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Abstract

This paper considers a base station that delivers packets to multiple receivers through a sequence of coded
transmissions. All receivers overhear the same transmissions. Each receiver may already have some of the packets
as side information, and requests another subset of the packets. This problem is known as the index coding problem
and can be represented by a bipartite digraph. An integer linear program is developed that provides a lower bound
on the minimum number of transmissions required for any coding algorithm. Conversely, its linear programming
relaxation is shown to provide an upper bound that is achievable by a simple form of vector linear coding. Thus,
the information theoretic optimum is bounded by the integrality gap between the integer program and its linear
relaxation. In the special case when the digraph has a planar structure, the integrality gap is shown to be zero,
so that exact optimality is achieved. Finally, for non-planar problems, an enhanced integer program is constructed
that provides a smaller integrality gap. The dual of this problem corresponds to a more sophisticated partial clique
coding strategy that time-shares between Reed-Solomon erasure codes. This work illuminates the relationship
between index coding, duality, and integrality gaps between integer programs and their linear relaxations.

I. INTRODUCTION

Consider a noiseless wireless system with N receivers, W independent packets of the same size, and a
single broadcast station. The broadcast station has all packets. Each receiver has a subset of the packets
as side information, but desires another (disjoint) subset of the packets. The broadcast station must deliver
the packets to their intended receivers. To this end, it makes a sequence of (possibly coded) transmissions
that are overheard by all receivers. The goal is to find a coding scheme with the minimum number of
transmissions (clearance time) such that each user is able to decode its demanded packets. This problem
was introduced by Birk and Kol in [1], [2] and is known as the index coding problem.

The formulation of the index coding problem is simple, elegant and captures the essence of broadcasting
with side information. It also relates directly to multi-hop network coding problems. Specifically, work in
[3] shows that an index coding problem can be reduced to a network coding problem. A partial converse
of this result is also shown in [3], in that linear versions of network coding can be redued to linear index
coding (see [4] for extended results in this direction). However, the index coding problem still seems to
be intractable. The first index coding problem investigated by Birk and Kol considers only the case of
unicast packets and can be represented as a directed side information graph. Work by Bar-Yossef et. al.
in [5] shows that the performance of the best scalar linear code is equal to the graph parameter minrank
of the side information graph. However, computing the minrank of a given graph is NP-hard [6]. Further,
it is known that restricting to scalar linear codes is generally sub-optimal [7], [8].

One branch of research on index coding aims to find tight performance bounds. Work in [5] shows that
if the index coding problem has an undirected side information graph (such as when it has symmetric
demands) then the minrank is lower-bounded by the independence number of the graph, and upper-bounded
by the clique cover number. For the unicast index coding problem, work in [5] shows that the optimal
clearance time (with respect to any scalar, vector or non-linear code) is lower-bounded by the maximum
acyclic subgraph of the side information graph. Work in [9] generalizes this to the multi-cast case using
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a directed bipartite graph. It shows that the optimum of the general problem is lower-bounded by the
maximum acyclic subgraph induced by deletions of packet vertices, user-vertices and packet-to-user arcs.
In [10], a sequence of linear programs is proposed to bound the optimal clearance time.

Another branch of research on index coding focuses on studying the performance of specific codes and
specific graph structures. Work in [7] shows that vector linear codes can have strictly better performance
compared with scalar linear codes. Work in [8] demonstrates that non-linear codes can outperform both
scalar and vector linear codes. Instead of finding the minimum clearance time, Chaudhry et. al. in [11]
consider the problem of maximizing the total number of saved transmissions by exploiting a specific code
structure together with graph theory algorithms. Ong et. al. in [12] find the optimal index code in the
single uniprior case, where each user only has a single uniprior packet as side information.

This paper studies index coding from a perspective of optimization and duality. It illustrates the inherent
duality between the information theoretical lower bound in [9] and the performance of specific codes.
Section II extends the bipartite digraph representation of the problem to a weighted bipartite digraph.
Section III uses this new graph structure to develop an integer linear program that finds the tightest lower
bound given by [9]. Section IV considers the linear programming (LP) relaxation of the integer program,
and shows that the dual problem of this relaxation corresponds to a simple form of vector linear codes,
called vector cyclic codes. It follows that the information theoretic optimum is bounded by the integrality
gap between the integer program and its LP relaxation. Section V shows that in the special case when the
bipartite digraph is planar, the integrality gap is zero. In this case, optimality is achieved by a scalar cyclic
code. Section VI considers a different representation of the original integer program that yields a smaller
integrality gap. The dual problem of its LP relaxation leads to a more sophisticated partial clique coding
strategy that time-shares between Reed-Solomon erasure codes. The smaller integrality gap ensures that
these codes are closer to the lower bound. These results provide new insight on the index coding problem
and suggest that good codes can be found by exploring the LP relaxations of the tightest lower bound
problem.

II. THE WEIGHTED BIPARTITE DIGRAPH

There are N receivers, also called users. Let U = {u1, . . . , uN} be the set of users. Assume there are
W total packets, labeled {q1, . . . , qW}. For each m ∈ {1, . . . ,W}, define Sm as the set of users in U
that already have packet qm as side information, and define Dm as the set of users in U that demand
packet qm. Without loss of generality, assume that each packet is demanded by at least one user (else,
that packet can be eliminated). Thus, the demand set Dm is non-empty for all m ∈ {1, . . . ,W}. On the
other hand, the side information sets Sm can be empty. Indeed, the set Sm is empty if and only if no user
has packet qm as side information. It is reasonable to assume that the set of users that demand a packet
is disjoint from the set of users that already have that packet as side information, so that Sm ∩ Dm = ∅
for all m ∈ {1, . . . ,W}.

This index coding problem is represented by a bipartite directed graph in [9][13], where user vertices
are on the left of the graph, packet vertices are on the right, and the Sm and Dm sets are represented
by directed arcs. A directed graph is also called a digraph. It is useful to extend this representation to a
weighted bipartite digraph as follows: Two packets qk and qm are said to have the same type if Sk = Sm
and Dk = Dm. That is, two packets have the same type if they have the same side information and
demand sets. Note that if a user demands one packet of a certain type, then it must demand all packets
of that type. Likewise, if a user has one packet of a certain type as side information, then it must have
all packets of that type.

Let M be the number of packet types, and let P = {p1, . . . , pM} be the set of types. The index coding
problem can be represented by a weighted bipartite digraph G = (U ,P ,A,WP) as follows: Let U be the
set of vertices on the left side of the graph and let P be the set of vertices on the right side of the graph
(see Fig. 1). The arc set A has a user-to-packet arc (un, pm) if and only if user un ∈ U has all packets of
type pm. The arc set A has a packet-to-user arc (pm, un) if and only if user un ∈ U demands all packets
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of type pm. Finally, define WP as the set of integral weights associated with packet vertices in P . The
weight wpm ∈ WP of packet vertex pm ∈ P is equal to the number of packets of type pm. Thus, the total
number of packets W satisfies W =

∑M
m=1 wpm .

A packet is said to be a unicast packet if it is demanded by only one user, and is said to be a multicast
packet if it is demanded by two or more users. An index coding problem is said to be unicast if all
packets are unicast packets. The first index coding problem introduced by Birk and Kol in [1] was a
unicast problem. The current paper also focuses exclusively on the unicast case. Figure 1 shows an
example of the weighted bipartite digraph representation for a unicast index coding problem with 3 user
vertices and 3 packet types. In this example, packet types p1, p2, p3 are demanded by users u1, u2, u3,
respectively, so that D1 = {u1}, D2 = {u2}, D3 = {u3}. Furthermore, the side information sets are as
follows:
• Packet type p1 is contained as side information by users in the set S1 = {u2, u3}.
• Packet type p2 is contained as side information by the user in the set S2 = {u3}.
• Packet type p3 is contained as side information by the user in the set S3 = {u1}.

u1#

u2#

u3#

p1#

p2#

p3#

w1=3#

w2=1#

w3=2#

Fig. 1. The bipartite digraph representation of a unicast index coding problem with 3 user vertices and 3 packet type vertices.

The index coding problem with graph G = (U ,P ,A,WP) can equally represent a system with M
variable size packets, where wpm is the (integer) size of packet pm. With this interpretation, each packet
type represents a single packet. Thus, this paper often refers to packet type pm as packet pm.

III. THE ACYCLIC SUBGRAPH BOUND AND ITS LP RELAXATION

The following definitions from graph theory are useful. A sequence of vertices {s1, s2, . . . , sK} of
a general digraph is defined as a cycle if (si, si+1) ∈ A for all i ∈ {1, 2, . . . , K − 1}, all vertices in
{s1, s2, . . . , sK−1} are distinct, and s1 = sK . A digraph is acyclic if it contains no cycle. A set of vertices
is called a feedback vertex set if the removal of vertices in this set leaves an acyclic digraph. In a vertex-
weighted digraph, the feedback vertex set with the minimum sum weight is called the minimum feedback
vertex set.

For the weighted bipartite digraph G = (U ,P ,A,WP) (as defined in the previous section), there exists
a subset Pfd ⊆ P such that the removal of vertices in Pfd and all the associated packet-to-user arcs and
user-to-packet arcs leaves an acyclic subgraph. In this case, Pfd is called a feedback packet vertex set.
A trivial feedback packet vertex set is Pfd = P and the corresponding acyclic subgraph has no packet
vertex. This trivial feedback packet vertex set has weight W , since the sum weight of all packet vertices
is W . It is often possible to find a feedback packet vertex set with sum weight smaller than W . The
feedback packet vertex set with the minimum sum weight is called the minimum feedback packet vertex
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set. The acyclic subgraph induced by the deletion of the minimum feedback packet vertex set is called
the maximum acyclic subgraph.

Assume that each transmission from the base station sends a number of bits equal to the number of bits
in each of the fixed length packets. It is trivial to satisfy all demands with W transmissions, where each of
the W packets is successively transmitted without coding. However, coding can often be used to reduce the
number of transmissions. Let Tmin(G) represent the minimum number of transmissions required to deliver
all packets to their intended users for an index coding problem defined by the weighted bipartite digraph
G. The value Tmin(G) considers all possible coding strategies. A theorem in [9] provides an information
theoretic lower bound on Tmin(G). While the theorem holds for general (possibly multicast) index coding
problems, this paper uses it in the unicast case.

Theorem 1 (Paraphrased from Theorem 1 and Lemma 1 in [9]): Consider an index coding problem G =
(U ,P ,A,WP). Let Pfd ⊆ P be a feedback packet vertex set and let G ′ be the acyclic subgraph induced
by the deletion of Pfd. If

∑
pm∈G′ wpm = W ′, then Tmin(G) ≥ W ′.

Suppose the largest cycle in digraph G involves L packet vertices. Define the set of all cycles in G as
C =

⋃L
i=1 Ci, where Ci, i = 2, . . . , L is the set of all cycles involving i packet vertices. These cycles can

possibly overlap, i.e., some of them can share common vertices. The number of cycles can possibly be
exponential in the number of vertices of the graph. The problem of identifying the tightest lower bound
provided by Theorem 1 can be formulated as an integer linear programming (ILP) problem as below:

(P1)

max
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≤ i− 1, ∀Ci ∈ Ci, i = 2, . . . , L

xm ∈ {0, 1}, m = 1, . . . ,M

where xm ∈ {0, 1},m = 1, . . . ,M indicates if packet vertex pm remains in the acyclic subgraph, objective
function

∑M
m=1 xmwpm is the sum weight of the acyclic subgraph, 1{pm∈Ci} is the indicator function which

equals one if and only if packet vertex pm participates in cycle Ci ∈ Ci, and
∑M

m=1 xm1{pm∈Ci} ≤ i− 1 is
the constraint that for each cycle Ci ∈ Ci, at most i− 1 packet vertices remains in the acyclic subgraph.
This problem finds the maximum packet weighted acyclic subgraph formed by packet vertex deletion.

The integer constraints of the above problem can be convexified to form the following linear program-
ming (LP) relaxation:

(P1′)

max
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≤ i− 1, ∀Ci ∈ Ci, i = 2, . . . , L

0 ≤ xm ≤ 1, m = 1, . . . ,M

The only difference between problem (P1) and its relaxation (P1′) is that the constraints xm ∈ {0, 1} are
changed to 0 ≤ xm ≤ 1.

Define val(P1) as the optimal objective function value of the integer program (P1), being the size of the
maximum acyclic subgraph. Theorem 1 implies that val(P1) ≤ Tmin(G). The optimal objective function
value for the relaxation (P1′) can be written as val(P1′) = val(P1) + gap(P1′,P1), where gap(P1′,P1) =
val(P1′) − val(P1) is the integrality gap between the LP relaxation (P1′) and the integer program (P1).
Since the relaxation (P1′) has less restrictive constraints, the value of gap(P1′,P1) is always non-negative.
The next section proves constructively that:

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1)
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Thus, the difference between the minimum clearance time and the maximum acyclic subgraph bound
is bounded by the integrality gap gap(P1′,P1). Furthermore, Section V shows that gap(P1′,P1) = 0 in
special cases when the digraph G is planar.

IV. CYCLIC CODES AND LINEAR PROGRAMMING DUALITY

Inspired by the observation that the lower bound in Theorem 1 is closely connected with cycles in
graph G, this section considers cyclic codes that exploit cycles in G. It is shown that the problem of
finding the optimal cyclic code is the dual problem of the LP relaxation (P1′). Thus, the performance gap
between the optimal cyclic code and the optimal index code is ultimately bounded by the integrality gap
gap(P1′,P1).

A. Cyclic Codes
Suppose there exists a cycle in G that involves K users {u1, u2, . . . , uK} and K packets of the same

size {q1, q2, . . . , qK}. In this cycle, user u1 has qK as side information and demands q1, user u2 has q1

as side information and demands q2, user u3 has q2 as side information and demands q3, and so on. If
the weight of each packet node is identically one, a K-cycle coding action can deliver all K packets by
transmitting Zi = qi + qi+1, i = 1, . . . , K − 1 with K − 1 transmissions, where addition is the mod-2
summation of each bit in both packets. After transmissions, user ui ∈ {u2, . . . , uK} can decode packet qi
by performing qi−1 + Zi−1 = qi−1 + (qi−1 + qi) = qi. At the same time, user u1 can decode packet q1 by
performing:

Z1 + . . .+ ZK−1 + qK = (q1 + q2) + (q2 + q3) + . . .+ (qK−1 + qK) + qK

= q1.

The linear index code of G is said to be cyclic if it uses a sequence of coding actions that involve
only cyclic coding actions and direct broadcasts without coding. Linear codes can be further categorized
into scalar linear codes and vector linear codes according to whether the transmitted message is a linear
combination of the original packets or the subpackets obtained by subdivisions. In scalar linear codes, each
packet is considered as an element of a finite field and the transmitted message is a linear combination
of packets over that field. In vector linear codes, each packet is assumed to be sufficiently large and can
be divided into many smaller subpackets and the transmitted message is a linear combination of these
subpackets instead of the original packets. The problem of finding the optimal scalar cyclic code to clear
G can be formulated as an ILP problem as below:

(P2)

min
yCi

,∀Ci∈Ci,i=2,...,L;
ym,m=1,...,M

L∑
i=2

∑
Ci∈Ci

yCi
(i− 1) +

M∑
m=1

ym

s.t. ym +
L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci} ≥ wpm , m = 1, . . . ,M

yCi
non-negative integral, ∀Ci ∈ Ci, i = 2, . . . , L

ym non-negative integral, m = 1, . . . ,M

where yCi
is the number of cycle codes over each cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L, ym is the number

of direct broadcasts over each packet vertex pm,m = 1, . . . ,M , objective function
∑L

i=2

∑
Ci∈Ci yCi

(i −
1) +

∑M
m=1 ym is the total number of transmissions, and ym +

∑L
i=2

∑
Ci∈Ci yCi

1{pm∈Ci} ≥ wpm is the
constraint that all the wpm packets represented by packet vertex pm are cleared by either cyclic codes or
direct broadcasts.
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The LP relaxation of integer program (P2) is below:

(P2′)

min
yCi

,∀Ci∈Ci,i=2,...,L;
ym,m=1,...,M

L∑
i=2

∑
Ci∈Ci

yCi
(i− 1) +

M∑
m=1

ym

s.t. ym +
L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci} ≥ wpm , m = 1, . . . ,M

yCi
≥ 0, ∀Ci ∈ Ci, i = 2, . . . , L

ym ≥ 0, m = 1, . . . ,M

The only difference between the above problem and the original problem (P2) is that the constraints that
yCi

and ym are non-negative integral are replaced by the relaxed constraints that yCi
≥ 0 and ym ≥ 0.

Since all the parameters in the linear constraints of (P2′) are integers, an optimal solution can be
found that has all variables equal to rational numbers. Let an optimal solution of (P2′) be y∗Ci

, ∀Ci ∈
Ci, i = 2, . . . , L; y∗m,m = 1, . . . ,M , and assume these values are all rational numbers. The optimal
vector cyclic code can be constructed as follows. First, one can find an integer θ such that θy∗Ci

,∀Ci ∈
Ci, i = 2, . . . , L; θy∗m,m = 1, . . . ,M are all integers. Next, divide each packet into θ subpackets. After the
subdivision, a single cyclic coding action over a cycle Ci is no longer a linear combination of packets but
a linear combination of subpackets. Further, a single (uncoded) direct broadcast from a packet vertex pm
is no longer the broadcast of one packet but one subpacket. Then, the optimal vector cyclic code performs
θy∗Ci

cyclic coding actions over each cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L and broadcasts θy∗m subpackets over
each packet vertex pm,m = 1, . . . ,M .

Define gap(P2,P2′) as the integrality gap between integer program (P2) and its LP relaxation (P2′).
Since the relaxation (P2′) has less restrictive constraints, the value of gap(P2,P2′) is always non-negative.
Let Tcyclic(G) and T ′cyclic(G) be the clearance time attained by the optimal vector cyclic code and the
optimal scalar cyclic code, respectively. Then Tcyclic(G)− T ′cyclic(G) = gap(P2,P2′).

B. Duality Between Information Theoretical Lower Bounds and Cyclic Codes
The duality between the tightest lower bound given by Theorem 1 and the optimal cyclic code is

formally stated in the following lemma.
Lemma 1: The LP relaxations (P1′) and (P2′) form a primal-dual linear programming pair. In particular,

the vector cyclic code1 associated with problem (P2′) achieves a clearance time of val(P1)+gap(P1′,P1).
Proof: The Lagrangian function of (P2′) can be written as

L(yCi
, ym, λm, µCi

, µm) =
L∑
i=2

∑
Ci∈Ci

yCi
(i− 1) +

M∑
m=1

ym +
M∑
m=1

λm
[
wpm − ym −

L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci}

]
−

L∑
i=2

∑
Ci∈Ci

µCi
yCi
−

M∑
m=1

µmym

=
M∑
m=1

λmwpm +
L∑
i=2

∑
Ci∈Ci

yCi

[
(i− 1)−

M∑
m=1

λm1{pm∈Ci} − µCi

]
+

M∑
m=1

ym[1− λm − µm]

1Similarly, the scalar cyclic code associated with problem (P2) achieves a clearance time of val(P1) + gap(P1′, P1) + gap(P2, P2′).
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where λm ≥ 0,m = 1, . . . ,M ; µCi
≥ 0,∀Ci ∈ Ci, i = 2, . . . , L and µm ≥ 0,m = 1, . . . ,M . The dual

problem of (P2′) is defined as:

max
λm≥0,m=1,...,M ;

µCi
≥0,∀Ci∈Ci,i=2,...,L;
µm≥0,m=1,...,M

min
yCi
∈R,∀Ci∈Ci,i=2,...,L
ym∈R,m=1,...,M

L(yCi
, ym, λm, µCi

, µm)

Note that,

min
yCi
∈R,∀Ci∈Ci,i=2,...,L
ym∈R,m=1,...,M

L(yCi
, ym, λm, µCi

, µm) =


∑M

m=1 λmwpm if
(i−1)−

∑M
m=1 λm1{pm∈Ci}−µCi

=0,

∀Ci∈Ci,i=2,...,L
1−λm−µm=0,m=1,...,M

−∞ otherwise

Then, the dual problem of (P2′) can be written as,

max
λm,m=1,...,M ;

µCi
,∀Ci∈Ci,i=2,...,L;
µm,m=1,...,M

M∑
m=1

λmwpm

s.t. (i− 1)−
M∑
m=1

λm1{pm∈Ci} − µCi
= 0, ∀Ci ∈ Ci, i = 2, . . . , L

1− λm − µm = 0, m = 1, . . . ,M

λm ≥ 0, m = 1, . . . ,M

µCi
≥ 0, ∀Ci ∈ Ci, i = 2, . . . , L

µm ≥ 0, m = 1, . . . ,M

Eliminating variables µCi
,∀Ci ∈ Ci, i = 2, . . . , L and µm,m = 1, . . . ,M , we obtain

max
λm,m=1,...,M

M∑
m=1

λmwpm

s.t.
M∑
m=1

λm1{pm∈Ci} ≤ (i− 1), ∀Ci ∈ Ci, i = 2, . . . , L

0 ≤ λm ≤ 1, m = 1, . . . ,M

The above problem is the same as (P1′). Thus, the clearance time of the vector cyclic code associated
with problem (P2′) is equal to the value of the optimal objective function in problem (P1′), which is
val(P1) + gap(P1′,P1). Then, the clearance time of the scalar cyclic code associated with problem (P2)
is equal to val(P1) + gap(P1′,P1) + gap(P2,P2′).

Thus far, we have proven the following lower and upper bound for the minimum clearance time of an
index coding problem.

val(P1) ≤ Tmin(G) ≤ val(P1) + gap(P1′,P1)

where the first inequality follows from Theorem 1 and the second inequality follows from Lemma 1. Hence,
the performance gap between the optimal index code and the optimal vector cyclic code is ultimately
bounded by the integrality gap between integer program (P1) and its LP relaxation (P1′).

There are various techniques for bounding the integrality gaps of integer linear programs, such as the
random rounding methods in [14], [15]. Rather than explore this direction, the next section provides a
special case where the gap is equal to zero.
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V. OPTIMALITY OF CYCLIC CODES IN PLANAR BIPARTITE GRAPHS

In graph theory, a planar graph is a graph that can be drawn as a picture on a 2-dimensional plane in
a way so that no two arcs meet at a point other than a common vertex. The main result in this section is
the following theorem:

Theorem 2: If the bipartite digraph G for a (unicast) index coding problem is planar, then val(P1) =
val(P2), i.e., gap(P1′,P1) = 0 and gap(P2,P2′) = 0. Hence, the (scalar) cyclic code given by (P2) is an
optimal index code.

The proof of Theorem 2 relies on the cycle-packing and feedback arc set duality in arc-weighted planar
graphs, which is summarized in the following theorem.

Theorem 3 (Paraphrased from Theorem 2.1 in [16] and originally proven in [17]): Let G = (V ,A,WA)
be an arc-weighed planar digraph where V is the set of vertices, A is the set of arcs andWA is an integral
arc weight assignment which assigns each arc a ∈ A a non-negative integral weight wa ∈ Z+. Let C be
the set of cycles in G. We have

min
{∑
a∈A

xawa :
∑
a∈A

xa1{a∈C} ≥ 1, ∀C ∈ C;xa ∈ {0, 1}, ∀a ∈ A
}

= max
{∑
C∈C

yC :
∑
C∈C

yC1{a∈C} ≤ wa,∀a ∈ A; yC ∈ Z+,∀C ∈ C
}
. (1)

The integer program on the left-hand-side of (1) is a minimum feedback arc set problem, while the
integer program on the right-hand-side of (1) is a cycle packing problem. Both problems are associated
with arc weighted digraphs. To apply this theorem, we introduce the respective complementary problems
of (P1) and (P2). The complementary problem of (P1) is a minimum feedback packet vertex set problem
and the complementary problem (P2) is a cycle packing problem. However, both complementary problems
are associated with packet-vertex-weighted digraphs. To settle this issue, we modify the bipartite digraph
G to produce an arc-weighted digraph Gs, which is planar if and only if G is planar. We then show that
the minimum feedback packet vertex set problem and the cycle packing problem in G can be reduced to
the minimum feedback arc set problem and the cycle packing problem in Gs, respectively. The following
subsections develop the proof of Theorem 2 and provide some additional consequences.

A. Complementary Problems
The integer program (P1) finds the maximum packet weighted acyclic subgraph. This is equivalent to

finding the minimum weight feedback packet vertex set. Indeed, this is the set of packets whose deletion
induce the maximum packet weighted acyclic subgraph. Thus, an equivalent problem to (P1) is:

(P3)

min
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Ci} ≥ 1, ∀Ci ∈ Ci, i = 2, . . . , L

xm ∈ {0, 1}, m = 1, . . . ,M

where xm ∈ {0, 1},m = 1, . . . ,M indicates if packet vertex pm is selected into the feedback vertex set,
objective function

∑M
m=1 xmwpm is the sum weight of the feedback vertex set, 1{pm∈Ci} is the indicator

function which equals one only if packet vertex pm participates in cycle Ci,∀Ci ∈ Ci, i = 2, . . . , L, and∑M
m=1 xm1{pm∈Ci} ≥ 1 is the constraint that at least one packet vertex in each cycle is selected into the

feedback vertex set. If x∗m,m = 1, . . . ,M is the optimal solution of (P3) and attains the optimal value W0,
then x∗m = 1− x∗m,m = 1, . . . ,M is the optimal solution of (P1) and attains the optimal value W −W0.
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Now consider the integer program related to cyclic coding. It is now useful to write the complementary
problem to the cyclic coding problem (P2). In [11], Chaudhry et. al. introduced the concept of comple-
mentary index coding problems. Instead of trying to find the minimum number of transmissions to clear
the problem, the complementary index coding problem is formulated to maximize the number of saved
transmissions by exploiting a specific code structure. Recall that any K-cycle code can deliver K packets
in K − 1 transmissions and hence one transmission is saved in each K-cycle code. If the weight of each
packet is not identically one, then K-cycle coding actions can be performed wmin = min{wp1 , . . . , wpK}
times on the same cycle. By performing K-cycle coding wmin times and then directly broadcasting the
remaining packets (uncoded), the base station can deliver wtotal =

∑K
k=1wpk packets with wtotal − wmin

transmissions.Thus, iwmin transmissions are saved.
The complementary index coding problem which aims to maximize the number of saved transmissions

by exploiting scalar cycles in G can be formulated as an ILP problem as below:

(P4)

max
yCi

,∀Ci∈Ci,i=2,...,L

L∑
i=2

∑
Ci∈Ci

yCi

s.t.
L∑
i=2

∑
Ci∈Ci

yCi
1{pm∈Ci} ≤ wpm , m = 1, . . . ,M

yCi
non-negative integral, ∀Ci ∈ Ci, i = 2, . . . , L

where yCi
is the number of cycle codes over each cycle Ci ∈ Ci,∀Ci ∈ Ci, i = 2, . . . , L, objective

function
∑L

i=2

∑
Ci∈Ci yCi

is the total number of cycle codes, i.e., total number of saved transmissions,
and

∑L
i=2

∑
Ci∈Ci yCi

1{pm∈Ci} ≤ wpm is the constraint that each packet vertex pm can participate in at
most wpm cycle codes. This is important because if packet pm has already participated wpm times in
cyclic coding actions, then all of its packets have been delivered and new cyclic coding actions that
involve this packet vertex can no longer save any transmissions. K − 1 transmissions in this new cycle
code clear K−1 packets for other packet vertices and 1 useless duplicate packet for packet vertex pm. No
transmission is saved on this new cycle. If the optimal solution of (P4) is y∗Ci

,∀Ci ∈ Ci, i = 2, . . . , L and
attains the optimal value W0, then the optimal solution of (P2) is y∗Ci

= y∗Ci
,∀Ci ∈ Ci, i = 2, . . . , L, y∗m =

wpm −
∑L

i=2

∑
Ci∈Ci y

∗
Ci
1{pm∈Ci},m = 1, . . . ,M and attains the optimal value W −W0.

B. Packet Split Digraphs
Definition 1 (Packet Split Digraphs): Given a graph G = (U ,P ,A,WP), we construct the correspond-

ing packet split digraph Gs = (V s,As,W s) as follows:
1) For each packet vertex pm ∈ P ,m = 1, . . . ,M , we create two packet vertices pin

m and pout
m . Let

V s = U ∪ {pin
1 , p

out
1 , pin

2 , p
out
2 , . . . , pin

M , p
out
M }.

2) For each packet vertex pm ∈ P ,m = 1, . . . ,M , we create a packet-to-packet arc (pin
m, p

out
m ) in As.

For each arc (un, pm) ∈ A, we create a user-to-packet arc (un, p
in
m) in As. For each arc (pm, un) ∈ A,

we create a packet-to-user arc (pout
m , un) in As.

3) For each arc (pin
m, p

out
m ) in As, we assign a weight which is equal to wpm ∈ WP . For each arc (un, p

in
m)

or (pout
m , un) in As, we assign an integral weight which is larger than

∑M
m=1wpm .

For any bipartite digraph G, the packet split digraph Gs, which is an arc-weighted digraph, can always
be constructed. Figure 2 shows the packet split digraph constructed from the bipartite digraph in Figure
1. In any digraph, a set of arcs is called a feedback arc set if the removal of arcs in this set leaves an
acyclic digraph. If the digraph is arc-weighted, the feedback arc set with the minimum sum weight is
called the minimum feedback arc set.

The following facts summarize the connections between the packet split digraph and the original digraph.
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Fig. 2. The packet split digraph constructed from the bipartite digraph given in Figure 1

Fact 1: There is a bijection between G and Gs. This bijection maps user vertices, user-to-packet arcs,
packet vertices, and packet-to-user arcs in G to user vertices, user-to-packet arcs, packet-to-packet arcs,
and packet-to-user arcs in Gs, respectively. Thus, this bijection also maps cycles in G to cycles in Gs.

Proof: The bijection can be easily identified according to the construction rule of the packet split
digraph.

Fact 2: Every minimum feedback arc set of packet split graph Gs contains only packet-to-packet arcs
and no packet-to-user arcs or user-to-packet arcs.

Proof: In digraph G, each cycle contains at least one packet vertex. By Fact 1, each cycle Gs contains
at least one packet-to-packet arc. As such, the arc set composed of all packet-to-packet arcs is a feedback
arc set of Gs and this feedback arc set contains no packet-to-user arcs or user-to-packet arcs. Note that the
sum weight of this arc set is strictly less than the weight of any single packet-to-user or user-to-packet
arc. Any feedback arc set with a packet-to-user arc or user-to-packet arc has a sum weight strictly larger
than that of this one and hence can not be a minimum feedback arc set.

Fact 3: If As
fd ⊆ As is a minimum feedback arc set of the packet split digraph Gs, then a minimum

feedback packet vertex set Pfd ⊆ P of G is immediate. In addition, the sum weight of Pfd is equal to the
sum weight of As

fd.
Proof: Let As

fd be a minimum feedback arc set of Gs and the sum weight of As
fd be Wfd. By Fact 2,

As
fd contains only packet-to-packet arcs. By Fact 1, the packet vertex set Pfd ⊆ P composed by packet

vertices corresponding to arcs in As
fd is a feedback packet vertex set of G and the sum weight of Pfd is

equal to Wfd. If Pfd is not a minimum feedback packet vertex set, there must exist a minimum feedback
packet vertex set, say P ′fd, whose sum weight W ′

fd < Wfd. By Fact 1, the counterpart of P ′fd in Gs is a
feedback arc set and the sum weight of this feedback arc set is equal to W ′

fd. Denote this feedback arc set
as As,′fd , then As,′fd has a sum weight strictly less than Wfd. This contradicts the fact that As

fd is a minimum
feedback arc set of Gs. Hence, Pfd must be a minimum feedback packet set of G.
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Fig. 3. (a) Subdivision of arc (v1, v2). (b) Contraction of arc (v1, v2).

C. Optimality of Cyclic Codes in Planar Graphs
The planarity of a digraph is not affected by arc directions, so that a digraph is planar if and only

if its undirected counterpart, where all directed arcs are turned into undirected edges, is planar. In an
undirected graph, subdividing an edge (v1, v2) is the operation of deleting edge (v1, v2), adding a vertex
v0, and adding edges (v1, v0) and (v0, v2) (see Figure 3a); contracting/shrinking an edge (v1, v2) is the
operation of deleting edge(v1, v2), adding a vertex v0, replacing any edge (v, v1) with (v, v0), and replacing
any edge (v2, v) with (v0, v) (see Figure 3b). If a graph G is planar, subdividing and contracting operations
preserve the planarity. A graph G ′ is said to be a subdivision of G if G ′ is obtained from G by a sequence
of edge subdividing operations. A graph G ′ is said to be a minor of G if G ′ is a subgraph of the graph
obtained from G by a sequence of edge contracting operations. The simplest two non-planar graphs are
the complete graph with 5 vertices, which is denoted as K5, and the complete bipartite graph with 3
vertices on one side and 3 vertices on the other side, which is denoted as K3,3. Both of them are drawn
in Figure 4.

The following theorem provides a sufficient and necessary condition for the planarity of an undirected
graph.

Theorem 4 (Page 24 in [18] and originally proven by Wagner in 1937): An undirected graph G is pla-
nar if and only if G contains neither K5 nor K3,3 as a minor.

In the index coding problem, a packet is said to be a uniprior packet if it is contained as side information
by only one user. The following lemma is proposed to characterize the planarity of the packet split graph
Gs.

Lemma 2: Let G be an index coding problem where each packet vertex is either unicast or uniprior
and let Gs be the packet split digraph of G. Gs is planar if and only if G is planar.

Proof:
• “only if” part: This part is relatively easy. Assume Gs is planar and is drawn in a plane. A planar

drawing of G can be obtained by contracting all the packet-to-packet arcs of Gs into packet vertices.
This part holds for any G even if some packet vertex is neither unicast nor uniprior.

• “if” part: Assume G is planar and is drawn in a plane. A planar drawing of Gs can be obtained by
subdividing all packet-to-user arcs and user-to-packet arcs in G. Specifically, for each unicast packet
vertex pm with one single outgoing link, we can subdivide the outgoing link into two parts; add a
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Fig. 4. K5 and K3,3

new node pout
m in the middle and reindex the node pm as pin

m. Similarly, for each uniprior packet vertex
pm with one single incoming link, we can subdivide the incoming link into two parts; add a new
node pin

m in the middle and reindex the node pm as pout
m . The subdivision operations as above yield a

planar drawing of Gs.

Corollary 1: For any unicast index coding problem G, Gs is planar if and only if G is planar.
Now we are ready to present the main result in this section.
Theorem 2: (Restated) If the bipartite digraph G for a (unicast) index coding problem is planar, then

val(P1) = val(P2), i.e., gap(P1′,P1) = 0 and gap(P2,P2′) = 0. Hence, the cyclic code given by (P2) is
an optimal index code.

Proof: Since G is a planar graph and this is a unicast index coding problem, Gs is also planar graph
by Corollary 1. Let Gs = (V s,As,W s) be the packet spit digraph of G = (U ,P ,A,WP). Let Cs be the
set of cycles in Gs. The minimum feedback arc set problem in Gs can be formulated as an integer linear
programming problem as follows:

(P3∗)

min
xa,a∈A

M∑
a∈A

xawa

s.t.
∑
a∈A

xa1{a∈C} ≥ 1, ∀C ∈ Cs

xa ∈ {0, 1}, a ∈ A
Similarly, the cycle-packing problem in Gs can formulated as another integer linear programming as
follows:

(P4∗)

max
yC ,C∈Cs

∑
C∈Cs

yC

s.t.
L∑

C∈Cs
yC1{a∈C} ≤ wa, ∀a ∈ As

yC non-negative integral,∀C ∈ Cs
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By Theorem 3, if Gs is a planar graph, then (P3∗) and (P4∗) have the same optimal value. In what
follows, we show that the optimal value of (P3) is equal to that of (P3∗) and the optimal value of (P4) is
equal to that of (P4∗).
• (P3) and (P3∗) have the same optimal value: By Fact 3, the minimum feedback arc set corresponding

to the solution of (P3∗) can be converted to a minimum feedback packet set solution of (P3) which
attains the same optimal objective function value as that of (P3∗). On the other hand, by Fact 1, the
optimal solution of (P3) can be converted to a solution of (P3∗) which attains the same objective
value as that of (P3).

• (P4) and (P4∗) have the same optimal value: By Fact 1, there is a bijection from C to Cs. This is
equivalent to say, there is a bijection from variables in (P4) to those in (P4∗). Let As1 be the set of
packet-to-packet arcs andAs2 be the set of packet-to-user and user-to-packet arcs. SoAs1∪As2 = As and
As1∩As2 = ∅. The constraints

∑
C∈Cs yC1{a∈C} ≤ wa,∀a ∈ As1 in (P4∗) are essentially the same as the

constraints
∑L

i=2

∑
Ci∈Ci yCi

1{pm∈Ci} ≤ wpm ,m = 1, . . . ,M in (P4). The other inequality constraints∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As2 can be shown to be redundant as follows. Let yC , C ∈ Cs be an

arbitrary non-negative integral vector which satisfies all the constraints
∑

C∈Cs yC1{a∈C} ≤ wa over
a ∈ As1. Due to the bipartite property, each cycle in G contains at least one packet vertex. By Fact 1,
each cycle in Gs contains at least one packet-to-packet arc. Thus, for any C ∈ Cs, there exists some
a ∈ As1 such that 1{a∈C} = 1. Then, for any ā ∈ As2 we have,∑

C∈Cs
yC1{ā∈C} ≤

∑
C∈Cs

yC

≤
∑
C∈Cs

[
yC ·

∑
a∈As

1

1{a∈C}
]

=
∑
a∈As

1

[ ∑
C∈Cs

yC1{a∈C}
]

≤
∑
a∈As

1

wa

< wā

where the first inequality follows from the fact that 0 ≤ 1{ā∈C} ≤ 1; the second inequality follows
from the fact that for any C ∈ Cs there exists some a ∈ As1 such that 1{a∈C} = 1; the third inequality
follows from the fact that all the constraints

∑
C∈Cs yC1{a∈C} ≤ wa over a ∈ As1 are satisfied; and the

last inequality follows from the fact that the weight of any packet-to-user arc or user-to-packet-arc
is strictly larger than the sum weight of all packet-to-packet arcs. This is to say all the constraints∑

C∈Cs yC1{a∈C} ≤ wa over a ∈ As1 are automatically satisfied and hence redundant. Hence, (P4)
and (P4∗) are two equivalent optimization problems.

Combining the above facts, we can conclude that the optimal value of (P3) is equal to that of (P4). Denote
this value as W0. According to Theorem 1, W −W0 is an lower bound of the clearance time of the index
coding problem G. On the other hand, W −W0 is the clearance time achieved by the scalar cyclic code
corresponding to the solution of (P4), or equivalently (P2). Hence, we can conclude that the cyclic code
given by (P2) is the optimal index code.

D. Optimality of Cyclic Codes in the Unicast-Uniprior Index Coding Problem
In this subsection, we consider the unicast-uniprior index coding problem where each packet is de-

manded by one single user and can be contained as side information by one single user. The problem is
motivated by the broadcast relay problem [9] where multiple users exchange their individual data through
a broadcast relay.

A strong corollary of Theorem 2 on the unicast-uniprior index coding problem is presented as below.
This corollary is also an enhancement of the conclusion in section III.C of [9] where the cyclic code is
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proven to be the optimal index code in the unicast-uniprior index coding problem with less than or equal
to 3 users.

Corollary 2: If the number of users in the unicast-uniprior index coding problem is less than or equal
to 4, then cyclic codes are optimal.

Proof: Let G = (U ,P ,A,WP) be a unicast-uniprior index coding problem where each packet vertex
has one single outgoing link and one single incoming link and |U| ≤ 4. Let the underlying undirected
graph of G be U(G). The degree of a vertex in an undirected graph is defined as the number of its adjacent
edges. At most 4 vertices in U(G) can have a degree larger than 2. That is because each packet vertex
must have a degree of 2 and only a user vertex can have a degree larger than 2.

By Theorem 4, if U(G) is nonplanar, there must exist a subgraph of U(G) which can be converted to
either K5 or K3,3 after several contracting operations. Note that K5 has 5 nodes with identical degree
of 4 and K3,3 has 6 nodes with identical degree of 3. Also note that no matter a user-to-packet edge or
a packet-to-user edge in U(G) is contracted, one user vertex and one packet vertex are replaced by one
new vertex whose degree is equal to the degree of the user vertex. As a result, contracting operations
performed over U(G) can not generate new nodes with degree larger than 2. Thus, there doesn’t exist a
subgraph of U(G) which has K5 or K3,3 as minor. So graph U(G) must be planar. By Theorem 2, the
cyclic code is optimal in G.

VI. PARTIAL CLIQUE CODES: A DUALITY PERSPECTIVE

Section IV shows the inherent duality between the tightest lower bound given by Theorem 1 and the
optimal cyclic code. In fact, this is not an isolated case. In this section, a different code structure involving
partial clique codes is considered. Partial clique codes are more sophisticated but often lead to performance
improvements over cyclic codes. It is shown that the problem of finding the optimal partial clique code
is the dual problem of another LP relaxation of (P1). This observation suggests that one could possibly
design a good code for the index coding problem by exploring LP relaxations of (P1) and studying their
dual problems.

A. Partial Clique Codes

Let P0 ⊆ P be a subset of k(1 ≤ k ≤M) packet vertices and Nout(P0) =
⋃
p∈P0

Nout(p) be the outgoing

neighborhood of pm, i.e., the subset of users who demanded packets in P0. If each user in Nout(P0) has
at least d(0 ≤ d ≤ k − 1) packet vertices in P0 as side information, then the subgraph of G induced by
P0 and Nout(P0) is a (k, d)-partial clique. A (k, d)-partial clique where the weight of each packet vertex
is identically 1 can be cleared with k − d transmissions using k − d independent linear combinations of
the packets (such as using Reed-Solomon erasure codes in [1] or random codes in [19]). For example, the
digraph G in Figure 1 itself is a (3, 1)-partial clique. If the weight of each packet vertex is identically one,
then this graph can be cleared by transmitting 2 linear combinations in the form Z = α1p1 +α2p2 +α3p3

where αi’s are taken from a finite filed F. If the finite field F is large enough, we are able to find 2
linear combinations such that the 2 linear combinations together with any one in p1, p2 and p3 are linearly
independent. Thus, each user ui, i = 1, 2, 3 can decode pi by solving a system of 3 linear equations.

The linear index code of G is said to be a partial clique code if it uses a sequence of coding actions that
involve only partial clique coding actions. Note that the subgraph induced by a single packet vertex and
the user vertex demanding it is by definition a (1, 0)-partial clique. Let Tk,d, k = 1, . . . ,M, d = 0, . . . , k−1
be the set of all (k, d)-partial cliques in G, then the problem of finding the optimal scalar partial clique
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code can be formulated as an ILP problem as below:

(P5)

min
yTk,d ,∀Tk,d∈Tk,d,k=1,...,M,d=0,...,k−1

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d)

s.t.
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d} ≥ wpm , m = 1, . . . ,M

yTk,d non-negative integral, ∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1

where yTk,d is the number of partial clique codes over each partial clique Tk,d,∀Tk,d ∈ Tk,d, , k =

1, . . . ,M, d = 0, . . . , k − 1, objective function
∑M

k=1

∑k−1
d=0

∑
Tk,d∈Tk,d yTk,d(k − d) is the total number of

transmissions, and
∑M

k=1

∑k−1
d=0

∑
Tk,d∈Tk,d yTk,d1{pm∈Tk,d} ≥ wpm is the constraint that all the wpm packets

represented by packet vertex pm are cleared by partial cliques involving it.
The problem of finding the optimal vector partial clique code can be formulated as a linear programing

problem as below:

(P5′)

min
yTk,d ,∀Tk,d∈Tk,d,k=1,...,M,d=0,...,k−1

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d)

s.t.
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d} ≥ wpm , m = 1, . . . ,M

yTk,d ≥ 0, ∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1

Similar to cyclic codes, (P5′) is the LP relaxation of (P5).
The structure of partial clique codes is much more sophisticated than that of cyclic codes. Typically,

partial clique codes have to be implemented over a large enough finite field while cyclic codes can always
be implemented over the binary field. On the other hand, the performance of partial clique codes in general
is better (no worse) than that of cyclic codes. This is summarized in the following lemma.

Lemma 3: In any (unicast) index coding problem, the optimal clearance time attained by scalar cyclic
codes is no less than that attained by scalar partial clique codes. Similarly, the optimal clearance time
attained by vector cyclic codes is no less than that attained by vector partial clique codes.

Proof: This lemma is proven for scalar codes. However, all the arguments can be carried over to
vector codes after each packet is divided into subpackets. Recall that in any K-cycle, each user vertex
has at least one packet vertex as side information. So each K-cycle code can be equivalently replaced by
a (K, 1)-partial clique code. This uses partial clique coding to achieve the same clearance time. Thus, the
best partial clique coding strategy achieves a clearance time that is less than or equal to that of the best
cyclic coding strategy.

Figure 5 shows an example of the index coding problem with 3 users and 3 packets. The bipartite
digraph of this problem is not planar. (In fact, this example is the only unicast index coding problem
with 3 users and 3 packets for which the bipartite digraph is non-planar.) It can be verified that the
optimal scalar cyclic code can clear this problem with 2 transmissions. On the other hand, the bipartite
digraph itself is a (3, 2)-partial clique and hence the scalar partial clique code can clear it with one single
transmission. The scalar partial clique code simply transmits Z = p1 + p2 + p3. In this simple example,
the scalar partial clique code is strictly better than the scalar cyclic code. However, the following theorem
shows that partial clique codes have no performance advantage over cyclic codes in the unicast-uniprior
index coding problem.

Theorem 5: In any unicast-uniprior index coding problem, the optimal clearance time attained by scalar
cyclic codes is equal to that attained by scalar partial cliques. Similarly, the optimal clearance time attained
by vector cyclic codes is equal to that attained by vector partial cliques.
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Fig. 5. An example with 3 users and 3 packets where the partial clique code is strictly better than the cyclic code.

Proof: This theorem is proven for scalar codes. However, all the arguments can be carried over to
vector codes after each packet is divided into subpackets.
• Claim 1: The optimal clearance time attained by cyclic codes is larger than or equal to that attained

by partial clique codes. This is Lemma 3.
• Claim 2: The optimal clearance time attained by cyclic codes is less than or equal to that attained

by partial clique codes. For any partial clique Tk,d (d ≥ 1) utilized in the optimal partial clique code,
k packets are cleared with k − d transmissions. By definition of partial cliques, each user vertex in
this Tk,d has at least d arcs outgoing to packet vertices in it. So we are able to find a cycle in it. To
find a cycle, we start at any vertex, traverse a path from vertex to vertex using any outgoing link and
discover a cycle when we revisit a vertex. Denote this cycle as C1 and delete all the packet vertices
and the associated outgoing and incoming arcs from Tk,d. Note that each packet vertex has one single
outgoing and one single incoming arc in a unicast-uniprior index coding problem. Hence, no two
packet vertices in C1 share the same outgoing neighbor or incoming neighbor. So after the deletion
of the packet vertices and the associated outgoing and incoming arcs, the number of outgoing arcs
of the user vertices involved in C1 decreases by one while the number of outgoing arcs of the user
vertices not involved in C1 does not change. So in the remaining part of this Tk,d, each user vertex
has at least d − 1 outgoing arcs. Repeat the above process again and again. In the end, we have d
cycles and no two cycles share the same packet vertex. So by performing a cycle code over each
cycle Ci, i = 1, . . . , d, we can save d transmissions in total. Hence, this Tk,d can be cleared with
k − d transmissions by applying cyclic codes. As a result, cyclic codes are no worse than partial
clique codes in the unicast-uniprior index coding problem.
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B. Duality Between Information Theoretical Lower Bounds and Partial Clique Codes
Define an ILP problem as below:

(P6)

max
xm,m=1,...,M

M∑
m=1

xmwpm

s.t.
M∑
m=1

xm1{pm∈Tk,d} ≤ k − d, ∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1

xm ∈ {0, 1}, m = 1, . . . ,M

The physical meaning of (P6) is to find the maximum packet weighted subgraph of G formed by packet
vertex deletions such that at least d packet vertices are deleted in each (k, d) partial clique.

Lemma 4: (P5′) and the LP relaxation of (P6) are a primal-dual linear programming pair.
Proof: The Lagrangian function of (P5′) can be written as

L(yTk,d , λm, µTk,d) =
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d(k − d) +
M∑
m=1

λm
[
wpm −

M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d1{pm∈Tk,d}
]

−
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

µTk,dyTk,d

=
M∑
m=1

λmwpm +
M∑
k=1

k−1∑
d=0

∑
Tk,d∈Tk,d

yTk,d
[
(k − d)−

M∑
m=1

λm1{pm∈Tk,d} − µTk,d
]

where λm ≥ 0,m = 1, . . . ,M and µTk,d ≥ 0,∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1. The dual
problem of (P5′) is defined as:

max
λm≥0,m=1,...,M ;

µTk,d≥0,∀Tk,d∈Tk,d,k=1,...,M,d=0,...,k−1;

min
yTk,d∈R,k=2,...,M,d=0,...,k−1,∀Tk,d∈Tk,d

L(yTk,d , λm, µTk,d)

Note that,

min
yTk,d∈R,k=2,...,M,d=0,...,k−1,∀Tk,d∈Tk,d

L(yTk,d , λm, µTk,d) =

{ ∑M
m=1 λmwpm

(k−d)−
∑M

m=1 λm1{pm∈Tk,d}−µTk,d=0

∀Tk,d∈Tk,d,k=1,...,M,d=0,...,k−1

−∞ otherwise
Then, the dual problem of (P5′) can be written as,

max
λm,m=1,...,M ;

µTk,d ,∀Tk,d∈Tk,d,k=1,...,M,d=0,...,k−1;

M∑
m=1

λmwpm

s.t. (k − d)−
M∑
m=1

λm1{pm∈Tk,d} − µTk,d = 0, ∀Tk,d∈Tk,d
k=1,...,M,d=0,...,k−1,

λm ≥ 0, m = 1, . . . ,M

µTkd ≥ 0, ∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1

Eliminating variables µTkd ,∀Tk,d ∈ Tk,d, k = 1, . . . ,M, d = 0, . . . , k − 1, we obtain

max
λm,m=1,...,M

M∑
m=1

λmwpm

s.t.
M∑
m=1

λm1{pm∈Tk,d} ≤ (k − d), ∀Tk,d∈Tk,d,∀k=1,...,M,d=0,...,k−1

λm ≥ 0, m = 1, . . . ,M
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Now consider all the M packet vertices, i.e., all T1,0 ∈ T1,0. The corresponding constraints
∑M

m=1 λm1{pm∈Tk,d} ≤
(k − d),∀T1,0 ∈ T1,0 can be simplified as λm ≤ 1,m = 1, . . . ,M . Hence, the above linear programming
problem is the LP relaxation of (P6).

Integer program (P6) seems quite different from (P1) and it seems that there exists no duality between
the optimal partial clique code and the tightest lower bound. However, the following lemma shows that
(P1) and (P6) are two equivalent problems.

Lemma 5: For any unicast index coding problem G, (P1) and (P6) are two equivalent problems.
Proof: Note that the objective function in (P1) is the same as that in (P6). To prove problem (P1)

and (P6) are equivalent, we show that xm ∈ {0, 1},m = 1, . . . ,M is feasible to (P1) if and only if it is
feasible to (P6).
• “if” part: Assume xm ∈ {0, 1},m = 1, . . . ,M is feasible to (P6). For any cycle Ci,∀Ci ∈ Ci, i =

2, . . . , L involving i packet vertices in G, let us consider the partial clique Ti,d formed by the i
packet vertices and i user vertices in this i-cycle. By the definition of a cycle, each user vertex
has at least one packet vertex among these i packet vertices as side information. So d ≥ 1. Since
xm ∈ {0, 1},m = 1, . . . ,M satisfies the inequality constraints in (P6), at least d packet vertices among
these i packet vertices are deleted. So cycle Ci can not be complete. Hence, xm,m = 1, . . . ,M yields
a acyclic subgraph of G.

• “only if” part: Assume xm ∈ {0, 1},m = 1, . . . ,M is feasible to (P1). For any partial clique Tk,d, if
d = 0, then constraint

∑M
m=1 xm1{pm∈Tk,d} ≤ k − d is trivially satisfied. Without loss of generality,

assume 1 ≤ d ≤ k− 1. Then, in this partial clique Tk,d, each user vertex has at least d outgoing arcs.
So we can find a cycle in this partial clique. (To find a cycle, we start at any vertex, traverse a path
from vertex to vertex using any outgoing link and discover a cycle when we revisit a vertex.) Since
xm ∈ {0, 1},m = 1, . . . ,M is feasible to (P1), at least one packet vertex in this cycle is deleted.
Assume d1 packet vertices are deleted. These deleted packet vertices are also vertices in partial clique
Tk,d. If d1 = d, then the constraint over Tk,d is satisfied. If d1 < d, then we continue to consider the
remaining part of Tk,d after deleting these d1 packet vertices. In the remaining part, each user vertex
has at least d − d1 outgoing arcs. A similar argument as above shows that we are still able to find
a new cycle in the remaining part and at least one packet vertex in the cycle is deleted. Assume d2

packet vertices in the new cycle are deleted. If d1 + d2 < d, we can repeat this process again until at
least d packet vertices are shown to be deleted. That is to say, constraint

∑M
m=1 xm1{pm∈Tk,d} ≤ k−d

over all Tk,d is satisfied. Hence, xm ∈ {0, 1},m = 1, . . . ,M satisfies the constraints of (P6).

The above lemma indicates that (P6) is another representation of (P1). However, this new representation
is non-trivial. The LP relaxations of (P6) and (P1) correspond to partial clique codes and cyclic codes,
respectively. Lemma 3 demonstrates that codes associated with (P6) in general have better performance
than codes associated with (P1).

C. Discussions
In the subject of integer linear programming, (P1) and (P6) are considered as two different representa-

tions of the same integer linear program. However, different representations of an integer linear program
can yield different LP relaxations. The optimal values, or equivalently the integrality gaps, of different
LP relaxations can be quite different. In section IV and this section, we show that the LP relaxation of
(P1) is the (dual) problem of finding the optimal vector cyclic code and the LP relaxation of (P6) is the
(dual) problem of finding the optimal vector partial clique code. The performance of partial clique codes
is no worse than that of cyclic codes. This is because the integrality gap of the LP relaxation of (P6) is
no larger than that of the LP relaxation of (P1). The relations between various problems in this paper are
illustrated in Figure 6.

Since there are various techniques on how to obtain tight LP relaxations of an integer linear program[20],
a potential approach to design good code structures for the index coding problem is to explore different
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Increasing'direc!on'

Fig. 6. The relations between various problems in this paper.

representations of (P1) for which the LP relaxations have small integrality gaps and study their dual
problems. If the dual problem of any LP relaxation can be interpreted as a code structure, then this is a
good code for the index coding problem.

VII. CONCLUSION

This paper studies index coding from a perspective of optimization and duality. It illustrates the inherent
duality between the information theoretical lower bound, defined by the maximum acyclic subgraph, and
the optimal cyclic codes and partial clique codes. The performance of both codes is bounded by the
respective integrality gap of two different LP relaxations of the tightest lower bound problem. In the
special case when the index coding problem has a planar digraph representation, the integrality gap
associated with cyclic coding is shown to be zero. So the exact optimality is achieved by cyclic coding.
For general (non-planar) problems, the LP-relaxation associated with partial clique coding provides an
integrality gap that is no worse, and often better, than the previous gap. This ensures that partial clique
coding is no worse, and often better, than cyclic coding. These results provide new insight into the index
coding problem and suggest that good codes can be found by exploring the LP relaxations of the tightest
lower bound problem.
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