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Abstract

We analyze the following group learning problem in the context of opinion diffusion: Consider a network

with M users, each facingN options. In a discrete time setting, at each time step, each user choosesK out of

theN options, and receive randomly generated rewards, whose statistics depend on the options chosen as well

as the user itself, and are unknown to the users. Each user aims to maximize their expected total rewards over a

certain time horizon through an online learning process, i.e., a sequence of exploration (sampling the return of

each option) and exploitation (selecting empirically goodoptions) steps. Different from a typical regret learning

problem setting (also known as the class of multi-armed bandit problems), the group of users share information

regarding their decisions and experiences in a broadcast network. The challenge is that while it may be helpful

to observe others’ actions in one’s own learning (i.e., second-hand learning), what is considered desirable option

for one user may be undesirable for another (think of restaurant choices), and this difference in preference is in

general unknown a priori. Even when two users happen to have the same preference (e.g., they agree one option

is better than the other), they may differ in their absolute valuation of each individual option.

Within this context we consider two group learning scenarios, (1) users with uniform preferences and (2)

users with diverse preferences, and examine how a user should construct its learning process to best extract

information from other’s decisions and experiences so as tomaximize its own reward. Performance is measured

in weak regret, the difference between the user’s total reward and the reward from a user-specific best single-

action policy (i.e., always selecting the set of options generating the highest mean rewards for this user). Within

each scenario we also consider two cases: (i) when users exchange full information, meaning they share the
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actual rewards they obtained from their choices, and (ii) when users exchange limited information, e.g., only

their choices but not rewards obtained from these choices. We show the gains from group learning compared to

individual learning from one’s own choices and experiences.

I. INTRODUCTION

We analyze the following group learning problem in the context of opinion diffusion: Consider a

network withM users, each facingN options. In a discrete time setting, at each time step, each user

choosesK out of theN options, and receive randomly generated rewards, whose statistics depend on

the options chosen as well as the user itself, and are unknownto the users. Each user aims to maximize

its expected total reward over a certain time horizon through an online learning process, i.e., a sequence

of exploration (sampling the return of each option) and exploitation (selecting empirically good options)

steps. Taken separately, an individual user’s learning process may be mapped into a standard multi-armed

bandit (MAB) problem which has been extensively studied, see e.g., [5], [2], [3].

Our interest in this study, however, is on how an individual’s learning process may be affected by

“second-hand learning”, i.e., by observing how others in the group act. The challenge is that while it may

be helpful to observe others’ actions to speed up one’s own learning, what is considered desirable option

for one may be undesirable for another (think of restaurant choices: one Yelp user’s recommendation

may or may not be useful for another), and this difference in preference is in general unknown a priori.

Moreover, even when two users happen to have the same preference (e.g., they agree one option is

better than the other), they may differ in their absolute valuation of each individual option (again think

of restaurant choices: two Yelp users may agree restaurant Ais better than B, but one user may rate

them 5 and 4 stars respectively, while the other may rate them4 and 3 stars, respectively).

Consequently it seems that if an individual wants to take others’ actions into account in its own

learning process, it would also need to figure out whether their preferences are aligned, which may

add to the overhead in the learning process. This raises the interesting question of whether learning

from group behavior is indeed beneficial to an individual, and if so what type of learning algorithm can

effectively utilize the group information in addition to its own direct observations. This is what we aim

to address in this paper.

We will assume that users are heterogeneous in general, i.e., when using the same option they

obtain rewards driven by different random processes with different mean values. We then consider two
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scenarios. (1) In the first, users haveuniform preference ordering of theN options. This means that even

though they may value each options differently, they alwaysprefer the same set of options. (2) In the

second, users havediverse preference orderings of theN options, meaning that one user’s best options

are not so for another. Within each scenario we also considertwo cases: (i) when users exchange full

information, meaning they disclose the actual rewards theyobtained from their choices, and (ii) when

users exchange limited information, e.g., only their choices but not rewards obtained from these choices.

For each of these cases we examine how a user should constructits learning process to best extract

information from other’s decisions and experiences so as tomaximize its own reward. Performance is

measured inweak regret, the difference between the user’s total reward and the reward from a user-

specific best single-action policy (i.e., always selectingthe set of options generating the highest mean

rewards for this user).

This problem can also be viewed as a learning problem with contextual information (or side informa-

tion in some literature), see e.g., [4], [7], [6]. However, in these studies statistical information linking a

user’s own information and the side information is requiredin the following sense. Denote byX a user’s

observation and byY the side information (say shared information from other users), the knowledge

of the conditional probability of observingX (i.e., p(X|Y )) needs to be given or assumed. In contrast,

we do not require such statistical information; instead we examine how a user can estimate and learn

from the shared, and possibly imperfect side information.

The paper is organized as follows. Section II gives the system model. Sections III and IV analyze

the uniform and diverse preference scenarios, respectively. Numerical results are presented in Section

V and Section VI concludes the paper.

II. PROBLEM FORMULATION AND SYSTEM MODEL

Consider a system or network ofM users indexed by the setU = {1, 2, ...,M} and a set of available

options denoted byΩ = {1, 2, ..., N}. The system works in discrete time indexed byt = 1, 2, .... At

each time step a user can choose up toK options. For useri an optionj generates an IID reward

denoted by random variableX i
j , with a mean reward given byµi

j := E[X i
j ]. We will assume that

µi
l 6= µi

j, l 6= j, ∀i ∈ U , i.e., different options present distinct values to a user.For simplicity of notations

we will denote the set of topK options (in terms of mean rewards) for useri asN i
K and its complement
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N
i

K . Denote byai(t) the set of choices made by useri at timet; the sequence{ai(t)}t=1,2,··· constitutes

useri’s policy.

Following the classical regret learning literature, we will adopt theweak regret as a performance

metric, which measures the gap between the total reward (up to some timeT ) of a given learning

algorithm and the total reward of the best single-action policy given a priori average statistics, which in

our case is the sum reward generated by the topK options for a user. This is formally given as follows

for useri adopting algorithma:

Ri,a(T ) = T ·
∑

j∈N i
K

µi
j − E[

T
∑

t=1

∑

j∈ai(t)
X i

j ] (1)

Goal of a learning algorithm is to minimize the above regret measure.

As mentioned in the introduction, we consider two scenarios. In the first case, users share the same

preference ordering over theN options, i.e., ifµi
j1

> µi
j2

, j1, j2 ∈ Ω, thenµk
j1

> µk
j2

, ∀k 6= i, k ∈ U .

This implies thatN i
K = Nk

K , ∀i, k ∈ U . This will be referred to as theuniform preference scenario.

In the second, thediverse preference scenario, users have different preference orderings over theN

options. Specifically, in this case we will assume that theM users may be classified intoG distinct

groups, indexed by the setG = {1, 2, ..., G}, with users within the same group (say groupl) having a

uniqueK-preferred setN l
K . Note that even with the same preferred set, users may be further classified

based on the actual ordering of these topK options. Our model essentially bundles these sub-classes

into the same group, provided their topK choices are the same. This is because as a user is allowed

K choices at a time, further distinguishing their preferences within theseK options will not add to the

performance of an algorithm.

Under each scenario, we further consider two types of information shared/exchanged by the users.

Under the first type, users disclosefull information: they not only announce the decisions they made (the

options they chose), but also the observations following the decisions, i.e., the actual rewards received

from those options. Such announcements may be made at the endof each time step, or may be made

periodically but at a lesser frequency. The second type of exchange ispartial information where users

disclose only part of decisions and/or observations. Specifically, we will assume that the users only

share their decision information, i.e., the set of choices they made, at the beginning of each time step,

but withhold the actual observation/reward information following the decisions.
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III. GROUP LEARNING WITH UNIFORM PREFERENCE

Without loss of generality, we will assume that under the uniform preference ordering we have

µi
1 > µi

2 > ... > µi
N , ∀i ∈ U .

A. Uniform preference, full information (U FULL)

This case will be referred to as UFULL. Under this model users not only broadcast their decisions

within the network, but also release observations of selected options’ quality/rewards at the end of each

time step. Since users have the same preference ordering, a fact assumed to be known to the users, it

would seem straightforward that one user could easily learnfrom another. The challenge here lies in

the fact that the statistics driving the rewards are not identical for all users even when using the same

option. So information obtained from another user may need to be treated differently from one’s own

observations.

In general the reward useri obtains from optionj may be modeled as

X i
j = f(Xj,Ni,Li) , (2)

where f(·) is some arbitrary unknown function,Xj describes certainintrinsic or objective value of

option j that is independent of the specific user (e.g., the bandwidthof a channel, or the rating given

to a restaurant by AAA, and so on),Ni is a noise term, andLi captures user-specific features that

affect theperceived value of this option to useri (e.g., useri’s location information or transceiver

specification which may affect its perceived channel quality, or useri’s dietary origin which may affect

its preference for different types of restaurants). For simplicity in this study we will limit our attention

to the following special case of user-specific valuations, where the rewards received by two users from

the same option are given by a linear relationship:

µi
j/µ

k
j = δi,kj . (3)

The scaling factorδi,kj will be referred to as thedistortion or distortion factor between two users.

Under this model it can be seen that a user could recover/convert observations from other users for

its own use by estimating the distortion. Consider two usersi andk, and optionj. Denote byrij(t) the

sample mean reward collected byi directly itself from optionj up to timet. This quantity is not only
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available to useri, but also to all other usersk due to the full information disclosure, and vice versa.

User i then estimates the distortion between itself and userk by δ̃i,kj (t) = rij(t)/r
k
j (t).

With this quantity we then make the following simple modification to the well-known UCB algorithm

introduced in [3]. In the original UCB (or rather, a trivial multiple-play extension of it), useri’s decision

ai(t) at time t is entirely based on its own observations. Specifically, denote byni
j(t) the number of

times useri has selected optionj up to timet. The original UCB then selects optionj at timet, if its

index value given below is among theK highest:

UCB index: rij(t) +

√

2 log t

ni
j(t)

. (4)

Under the modified algorithm (referred to as the UFULL algorithm), optionj is selected at timet if

its index value defined below is among theK highest:

U FULL index:

∑t
m=1X

i
j(m) · Ij∈ai(m) +

∑

k 6=i

∑t
m=1 δ̃

i,k
j (m)Xk

j (m) · Ij∈ak(m)
∑

i∈U ni
j(t)

+

√

2 log t
∑

i∈U ni
j(t)

. (5)

We have the following results on algorithm UFULL.

Lemma 3.1: ∀ǫ > 0,

P (|δ̃i,kj (t)− δi,kj | > ǫ) ≤ 1/tdU (6)

with dU being some finite positive constant.

Proof: Proof can be found in Appendix-A.

Theorem 3.2: The weak regret of useri under U FULL is upper bounded by

Ri
U FULL(t) ≤

∑

j∈Ni
K

⌈ 8 log t

M ·∆i
j

⌉+ const.. (7)

where∆i
j = µi

K − µi
j.

Proof: Proof can be found in Appendix-B.

Under the original UCB algorithm [3] a single user’s weak regret is upper bounded by (the superscript

i is suppressed here because the result applies to any single user)

RUCB(t) ≤
∑

j∈NK

⌈8 log t
∆i

j

⌉+ const. (8)
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Therefore we see that there is potential gain in group learning. Note however the improvement is not

guaranteed as it appears in an upper bound, which does not necessarily imply better performance. The

performance comparison is shown later via simulation.

It can be shown that similar result exists when the full information is broadcast at periodic intervals

but not necessarily at the end of each time step.

B. Uniform preference, partial information (U PART)

We now consider the case where users only share their decisions/actions, but not their direct obser-

vations. This case (and the associated algorithm) will be referred to as UPART. The difficulty in this

case comes from the fact that to a useri, even though other users’ actions reflect an option’s relative

value to them (and by positive association to useri itself), the actions do not directly reveal the actual

obserations.

Denote bynj(t) the total number of times optionj has been selected by the entire group up to timet.

Thenβj(t) :=
nj(t)∑
l∈Ω nl(t)

denotes the frequency at which optionj is being used by the group up to time

t. This will be referred to as the group recommendation or behavior. Several observations immediately

follow. Firstly, we have
∑

j∈Ω βj(t) = 1, ∀t. Secondly, as time goes on, we would like better optionsj

to increasingly correspond to largerβj(t).

With these observations, we construct the following algorithm U PART, by biasing toward potentially

good options as indicated by the group behavior. Under the UPART algorithm, optionj is selected at

time t if its index value defined below is among theK highest:

U PART index: rij(t)− α(1− βj(t))

√

log t

t
+

√

2 log t

ni
j(t)

, (9)

whereα is a weighting factor over the group recommendation.

A few remarks are in order. In the above index expression, themiddle, bias term serves as a

penalty: a larger group frequencyβj(t) means a smaller penalty. But its effect diminishes ast increases.

This reflects the notion that as time goes on a user becomes increasingly more confident in its own

observations and relies less and less on the group recommendation. Lastly, the weight factorα captures

how much the user values the group recommendation compared to its own observations, with a small

value indicating a small weight.
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We have the following result on the UPART algorithm.

Theorem 3.3: The weak regret of useri under U PART is upper bounded by

Ri
U PART(t) ≤

∑

j∈Ni
K

⌈(6 + ǫ) log t

∆i
j

⌉+ const., (10)

whereǫ is some arbitrarily small positive number.

Proof: Proof can be found in Appendix-C.

Again, compared to the bounds from the original UCB, we potentially achieve a better performance

as the bound constant decreases from8 to 6 + ǫ with the group recommendation mechanism, but with

the same cautionary note on the upper bound. The performancecomparison is shown in simulation

results later.

IV. GROUP LEARNING WITH DIVERSE PREFERENCES

In this part we consider a more complicated case. Suppose users within a group have different tastes

over options and we divide the group of users into multiple sub-groups based on their preferences.

Different groups have different preference order over options, i.e., the assumptionµi
1 > µi

2 > ... >

µi
N , ∀i ∈ U would not hold necessarily.

Specifically, allM users are divided intoG groupsG = {1, 2, ..., G}. Users within same group share

same preferences over options; while users from different groups have different ones. We further assume

the set of topK options differs from group to group. Therefore all togetherwe haveCK
N different group

preferences andG ≤ CK
N .

A. Diverse preferences, full information (D FULL)

We again estimate the pair-wise distortion factor in a manner similar to the uniform preference case:

δ̃i,kj (t) = rij(t)/r̃
k
j (t).The resulting DFULL algorithm run by useri then selects, at timet, an optionj

if its index value given below is among theK highest:

D FULL index:

∑t
m=1X

i
j(m) · Ij∈ai(m) +

∑

k 6=i

∑t
m=1 δ̃

i,k
j (m)Xk

j (m) · Ij∈ak(m)
∑

i∈U ni
j(t)

+

√

2 log t
∑

i∈U ni
j(t)

.(11)

We have the following result on algorithm DFULL.
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Lemma 4.1: ∀ǫ > 0,

P (|δ̃i,kj (t)− δi,kj | > ǫ) ≤ 1/tdD (12)

with dD being some finite positive constant.

Theorem 4.2: Under algorithm DFULL, useri’s weak regret is upper bounded by

Ri
D FULL(t) ≤

∑

j∈Ni
K

⌈ 8 log t

M ·∆i
j

⌉+ const., (13)

Proof: The proof follows similarly as in the uniform case and the details are thus omitted.

B. Diverse preferences, partial information (D PART)

As in the case of DFULL we can track for each userni
j(t) and obtain the frequency of choices

βi
j(t), and use this information to perform group classification. Auser i then assigns a weight to an

option j given by the ratio With diverse group preferences, the direct or raw sample frequency implies

nothing. For example, group 1 observes option 1 ten times while only have chosen option 2 once;

group 2 picked option 1 for only once while stick with option 2ten times. It is obvious that group 1

prefers option 1 over option 2 while group 2 prefers option 2.However if users from each group use

the globally observed frequency, they will assign option 1 and 2 with equal weight10+1
11+11

= 1/2 which

will make the extra group information useless. Thus we need anew mechanism to distinguish different

groups’ preferences.

We introduce the following sample frequency based group identity classification mechanism. Each

user keeps the same set of statisticsni
j(t) as before: the number of times useri is seen using option

j. From these a user tries to estimate another’s preference byordering the statistics: at timet useri’s

preference is estimated to be the setÑ i
K(t), which contains elements/optionsj whose frequencyni

j(t)

is among theK highest of alli’s frequencies. Useri is then put in the preference groupl with whose

(known) preferred setN l
K its estimated preferencẽN i

K(t) is the closest in distance, defined as follows:

Assign useri to groupl∗ if: l∗ = argmaxl∈G D
i,l(t) = |Ñ i

K(t) ∩N l
K | , (14)

with ties broken randomly.

Our algorithm proceeds in parallel with the uniform group case except for the following difference:
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each group will assign another group with certain discount for their observations instead of raw statistics.

To be specific, useri will assign the weight to themth option in the following sense

βi
j(t) =

∑

k∈U(n
k
j (t))

ωi,k

∑

m∈Ω
∑

k∈U(n
k
m(t))

ωi,k , (15)

where weightsωi,k = 1 if i estimates userk to be in the same group as itself, andωi,k < 1 otherwise.

ωi,k can also be chosen as a function of the group distance.

The resulting algorithm DPART is as follows, where useri chooses optionj if its index value is

among the topK highest:

D PART index: rij(t)− α(1− βi
j(t))

√

log t

t
+

√

2 log t

ni
j(t)

, (16)

Theorem 4.3: For each userj associating with groupr we have the probability of incorrect classifi-

cation at timet is bounded as

P (gj(t) 6= r) ≤ C1 ·
log t

t
, ∀(j, r), t. (17)

for some positive constantC1.

Proof: Proof can be found in Appendix-D.

The upper bound on the weak regret under DPART is the same except for a different constant, as in

the case of UPART.

Theorem 4.4: Under algorithm DPART, useri’s weak regret is upper bounded by

Ri
D PART(t) ≤

∑

j∈N i
K

⌈(6 + ǫ) log t

∆i
j

⌉ + const., (18)

Proof: The proof follows similarly as in the uniform case with partial information exchange with

the following explanation. Notice the last step to establish the6 + ǫ bound is to prove

nj(t)
∑

i∈Ω ni(t)
→ 0, ∀j ∈ NK . (19)

Then similarly here we need to establish

∑

j∈U nωgi,gj

m (t)
∑

l∈Ω
∑

j∈U nωgi,gj

l (t)
→ 0, ∀m ∈ N

i

K . (20)
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To show this, first of all we notice

∑

l∈Ω

∑

j∈U
nωgi,gj

l (t) = O(t) (21)

Then for userj within the same group as useri we have

E[nωgi,gj

m (t)] = E[nj
m(t)] = O(log t) (22)

For other userj from different groups we know

E[nωgi,gj

m (t)] < E[nj
m(t)] ≤ O(log t) (23)

sinceωgi,gj < 1. Meanwhile the chance of mis-classifying a user from a different group to a same group

is upper bounded byO( log t
t
), and the number of mis-drift is at most given by

O(t) · O(
log t

t
) = O(log t) (24)

which helps us establish
∑

j∈U nω
gi,gj

m (t)
∑

l∈Ω

∑
j∈U nω

gi,gj
l (t)

→ 0, ∀m ∈ N
i

K .

V. NUMERICAL RESULTS

We start with U FULL. In our simulation we have three users with five independent options; each

user targets the top three options at each time, i.e.,M = K = 3, N = 5. Furthermore the five options’

reward statistics are given by exponentially distributed random variables. The distortion factor at each

user for each option is modeled as a Gaussian random variablewith certain mean and variance 1.

From Fig. 1 we see with full information exchange the system’s performance can be greatly improved

compared with individual learning; moreover, its performance is comparable with a centralized scheme

(denoted UCB Centralized in the figure), whereby theM users are centrally controlled and coordinated

in their learning using UCB, and allowing simultaneous selection of the same options by multiple users.

Next we show the performance of UPART. The simulation setting is the same as the one above and

is not repeated here. From Fig. 2a we see that UPART outperforms multiuser UCB with individual

learning. We also see from Fig. 2b that though a largerα results in a larger upper bound, the actual

performance does not necessarily increase withα.
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Fig. 2: Performance comparison of UPART and UCB Individual.

We end this section by simulating a network with diverse group preferences. As we mentioned in

previous sections, the major difference between learning algorithms of diverse preferences and uniform

preference is each user estimates other users’ group identity before taking actions over observed/reported

samples. Therefore instead of presenting similar regrets results as in the previous cases, we present the

mis-classification rate of our algorithm, given in Fig. 3.

VI. CONCLUSION

In this paper we considered group learning problem in the context of opinion diffusion and analyzed

two scenarios: uniform group preference vs. diverse group preferences. For each case we also considered

sharing full vs. partial information, and constructed UCB-like index based group learning algorithms

and derived their associated upper bounds on weak regret. These upper bounds are in general better than

the original upper bound obtained by UCB when a user learns inisolation. This points to the potential
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gain by combining first-hand and second hand learning.
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APPENDIX A

PROOF OFLEMMA 4.1:

For simplicity of presentation, we omit all sub and super-scripts in this proof when there is no

confusion.

P (|δ(t)− δ∗| > ǫ) = P (δ(t) > δ∗ + ǫ) + P (δ(t) < δ∗ − ǫ) (25)
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Let’s considerP (δ(t) > δ∗ + ǫ) and denotec = δ∗ + ǫ.

P (δ(t) > c) = P (
rij(t)

rkj (t)
> c) = P (rij(t) > c · rkj (t)) (26)

and

P (rij(t) > c · rkj (t)) =
∫

x

P (rij(t) > c · x) · P (rkj (t) = x)dx

=

∫

x≤µk
j−ǫ

P (rij(t) > c · x)P (rkj (t) = x)dx

+

∫

µk
j−ǫ<x<µk

j+ǫ

P (rij(t) > c · x) · P (rkj (t) = x)dx

+

∫

x≥µk
j+ǫ

P (rij(t) > c · x) · P (rkj (t) = x)dx (27)

Next we first turn to the analysis of hitting times of each option T i
j (t) andT k

j (t).

Lemma A.1: For j ∈ NK ,

E[T i
j (t)] = O(t), E[T k

j (t)] = O(t) (28)

and for j ∈ NK ,

E[T i
j (t)] = O(log t), E[T k

j (t)] = O(log t) (29)

Proof: The complete proof can be obtained by following Lai([5]) andZhao([1])’s work. However

this is not the emphasize of our paper and requires lots of repetition from previous works; thus we only

sketch the basic proof and idea here.

Define the corresponding term under centralized and decentralized system as

Ecentr.[T
i
j (t)], Edecen.[T

k
j (t)], Ecentr.[T

i
j (t)], Edecen.[T

k
j (t)]

and we have

Ecentr.[T
i
j (t)] ≤ E[T i

j (t)] ≤ Edecen.[T
i
j (t)] (30)

Ecentr.[T
k
j (t)] ≤ E[T k

j (t)] ≤ Edecen.[T
k
j (t)] (31)
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The reason for above two inequalities is that the available information for each model making decision

follows as

Idecen.⊆ Igroup ⊆ Icentr. (32)

And we know from previous works∀j ∈ NK

Ecentr.[T
i
j (t)] = O(t), Edecen.[T

k
j (t)] = O(t) (33)

and∀j ∈ NK

Ecentr.[T
i
j (t)] = O(log t), Edecen.[T

k
j (t)] = O(log t) (34)

Remark A.2: For our modified UCB we are sure forj ∈ NK , E[Tj(t)] ≥ O(log t) since it is not

necessarily the optimal policy; and we will show later in thenext proof we indeed we haveE[Tj(t)] =

O(log t) andE[Tj(t)] = O(t) for j ∈ NK .

Considerx = µk
j ± ǫ. In this caseP (rkj (t) = x) → 1. For otherx, we haveP (rkj (t) = x) ≤ e−2ǫ2T k

j (t).

Therefore we have

∫

x≤µk
j−ǫ

P (rij(t) > c · x) · P (rkj (t) = x)dx

≤
∫

x≤µk
j−ǫ

P (rij(t) > c · x) · e−2ǫ2T k
j (t)dx

≤ e−2ǫ2T k
j (t)

∫

x≤µk
j−ǫ

1dx = O(e−T k
j (t)) (35)

and

∫

µk
j−ǫ≤x≤µk

j+ǫ

P (rij(t) > c · x) · P (rkj (t) = x)dx

≤
∫

µk
j−ǫ≤x≤µk

j+ǫ

P (rij(t) > c · x)dx

≤
∫

µk
j−ǫ≤x≤µk

j+ǫ

e−2ǫ2T i
j (t)dx = O(e−T i

j (t)) (36)
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∫

x≥µk
j+ǫ

P (rij(t) > c · x) · P (rkj (t) = x)dx

≤ e−2ǫ2T k
j (t)

∫

x≥µk
j+ǫ

P (rij(t) > c · x)dx

≤ e−2ǫ2T k
j (t)

∫

x≥µk
j+ǫ

e−T k
j (t)x2ǫdx = O(e−(T i

j (t)+T k
j (t))) (37)

Now we investigate the expectation of each term as following. Take (35) for example

O(E[e−T k
j (t)]) < O(e−(e−1+1)·E[T k

j (t)]) (38)

As E[T k
j (t)] ≥ O(log t) (E[T k

j (t)] = O(log t) or E[T k
j (t)] = O(t) depending onj.), we have

O(E[e−T k
j (t)]) < O(e−(e−1+1)·log t) ≤ 1/td (39)

hered is some finite positive number. Other terms can be similarly analyzed and we proved the lemma.

APPENDIX B

PROOF OFTHEOREM 3.2:

We follow Auer.’s notation in [3] where UCB is first introduced and proved; and we try to bound

the number of sub-optimal arms that are played. In order to make the proof smooth, we made another

assumption here : each user only takes at most the same amountof samples (regarding order) from

other users for the each option. Consider such an optionj of useri.

T i
j (t) ≤ l +

t
∑

n=l+1

{I in = j, T i
j (n− 1) ≥ l}

≤ l +
t

∑

n=l+1

{ min
0<si<n

ri,∗
si

+ cin−1,si ≤ max
l≤sij<n

rij,sij
+ cin−1,sij

}

≤ l +

t
∑

n=l+1

{ min
0<si<n

ri,∗si + cin−1,si ≤ max
l≤sij<n

rij,sij
+ cin−1,sij

}

≤ l +
∞
∑

n=1

n−1
∑

si=1

n−1
∑

sij=l

{r∗,is + cin,si ≤ rij,sij
+ cn,sij} (40)

Observeri,∗si + cin,si ≤ ri
j,sij

+ cn,sij implies that at least one of the following must hold,

ri,∗si ≤ µi,∗ − cin,si, r
i
j,sij

≥ µi
j + cn,sij , µ

i,∗ < µi
j + 2cin,sij

(41)
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We bound each term. First of all we want to know the error of calculating the sample means dues to

imperfect distortion recovery. We have the number of errorsupto timet bounded by (take userk for

example)

skj
∑

n=1

1

ndU
≤ (skj )

1−dU − 1

1− dU
(42)

Denote the largest deviation byδmax we have the distortion factor in sample mean bounded as

C · (s
k
j )

1−dU

∑

u∈U suj
(43)

We now show
√

logn
∑

u∈U suj
> C · (s

k
j )

1−dU

∑

u∈U suj
(44)

For sij = O(log n), sincedU > 0 we have

(
∑

u∈U
suj )

1/2 > C · (s
k
j )

1−dU

√
logn

(45)

If sij > O(log n), consider two cases. Ifskj = O(log n), above holds obviously. Ifskj > O(log n),

through the proof of Lemma 4.1 we knowdU ≥ 1 (details omitted) and again we have (44) holds.

Therefore we have

P{ri,∗
si

≤ µi,∗ −
√
2

√

logn
∑

u∈U suj
± C ′ ·∑k∈U(s

k)1−dU
j

∑

u∈U suj
}

≈ P{ri,∗,csi ≤ µi,∗ −
√
2

√

logn
∑

u∈U suj
}

≤ e−4 logn = n−4 (46)

And similarly

P{rij,sij ≥ µi
j + cin,sij

} ≤ n−4 (47)
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For the last term

µi,∗ < µi
j + 2cin,sij

(48)

Let l = ⌈ 8
M

log t/(∆i
j)

2⌉

µi,∗ − µi
j − 2cin,sij

≥ µi,∗ − µi
j − 2

√
2

√

log t/
∑

u∈U
suj

≥ µi,∗ − µi
j −∆i

j = 0 (49)

The rest of the proof follows [3] and thus omitted.

The only thing left to be proved is the number of optimal arms are sensed with orderO(t) which

is needed in proving Lemma 4.1. Suppose there is an optimal option failed to be sensed at order

O(t), then there must be a sub-optimal armj ∈ NK being sensed with orderO(t). Since we have

E[T i
j (t)] ≤

∑

j∈Ni
K
⌈ 8 log t
M ·(∆i

j)
2 ⌉, we know the only possible case is withdU = 0 and from the proof of

Lemma 4.1 we know the number of optimal arms must be bounded asa constant. Therefore check

back the UCB index. For the optimal arm we have
√

log t
O(1)

as the bias term in UCB index while forj

it is
√

log t
O(t)

we know with a large enought, the index of the optimal arm must be larger thanj which

contradicts the fact that the optimal arm is only sensed withconstant numbers; and we thus proved the

theorem.

APPENDIX C

PROOF OFTHEOREM 3.3:

In the following literature for simplicity we denote

cit,j =

√

2 log t
∑

u∈U nu
j (t)

, ĉit,j =

√

2 log t
∑

u∈U nu
j (t)

− α[1− βj(t)]

√

log t

t
(50)
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By following the same trick from Auer.’s work [3], to bound the regret we need to bound the number

of sub-optimal arms that are played. Supposej ∈ NK

T i
j (t) ≤ l +

t
∑

n=l+1

{I in = j, T i
j (n− 1) ≥ l}

≤ l +

t
∑

n=l+1

{ min
0<si<n

ri,∗si + ĉin−1,si ≤ max
l≤sij<n

rij,sij
+ ĉin−1,sij

}

≤ l +
∞
∑

n=1

n−1
∑

si=1

n−1
∑

sij=l

{ri,∗
si

+ ĉin,si ≤ rij,sij
+ cin,sij

} (51)

The following analysis applies for generali and thus we omit thei notation. Observer∗s + ĉn,s ≤
rj,sj + cn,sj implies that at least one of the following must hold,

r∗s ≤ µ∗ − ĉn,s, rj,sj ≥ µj + ĉn,sj , µ
∗ < µj + 2ĉn,sj (52)

We bound each term.

P{r∗s ≤ µ∗ − ĉn,s} ≤ P{r∗s ≤ µ∗ − (
√
2− α)

√

log n

n
} ≤ e−2(

√
2−α)2 logn = n−2(

√
2−α)2 (53)

the first inequality is due to the reasonn ≥ s andβj(n) ≥ 0. And similarly

P{rj,sj ≥ µj + ĉn,sj} ≤ n−2(
√
2−α)2 (54)

Let l = ⌈(2
√
2− α[1− βj(t)])

2 log t/∆2
j⌉

µ∗ − µj − 2ĉn,sj

≥ µ∗ − µj − (2
√
2− α · [1− βj(n)])

√

log t/sj

≥ µ∗ − µj −∆j = 0 (55)
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Therefore

E[Tj(t)] ≤ ⌈(2(
√
2− α · [1− βj(t)]))

2 log t

∆2
j

⌉

+
∞
∑

n=1

n−1
∑

s=1

t−1
∑

sj=⌈(2
√
2−α·(1−βj(t)))

2

log t/∆2
j
⌉

(P{r∗s ≤ µ∗ − ĉn,s}+ P{rj,sj ≥ µj + ĉn,sj})

≤ ⌈4(
√
2− α · [1− βj(t)])

2 log t

∆2
j

⌉ +
∞
∑

n=1

n
∑

s=1

n
∑

sj=1

2n−2(
√
2−α)2 (56)

First notice the second term, if−2(
√
2 − α)2 < −3, i.e.,

√
2 −

√

3/2 > α, the sum converges to a

constant; i.e.,

E[Tj(t)] ≤ ⌈4(
√
2− α · [1− βj(t)])

2 log t

∆2
j

⌉ + const. (57)

Next we try to boundβj(t), ∀j ∈ NK . Remember thatβj(t) =
nj(t)∑
k nk(t)

and we know

nj(t) ≤ ⌈8 log t
∆2

j

⌉, ∀j ∈ NK (58)

As there is no collision (due to decision sharing and collision avoidance), there are alwaysM · K
observations from the group. Thus for denominator we know

∑

k

nk(t) = M ·K · n (59)

Thereforeβj(n) ≤
M ·⌈ 8 log n

∆2
j

⌉

M ·K·n → 0. The last approach is along withn → ∞. Therefore with a large

enough time horizonn, all termsβj(t), j ∈ NK goes to 0 and thus we have established the bounds as

following

RG ≤
∑

j∈NK

⌈(6 + ǫ) log t

∆j
⌉ + const. (60)
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APPENDIX D

PROOF OFTHEOREM 4.3:

We analyze the probability that the number of chosen sub-optimal arms is higher than the optimal

arms at timet. Considerj ∈ NK and∗ ∈ NK .

P (

t
∑

n=1

Id(n)=j ≥
t

∑

n=1

Id(n)=∗)

= P (

t
∑

n=1

Id(n)=j ≥
t

∑

n=1

Id(n)=∗|
t

∑

n=1

Id(n)=∗ ≥ O(t)) · P (

t
∑

n=1

Id(n)=∗ ≥ O(t))

+ P (
t

∑

n=1

Id(n)=j ≥
t

∑

n=1

Id(n)=∗|
t

∑

n=1

Id(n)=∗ < O(t)) · P (
t

∑

n=1

Id(n)=∗ < O(t)) (61)

Consider the first term

P (

t
∑

n=1

Id(n)=j ≥
t

∑

n=1

Id(n)=∗|
t

∑

n=1

Id(n)=∗ ≥ O(t)) ≤ P (

t
∑

n=1

Id(n)=j ≥ O(t))

≤ E[
∑t

n=1 Id(n)=j ]

O(t)
=

E[Tj(t)]

O(t)
≤ O(log t)

O(t)
(62)

Now considerP (
∑t

n=1 Id(n)=∗ < O(t)).

P (

t
∑

n=1

Id(n)=∗ < O(t)) ≤ P (

t
∑

n=1

Id(n)∈NK
≥ O(t))

≤
E[

∑t
n=1 Id(n)∈NK

]

O(t)
≤

∑

k∈NK
E[

∑t
n=1 Id(n)=k]

O(t)
≤ O(log t)

O(t)
(63)

Proved.
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