

Our algorithm proceeds in parallel with the uniform grougeaxcept for the following difference:
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each group will assign another group with certain discoantteir observations instead of raw statistics.

To be specific, user will assign the weight to thenth option in the following sense

Zkzeu (néf(t))uﬂk
Zmeﬂ Zkeu(nﬁb (t))wiyk ’

where weights.’* = 1 if i estimates usek to be in the same group as itself, ant* < 1 otherwise.

(15)

B;(t) =

w* can also be chosen as a function of the group distance.
The resulting algorithm DPART is as follows, where userchooses optiony if its index value is

among the topk" highest:

D_PART index: () — a(1 — ﬁj(t)),/lotgt +4/ 27305; , (16)

Theorem 4.3: For each usej associating with group we have the probability of incorrect classifi-

cation at timet is bounded as

Plgy(1) #1) < G- (.1 a7
for some positive constardt;.

Proof: Proof can be found in AppendixiD. [ |
The upper bound on the weak regret undelPBRT is the same except for a different constant, as in
the case of UPART.

Theorem 4.4. Under algorithm DPART, useri’s weak regret is upper bounded by

; 6+ ¢€)logt
Rp_parr(t) < Z [%1 + const, (18)
) J
JENK
Proof: The proof follows similarly as in the uniform case with paftinformation exchange with
the following explanation. Notice the last step to estdibtlse 6 + ¢ bound is to prove
= — 0,Vj € Ng. (29)
ZieQ ni(t)
Then similarly here we need to establish
> (8)

s — 0,¥m € NY. (20)
ZIEQ Zjeu ny (1) "
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To show this, first of all we notice

SN w1 = 0) (21)

1€Q jeu

Then for userj within the same group as usewe have

B (1)) = Eln,(t)] = O(logt) (22)

m

For other user from different groups we know

Efn,"™" (1)] < Eln, (1)] < O(log) (23)

m

sincew’% < 1. Meanwhile the chance of mis-classifying a user from a ckffé group to a same group

is upper bounded be(l"Tgt), and the number of mis-drift is at most given by

logt

o) - 0=

) = O(logt) (24)

9495
. . P w t
which helps us establish2=cu " 1)
P

e 2ujeu™

— 0,Vm € N;.

V. NUMERICAL RESULTS

We start with U FULL. In our simulation we have three users with five indeparidoptions; each
user targets the top three options at each time, ile= K = 3, N = 5. Furthermore the five options’
reward statistics are given by exponentially distributaddom variables. The distortion factor at each
user for each option is modeled as a Gaussian random vaxathieertain mean and variance 1.

From Fig.1 we see with full information exchange the systep&rformance can be greatly improved
compared with individual learning; moreover, its performoa is comparable with a centralized scheme
(denoted UCB Centralized in the figure), whereby ffieusers are centrally controlled and coordinated
in their learning using UCB, and allowing simultaneous sebm of the same options by multiple users.

Next we show the performance of BART. The simulation setting is the same as the one above and
is not repeated here. From Fig.] 2a we see thaPART outperforms multiuser UCB with individual
learning. We also see from Fig.]2b that though a large®esults in a larger upper bound, the actual

performance does not necessarily increase with
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Fig. 1: Performance comparison of BULL and UCB individual.
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Fig. 2: Performance comparison of BART and UCB Individual.

We end this section by simulating a network with diverse grpueferences. As we mentioned in
previous sections, the major difference between learniggriéhms of diverse preferences and uniform
preference is each user estimates other users’ grouptilbetore taking actions over observed/reported
samples. Therefore instead of presenting similar regesslts as in the previous cases, we present the

mis-classification rate of our algorithm, given in Hig. 3.

VI. CONCLUSION

In this paper we considered group learning problem in theecarof opinion diffusion and analyzed
two scenarios: uniform group preference vs. diverse graafepences. For each case we also considered
sharing full vs. partial information, and constructed U@ index based group learning algorithms
and derived their associated upper bounds on weak regreseliipper bounds are in general better than

the original upper bound obtained by UCB when a user learmsoiation. This points to the potential
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gain by combining first-hand and second hand learning.

(1]

(2]

(3]

[4]

[5]

[6]
[7]

REFERENCES

V. Anantharam, P. Varaiya, and J. Walrand. Asymptotjcefficient allocation rules for the multiarmed bandit plein with multiple
plays-part i: Li.d. rewardsAutomatic Control, IEEE Transactions on, 32(11):968 — 976, nov 1987.

Venkat Anantharam, Pravin Varaiya, and Jean Walrangn#wsotically Efficient Allocation Rules for the MultiarmeBandit Problem
with Multiple Plays Part I: I.1.D. Rewards, Part II: Mark@n Rewards. Technical Report UCB/ERL M86/62, EECS Departme
University of California, Berkeley, 1986.

Peter Auer, Nicold Cesa-Bianchi, and Paul Fischerit&itime Analysis of the Multiarmed Bandit Probleiach. Learn., 47:235-256,
May 2002.

Chih chun Wang, Student Member, Sanjeev R. Kulkarni, &dvincent Poor. Bandit problems with side observatiorl&€EE
Transactions on Automatic Control, 50:338-355, 2005.

T. L. Lai and H. Robbins. Asymptotically Efficient Adapé Allocation Rules.Advances in Applied Mathematics, 6:4-22, 1985.
John Langford and Tong Zhang. The Epoch-Greedy Algorifor Multi-armed Bandits with Side Information. INIPS 2007.
Tyler Lu, Dvid PI, and Martin Pal. Contextual multi-archdandits.Journal of Machine Learning Research, 9:485-492, 2010.

APPENDIX A

PROOF OFLEMMA [4.1:

For simplicity of presentation, we omit all sub and supeigs in this proof when there is no

confusion.

P(I5(t) — 6% > €) = P(8(t) > 6" + €) + P(5(t) < 6* —¢) (25)



14

Let's considerP(6(t) > 0* + ¢) and denote: = §* + ¢.

>c) = P(rj-(t) > c-ri(t) (26)

and

+/ P(ri(t) > c-x) - P(rf(t) = x)dx

ph—e<a<pbte

+/ P(ri(t) > c-x) - P(rf(t) = x)dx (27)
IZ,LL?-FE

Next we first turn to the analysis of hitting times of each opti’/(¢) and T} (t).

Lemma A1: Forj € N,
E[T;(t)] = O(t), E[T}(1)] = O(t) (28)

and forj € N,
E[T}(1)] = O(log ). E[T(1)] = O(log1) (29)

Proof: The complete proof can be obtained by following Lai([5]) afltho([1])’'s work. However
this is not the emphasize of our paper and requires lots @fitegn from previous works; thus we only
sketch the basic proof and idea here.

Define the corresponding term under centralized and dedieid system as
Ecentr.[T; (t)]7 Edecen[T;C (t)]7 Ecentr.[T; (t)]7 Edecen[TJk (t)]
and we have

Ecens[T;(t)] < E[T;(t)] < EdecenlT; (t)] (30)

Ecent [T} (1)] < E[T} ()] < Edecen[T} (t)] (31)
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The reason for above two inequalities is that the availaifiermation for each model making decision

follows as

Tgecen.C Igroup C leentr. (32)

And we know from previous works;j € Ny

Eeens[ T} (£)] = O(1), Eaecen T} (£)] = O(2) (33)

andVj € Ny
Ecens[T} (t)] = O(log 1), Egecenl T} (1)] = O(log1) (34)
O

Remark A.2: For our modified UCB we are sure fgre Ny, E[T;(t)] > O(logt) since it is not
necessarily the optimal policy; and we will show later in tiext proof we indeed we havg[T}(t)] =
O(logt) and E[T;(t)] = O(t) for j € Nk.

Considers = 4t +e. In this caseP(rk(t) = x) — 1. For otherz, we haveP(rk(t) = z) < e '),

Therefore we have

P(ri(t) > c-x) - P(r¥(t) = x)dx

w<pl—e
< / P(ri(t) > c-x)- e 2T W gy
e<pf—e
< e 27 () / ldx = O(e_T”k(t)) (35)
a<pk—e

and

P(ri(t) > c-x) - P(rk(t) = x)dx

ph—e<z<pbte

/ P(ri(t) > ¢ z)dx
ph—e<z<pkte

/ e 2¢T}(0) gy = O(e_Tf(t)) (36)
ph—e<z<pkte

IN

IN
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P(ré(t) >c-x)- P(rf(t) = x)da

J
xz,ué?—l—e

6_2627“]?“@)/ P(r;.(t) >c- :):)dx
a>pl+e

IN

IN

6—262T]@(t) / 6—Tjk(t)m26dx _ (9(6—(T;‘(t)+TJIC (t))) (37)
mz,u?—i-e
Now we investigate the expectation of each term as followifake [35) for example
O(E[e™0]) < O(e~ (™ TD-EITFO]) (38)
As E[T}(t)] > O(logt) (E[T}(t)] = O(logt) or E[T}(t)] = O(t) depending ory.), we have
O(E[e"TTW]) < O(e~ (¢ "+ losty < 1 /4 (39)

hered is some finite positive number. Other terms can be similanglyzed and we proved the lemma.

APPENDIX B

PROOF OFTHEOREM[3.2:

We follow Auer.’s notation in[[B] where UCB is first introduteand proved; and we try to bound
the number of sub-optimal arms that are played. In order tkenthe proof smooth, we made another
assumption here : each user only takes at most the same awiosamples (regarding order) from

other users for the each option. Consider such an optiohusers.

t
T <i+ S I = Tin—1) > 1)
n=I[+1
t

<l+ Z { min 7"+ ¢/ < max Pt}

1l
0<si<n I<si<n 73 n=ls;
n=I[+1 J
¢
<[+ E { min 7, + G S Max 7+ }

1 i
0<si<n I<st<n 77 n=Ls;
n=I[+1 J
oo n—1n—1
SIS b < ) (40)
’ 24 ’

n=1 gi=1 Sj:l

Observer’ + ¢! , < Tl e « implies that at least one of the following must hold,
k) ] ’

rg < B = Gy i Tj,s;', > g + Cn,s}? P < g + QCn,s; (41)

s —
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We bound each term. First of all we want to know the error otwalting the sample means dues to
imperfect distortion recovery. We have the number of ertg® timet bounded by (take usér for

example)

sk

J 1 (8&)1_dU _ 1
Do S o (42)

n=1

Denote the largest deviation by,., we have the distortion factor in sample mean bounded as

(s5) -
C (43)
Zueu Sj
We now show
1 gky1—du
Lnu S C. (J)iu (44)
D ueu D ueu
For s’ = O(logn), sincedy > 0 we have
S srsc- ()" (45)
= J Viogn

If 5% > O(logn), consider two cases. ¥ = O(logn), above holds obviously. 1§} > O(logn),

through the proof of LemmpB_4.1 we knowdy; > 1 (details omitted) and again we haJe(44) holds.

Therefore we have

logn - Zkeu(sk);_dU

P{rtt <pt -2 -+ )
> uett S > el Sj
~ P{r;’f’c < ptt— V2 s ~}
Eueu Sj
S 6—4logn _ n—4 (46)

And similarly

P{ria =z u+e, p<n™ (47)



18

For the last term
Ut < ,ué- + 202’551 (48)
Let | = [+ logt/(A%)*]

Mi,* o ,LL; - 20;(782
>t — ol — 2v/2 logt/ZS;f
ueU

> p =y — A =0 (49)

The rest of the proof follows [3] and thus omitted.
The only thing left to be proved is the number of optimal arms sensed with orde®(¢) which
is needed in proving Lemmia_4.1. Suppose there is an optim@rofailed to be sensed at order

O(t), then there must be a sub-optimal ajme Ny being sensed with ordef(¢). Since we have

E[T}(t)] < Zjem{[]\ji‘f;ﬂ, we know the only possible case is witly = 0 and from the proof of

Lemmal4.l we know the number of optimal arms must be boundesl @mnstant. Therefore check

back the UCB index. For the optimal arm we hay (ls)(glg as the bias term in UCB index while fgr

it is g’ig we know with a large enough the index of the optimal arm must be larger thawhich

contradicts the fact that the optimal arm is only sensed waathstant numbers; and we thus proved the

theorem.

APPENDIX C

PROOF OFTHEOREM[3.3:

In the following literature for simplicity we denote

; 2logt i 2logt logt
N @ T S TV )
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By following the same trick from Auer.'s work [3], to boundehegret we need to bound the number

of sub-optimal arms that are played. Suppgse N

T <1+ 3 (I =0 T - 1) 2 1)

n=Il+1

t
e : y
<[+ g { min 7 + 6,1 < max 7“;. ot }

1 i
0<st<n I<st<n 777 n=l.s;
n=Il+1 J
co n—1n—1
1% AT 7 )
SEDIDIP ML PRI (51)

n=1 Si:1 S;:l

The following analysis applies for generaland thus we omit the notation. Observe? + ¢, ; <

ris. + cns, implies that at least one of the following must hold,
Js 7 197
Te S = Cpysy Tjs; = g+ Cysys 1 < + 2Cns; (52)

We bound each term.

1
P{rr < p* — oo} < P{rr <p* — (V2 - )i/ ogn} < e 2V2-a)?logn _ ) —2(V2-0)? (53)
n
the first inequality is due to the reasarn> s and 3;(n) > 0. And similarly
P{rja, > ptj + ng } < 072027 (54)

Let I = [(2v2 — a[l — B;(t)])*logt/A?]

> =y —A;=0 (55)
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Therefore

2(V2—a-[1-(t)) 10g151
A2

oo n—1

YD Z (P{rs < p" = Gus} + Prjs; 2 15+ sy })

n=1 s=1 s;=[(2vZ—a(1-5;(t)))2
logt/A2]

< |,4(\/§ — Q- [1A_2 BJ logt Z Z Z In "2 —a) (56)

n=1 s=1 s;=1

First notice the second term, #2(v/2 — a)? < -3, i.e.,, V2 — 1/3/2 > a, the sum converges to a

constant; i.e.,
E[T;(t)] < (4<\/§ — HA_Q 5j(t)]>210gt1 + const. (57)
J
Next we try to bound3;(t),Vj € Nx. Remember that;(t) = ZZJT(?@) and we know
n;(t) < (%WJ‘ € Nk (58)
J

As there is no collision (due to decision sharing and callisavoidance), there are alwayg - K

observations from the group. Thus for denominator we know
d m(t)=M-K-n (59)
k

M2
Therefore;(n) < M;?n — 0. The last approach is along withh — oco. Therefore with a large

enough time horizom, all terms;(t),j € Nk goes to 0 and thus we have established the bounds as
following

Rg < Z (W} + const. (60)

JENK J
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APPENDIX D

PROOF OFTHEOREMZ.3:

We analyze the probability that the number of chosen submgptarms is higher than the optimal

arms at timet. Considerj € N andx* € N.
t t
P aw=; = Y Lim=+)
" t " t t t
= P(Y_ Law=5 = D La=| D L=« = O(t)) - P(Y_ Lugwy= = O(1))
n=1 n=1 n=1 n=1

t t t t
+ P Liy=s 2 ) am=el D Litmy=e < O1)) - P(Y_ Lum= < O(1)) (61)
n=1 n=1 n=1 n=1

Consider the first term

t t t t
P aw=; = Y Latm=s] D Lam=e = O(1)) < P(Y_ Law=; > O(1))
n=1 n=1 n=1 n=1

B! L] _ EIT(0)] _ Ollogt)
ST om oW = o (62)
Now considerP (3" _, Tim=. < O(1)).
P> Ly < O()) < PO Lypew, = O(1))
< E[Zi:l Id(n)GNK] < ZkGNK E[Z;:l Id(”):k] < O(log t) (63)

= O(t) - O(t) - 0@

Proved.
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