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Abstract—We consider a fully-connected wireless gossip net-
work which consists of a source and n receiver nodes. The source
updates itself with a Poisson process and also sends updates to

the nodes as Poisson arrivals. Upon receiving the updates, the
nodes update their knowledge about the source. The nodes gossip
the data among themselves in the form of Poisson arrivals to
disperse their knowledge about the source. The total gossiping
rate is bounded by a constraint. The goal of the network is to be
as timely as possible with the source. In this work, we propose
ASUMAN, a distributed opportunistic gossiping scheme, where
after each time the source updates itself, each node waits for
a time proportional to its current age and broadcasts a signal
to the other nodes of the network. This allows the nodes in the
network which have higher age to remain silent and only the
low-age nodes to gossip, thus utilizing a significant portion of the
constrained total gossip rate. We calculate the average age for
a typical node in such a network with symmetric settings and
show that the theoretical upper bound on the age scales as O(1).
ASUMAN, with an average age of O(1), offers significant gains
compared to a system where the nodes just gossip blindly with
a fixed update rate in which case the age scales as O(log n).

I. INTRODUCTION

Gossiping is a mechanism to disperse information quickly

in a network. Each node of the network transmits its own data

randomly to its neighboring nodes. This kind of technique

is particularly useful in dense distributed sensor networks

where a large number of nodes communicate with each other

without the presence of a centralized server that schedules

transmissions. Although gossiping has been studied exten-

sively [1]–[3], the timeliness of gossiping networks is first

analyzed in [4]. For measuring the timeliness of a system,

the age of information metric has been introduced [5]–[8].

A disadvantage of the traditional age metric is that it does

not take the source’s update rate into account; even if the

information at the source has not changed, the traditional age

metric keeps increasing linearly with time. Thus, optimizing

the traditional age metric causes a portion of the resources

to be wasted into some transmissions that do not contribute

to the timeliness of the system. To circumvent this problem,

several extended versions of the traditional age metric have

been proposed [4], [9]–[14] and used in solving different

problems [15]–[18]. One such metric is the version age, which

is introduced as a measure of freshness in [4], [12], [13].

Reference [4] uses the version age in a gossip network,

where the source is updated with rate λe, the source updates a

fully-connected network of n nodes with a total update rate of

λ, and each node in the network updates the remaining n− 1
nodes with a total update rate of λ. [4] shows that the version

age of an individual node in such a network scales as O(log n)
with the network size n. Some variations of this system model

have been studied in [19]–[24]: [19], [20] consider clustered

networks with a community structure and show improvements

in version age due to clustering; [21] considers file slicing

and network coding and achieves a version age of O(1) for

each node; [22], [23] consider version age in the presence

of adversarial attacks and investigate how adversarial actions

affect the version age; and [24] considers the binary freshness

metric instead of the version age in gossiping.

In [4], the total gossip rate of the network is nλ. A downside

of the kind of gossiping in [4] is that the nodes with staler

versions also get to gossip to relatively fresher nodes, which

does not actually contribute to the timeliness of the overall

network. Our intuition in this paper is that, if the gossip

rate of staler nodes could be assigned (shifted) to fresher

nodes instead, then the timeliness of the network could be

improved. The challenge is how to implement this intuition in

a distributed network where there is no centralized server.

To that end, we introduce ASUMAN, an age-aware dis-

tributed gossiping scheme. Our key idea is reminiscent of

the opportunistic channel access scheme proposed in [25],

[26] in a different context, different system model, with a

different goal. [25], [26] consider a fading multiple access

channel with distributed users. It is well-known [27], [28] that

in a fading multiple access channel, in order to maximize

the sum capacity, only the largest channel gain user should

transmit. While the receiver may measure user channel gains

and announce the largest channel gain user as a feedback in the

downlink, the approach in [25], [26] is that users measure their

own channel gains in the downlink, and apply an opportunistic

carrier-sensing-like [29] scheme in the uplink. In [25], [26],

before starting transmissions, the users wait for a back-off

time which is a decreasing function of their individual channel

gains. Since the user with the largest channel gain waits the

least amount of time, it starts transmitting first, all other users

become aware of this, and remain silent for the duration of

transmission. That is, the broadcast nature of the wireless

channel is exploited as an implicit feedback mechanism for

the coordination of distributed users.

We use a similar concept in the context of wireless sensor

nodes with the objective of information freshness. In our
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setting, where each node knows its own age, we are inter-

ested in enabling the freshest node to capture the channel

and update the remaining staler users. In our opportunistic

gossiping scheme ASUMAN, each node waits for a back-

off time proportional to its own age before starting to gossip.

Since the freshest node will start gossiping first, upon hearing

this, the rest of the nodes will forgo gossiping for that cycle,

and will only potentially receive updates. We show that this

policy achieves an age scaling of order of O(1) as the number

of nodes increases. For our analysis, we use the stochastic

hybrid system (SHS) approach [30], similar to [4], to derive

the expressions for the average steady-state age values.

II. SYSTEM MODEL

We consider a system with a source node, labeled as 0, and

a set of nodes N = {1, 2, . . . , n}; see Fig. 1. The source node

updates itself with a Poisson process with rate λe and it sends

updates to each of the nodes in the network as Poisson arrivals

with rate λ
n

. The network has a total gossiping rate B. The

nodes gossip their knowledge about the source’s information

to maintain the timeliness of the overall network. We consider

the version age metric for measuring this timeliness. The

version age of the ith node, denoted as ∆i(t), is the version of

information present in the ith node as compared to the current

version at the source. That is,

∆i(t) = Ns(t)−Ni(t), (1)

where Ns(t) is the version at the source and Ni(t) is the

version at the ith node at time t. We consider the age vector

∆(t) = [∆1(t),∆2(t), . . . ,∆n(t)] to denote the version of all

the nodes in the network. If the source updates itself at any

time, all the elements of ∆(t) increase by 1. We assume that

the nodes are aware of their own version age. The nodes gossip

among themselves to disperse the information in the network.

When node i sends a gossip update to node j at time t, node j
updates its information if the received information is fresher,

otherwise it keeps its information as it is. Thus, the age of node

j is updated to ∆′
j(t) = ∆{i,j}(t) = min{∆i(t),∆j(t)}.

III. OPPORTUNISTIC GOSSIPING VIA ASUMAN

In this section, we define the ASUMAN scheme and derive

a theoretical upper bound for its average age of gossip. Since

each node is aware of its own age, when the source updates

its information, it acts as a synchronization signal for all the

nodes in the network. Suppose we denote the time instances

of source self updates as Tk, where k is any positive integer.

T0 is defined to be 0. The inter-arrival time τk+1 = Tk+1−Tk
are exponentially distributed with mean 1

λe
. When the source

updates its information at time Tk, each node stops gossiping.

The ith node waits for a time C∆i(Tk), where is C is a

small proportionality constant. After waiting this time, node

i broadcasts a signal to all the nodes in the network and

starts gossiping. However, if a node receives a broadcast from

another node before its waiting period expires, then it remains

silent for the time interval Ik = [Tk, Tk+1). Thus, for each

time interval, only the nodes which have the lowest age at

0
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Fig. 1. Source 0 updates itself with rate λe and sends updates to the nodes
N = {1, 2, 3, 4, 5} uniformly with total rate λ, i.e., with rate λ/5 to each
of the nodes. The nodes gossip with each other with total update rate B.

the beginning of the interval gets to gossip. At time Tk, we

use Mk to denote the set of indices of the nodes with the

minimum age, ∆̃[k] = mini ∆i(Tk); see Fig. 2.

From the broadcast signals, all the nodes in the network get

to know that there are total |Mk| number of minimum-age

nodes at Tk. Therefore, each of the nodes in Mk utilizes only
B

|Mk|
of total gossip rate, while all the other nodes do not use

any update rate for Ik. If τk+1 > C∆̃[k], each node in Mk

gossips to every other node with rate B
|Mk|(n−1) for the time

interval [Tk + C∆̃[k], Tk+1). Otherwise, the source updates

itself before the nodes get a chance to gossip opportunistically,

and the next interval begins with the same scheme. In this

work, we are interested in the steady-state mean of the version

age of a node, which is defined as

ai = lim
t→∞

ai(t) = lim
t→∞

E[∆i(t)]. (2)

To evaluate this steady-state mean age, we define the mean

of ∆̃[k] as ã[k] = E[∆̃[k]] and evaluate it in Lemma 1.

Lemma 1 The mean of minimum age in interval Ik is

ã[k] =
k−1∑

ℓ=0

(
λe

λe + λ

)ℓ

, k ≥ 1. (3)

Proof: We use induction for the proof. Since all the ages are

0 at the beginning, ã[0] = 0 and ã[1] = 1. Assume that the

statement is true for k. The probability that the source does not

update any node in Ik is e−λτk+1 . If any node in the network

is updated in Ik, ∆̃[k+1] becomes 1; otherwise it is ∆̃[k]+1.

Thus, we have

ã[k + 1] = E[(1 − e−λτk+1) + (∆̃[k] + 1)e−λτk+1 ]. (4)

Since τk+1 is exponentially distributed with parameter λe,

E
[
e−λτk+1

]
=

∫ ∞

0

e−λτk+1λee
−λeτk+1dτk+1 (5)

=
λe

λe + λ
. (6)
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Fig. 2. Source 0 updates itself with rate λe and updates each of the nodes N = {1, 2} with rate λ/2. The version ages of the individual nodes are denoted

by ∆1(t) and ∆2(t), respectively, and ∆̃[k] = min{∆1(Tk),∆2(Tk)}.

Thus, we obtain

ã[k + 1] = 1 + ã[k]
λe

λe + λ
. (7)

Now, using the induction hypothesis, we can rewrite (7) as

ã[k + 1] = 1 +

k−1∑

ℓ=0

(
λe

λe + λ

)ℓ

·
λe

λe + λ
(8)

=
k∑

ℓ=0

(
λe

λe + λ

)ℓ

, (9)

completing the proof. �

Next, in Lemma 2, we consider an unrealistic case of C = 0,

i.e., all the nodes instantaneously know about the minimum

age nodes in the beginning of the interval Ik. Although this is

not a feasible model, the result of this lemma will be used for

calculations in the case of C > 0. In addition, in Lemma 2, we

consider the case where the total gossip rate of the network is

B = nλ, which is the same as the total gossip rate in [4].

Lemma 2 For C = 0, if the total gossip rate is B = nλ, then

the steady-state mean version age of a node scales as O(1).

Proof: Since the system is symmetric with respect to any

node in the network, proving the result only for any fixed

ith node will suffice. To analyze the system, we follow the

SHS formulation in [30]. Since C = 0, only one type of state

transition is involved. Thus, Q = {0} and for the node i ∈ N ,

we choose a function ψi : R
n × [0,∞) → R, such that

ψi(∆(t), t) = ∆i(t). (10)

Following [30, Thm. 1], we write the expected value of the

extended generator function as

E[(Lψi)(∆(t), t)] =
∑

(j,ℓ)∈L

λj,ℓ(∆(t), t)E[ψi(φj,ℓ(∆(t), t))

− ψi(∆(t), t)], (11)

where L is the set of all possible state transitions. Define reset

maps φj,ℓ(∆(t), t) = ∆̂(t) = [∆̂1(t), ∆̂n(t), . . . , ∆̂n(t)] as

∆̂i(t) =







∆i(t) + 1, if j = 0, ℓ = 0
0, if j = 0, ℓ = i
min(∆j(t),∆ℓ(t)), if j ∈ N , ℓ = i
∆i(t), otherwise.

(12)

The update rates λj,ℓ are given as

λj,ℓ(∆(t), t) =







λe, if j = 0, ℓ = 0
λ
n
, if j = 0, ℓ = i

λ
(k)
j,ℓ (t), otherwise,

(13)

where λ
(k)
j,ℓ (t) is the gossip rate of node j to node l in the time

interval Ik. Since C = 0,

λ
(k)
j,ℓ (t) =

{
B

|Mk|(n−1) , if j ∈ Mk, ℓ ∈ N , t ∈ Ik
0, otherwise.

(14)

Using the notations introduced in (2), we rewrite the expected

value of the extended generator function as

E[(Lψi)(∆(t), t)]

= E

[

λe(∆i(t) + 1−∆i(t)) +
λ

n
(0−∆i(t))

+
∑

j∈N

λj,i(∆(t), t)
(

∆
(k)
{j,i}(t)−∆i(t)

) ]

. (15)

Now, for t ∈ Ik, we write the expectation as

E[(Lψi)(∆(t), t)]

= λe −
λ

n
ai(t) + E

[
∑

j∈Mk

λ
(k)
j,i (t)(∆

(k)
{j,i}(t)−∆i(t))

]

. (16)

Note that, (14) is true, if the ith node is not in Mk by

the formulation of our proposed gossiping scheme. However,

even if node i is in Mk we can still assume that it is gossiping

to itself with rate B
|Mk|(n−1) , since the corresponding product

term (∆
(k)
{i,i}(t)−∆i(t)) = 0. Now, since the version age is a
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Fig. 3. An example of a typical opportunistic gossiping in a 5 node network. At Tk , the minimum age nodes are Mk = {2, 4}. Thus, they wait for a time

of ∆̃[k] in the age sensing phase [Tk, Tk + C∆̃[k]) and start transmitting with total update rate B in the gossiping phase [Tk + C∆̃[k], Tk+1).

piece-wise constant function of time, we obtain

dE[ψi(∆(t), t)]

dt
=
dE[∆i(t)]

dt
= 0 (17)

for all the continuity points. Hence, the expected value in (16)

is 0, by Dynkin’s formula, as given in [30]. Thus, (16) becomes

0 = λe −
λ

n
ai(t)

+ E

[
∑

j∈Mk

B

|Mk|(n− 1)

(

∆
(k)
{j,i}(t)−∆i(t)

) ]

. (18)

Hence, the mean age of an individual node is expressed as
(
λ

n
+

B

n− 1

)

ai(t)

= λe + E

[
∑

j∈Mk

B

|Mk|(n− 1)
∆

(k)
{j,i}(t)

]

. (19)

In (19), Mk is a function of ∆(t). Instead of deriving the

distribution of ∆(t), we use the inequality ∆
(k)
{j,i}(t) ≤ ∆̃[k]

for t ∈ Ik, and rewrite (19) as the following upper bound

ai(t) ≤
λe +

B
n−1E

[
∑

j∈Mk

∆̃[k]
|Mk|

]

λ
n
+ B

n−1

, ∀t ∈ Ik (20)

=
λe +

B
n−1 ã[k]

λ
n
+ B

n−1

, ∀t ∈ Ik. (21)

We are interested in the steady-state average age, i.e., average

age at t→ ∞. We evaluate the asymptote of the upper bound

in (21) as k → ∞. From Lemma 1, we have

lim
k→∞

ã[k] =
λe + λ

λ
. (22)

Using this result in (21), we obtain

ai = lim
t→∞

ai(t) ≤ lim
k→∞

λe +
B

n−1 ã[k]
λ
n
+ B

n−1

(23)

=
λe
λ

(

1 + B
n−1

(
1
λ
+ 1

λe

))

(
1
n
+ n

n−1

) . (24)

Now, to calculate the scaling of the average age, we use the

relation that B = nλ, which yields

lim
n→∞

ai ≤ lim
n→∞

λe
λ

(1 + nλ
n−1 (

1
λ
+ 1

λe
))

(
1
n
+ n

n−1

) (25)

=
2λe
λ

+ 1, (26)

concluding the proof. �

Now, we use the results of Lemmas 1 and 2, to formulate

the average version age in Theorem 1.

Theorem 1 For C > 0, if C is chosen such that it is bounded

for all n and C → 0 as n→ ∞, keeping the total gossip rate

the same as before, i.e., B = nλ, then the average version age

of a node scales as O(1), and the asymptotic upper bound is

the same as that for the case of C = 0.

Proof: There is no change in the function ψi or in the reset

maps φj,l. The only change is in the update frequencies. For

any choice of C > 0, we divide the time interval Ik into

two phases, an age sensing phase I
(s)
k = [Tk,min(Tk +

C∆̃[k], Tk+1)) and a gossiping phase I
(g)
k = [min(Tk +

C∆̃[k], Tk+1), Tk+1); see Fig. 3.



We already have an upper bound for the steady-state average

age expression for I
(g)
k from Lemma 2. Let us denote the right

hand side in (21) as a(g)[k], i.e.,

a(g)[k] =
λe +

B
n−1 ã[k]

λ
n
+ B

n−1

. (27)

For I
(s)
k , we evaluate an upper bound by ignoring the source

to ith node updates and only considering the opportunistic

gossiping. We define the process ∆(s)[k], such that ∆(s)[1] =
1. If the (k − 1)th interval does not have a gossiping phase,

i.e., τk ≤ C∆̃[k− 1], or if none of the active nodes in Mk−1

gossip to node i in I
(g)
k−1, then ∆(s)[k] = ∆(s)[k − 1] + 1.

Otherwise, if any node in Mk−1 gossips to node i in the

interval I(g)[k], then ∆(s)[k] = ∆̃[k− 1] + 1. We express the

probabilistic recurrence relations for k > 1 as

∆(s)[k] =







∆(s)[k − 1] + 1, P(τk ≤ C∆̃[k − 1])

∆(s)[k − 1] + 1, P(τk > C∆̃[k − 1])

×e−
B

n−1 (τk−C∆̃[k−1])

∆̃[k − 1] + 1, P(τk > C∆̃[k − 1])

×
(

1− e−
B

n−1 (τk−C∆̃[k−1])
)

(28)

Clearly, ∆i(t) ≤ ∆(s)[k] for t ∈ I
(s)
k . We write the mean of

this upper bound as

a(s)[k] = E[∆(s)[k]]

= E

[

(∆(s)[k − 1] + 1)

(

P(τk ≤ C∆̃[k − 1])

+ P(τk > C∆̃[k − 1])e−
B

n−1 (τk−C∆̃[k−1])

)

+ (∆̃[k − 1] + 1)P(τk > C∆̃[k − 1])

×
(

1− e−
B

n−1 (τk−C∆̃[k−1])
)]

. (29)

Since τk is exponentially distributed, we rewrite (29) as

a(s)[k] = (a(s)[k − 1] + 1)E
[
1− e−λeC∆̃[k−1]

+ e−λeC∆̃[k−1] · e−
B

n−1 (τk−C∆̃[k−1])
]

+ (ã[k − 1] + 1)E

[

e−λeC∆̃[k−1]

×
(

1− e−
B

n−1 (τk−C∆̃[k−1])
)]

. (30)

Now, for B = nλ, as n → ∞, C → 0, B
n−1 → λ,

e−λeC∆̃[k−1] → 1, and e
B

n−1C∆̃[k−1] → 1. Thus, (30) becomes

lim
n→∞

a(s)[k] =
(

lim
n→∞

a(s)[k − 1] + 1
)

E
[
e−λτk

]

+ (ã[k − 1] + 1)E
[
1− e−λτk

]
. (31)

From Lemma 1, we know that E
[
e−λτk

]
= λe

λe+λ
. Lemma 1

also says

ã[k − 1] =

k−2∑

ℓ=0

(
λe

λe + λ

)ℓ

≤ lim
k→∞

k−1∑

ℓ=0

(
λe

λe + λ

)ℓ

(32)

=
λe + λ

λ
. (33)

Using (33) in (31) gives

lim
n→∞

a(s)[k] ≤ 2 +
λe

λe + λ
lim
n→∞

a(s)[k − 1]. (34)

Here, we define a new sequence b[k], such that b[1] =
limn→∞ a(s)[1] = 1, and evolves according to

b[k] = 2 +
λe

λe + λ
b[k − 1]. (35)

Therefore, b[k] ≥ limn→∞ a(s)[k] for all k. Now, using similar

logic as in Lemma 1 here, we obtain an expression for b[k] as

b[k] = 2

k−2∑

ℓ=0

(
λe

λe + λ

)ℓ

+

(
λe

λe + λ

)k−1

. (36)

Hence, we obtain the relation

lim
n→∞

a(s)[k] ≤ 2

k−2∑

ℓ=0

(
λe

λe + λ

)ℓ

+

(
λe

λe + λ

)k−1

. (37)

From (37), we conclude that a(s)[k] ∼ O(1). Note that,

since ∆i(t) ≤ ∆(s)[k] for t ∈ I
(s)
k , the gossiping process in

I
(g)
k cannot increase the age. Thus, ∆i(t) ≤ ∆(s)[k] for all

t ∈ Ik. Therefore, ai(t) ∼ O(1). This finishes the first part

of the statement of Theorem 1, which is that the asymptotic

upper bound for the average age is O(1).

To prove the next part of the theorem, i.e., that under the

conditions given in the statement of the theorem, the upper

for C > 0 is the same as the upper bound for C = 0, first we

note that (37) yields the following steady-state upper bound

lim
k→∞

2

k−2∑

ℓ=0

(
λe

λe + λ

)ℓ

+

(
λe

λe + λ

)k−1

= 2

(
λe
λ

+ 1

)

. (38)

Comparing to the case of C = 0, we see that this value is

limk→∞ a(g)[k] + 1. To get a tighter upper bound, we take

the age reduction in the gossiping phase into consideration.

So far, we have

ai(t) ≤







a(s)[k], if τk+1 ≤ C∆̃[k] ∀t ∈ Ik
a(s)[k], if τk+1 > C∆̃[k] ∀t ∈ I

(s)
k

a(g)[k], if τk+1 > C∆̃[k] ∀t ∈ I
(g)
k

(39)

We calculate the average age as

ai = lim
T→∞

1

T

∫ T

0

∆i(t)dt = lim
T→∞

1

T

N(T )
∑

k=1

βi[k], (40)

where we denote the number of source self updates as N(T ) =
max{j : Tj ≤ T } and βi[k] =

∫

Ik
∆i(t)dt. Assuming

ergodicity of the process, we rewrite (40) as

ai = lim
T→∞

1
N(T )

∑N(T )
k=1 βi[k]

T/N(T )
=

limk→∞ E [βi[k]]

limT→∞ T/N(T )
, (41)

if limk→∞ E [βi[k]] converges. Since the source self update is

a Poisson process with rate λe, limT→∞ T/N(T ) = 1
λe

. We



write the numerator of (41) as

E [βi[k]] = E

[∫

Ik

∆i(t)1{τk+1 ≤ C∆̃[k]}dt

]

+ E

[∫

Ik

∆i(t)1{τk+1 > C∆̃[k]}dt

]

, (42)

where 1{·} is the indicator function. The first term in (42)

constitutes the event when the source updates too quickly for

the network to get into the gossiping phase. It is bounded as

E

[∫

Ik

∆i(t)1{τk+1 ≤ C∆̃[k]}dt

]

= E∆̃[k]

[

E

[∫

Ik

∆i(t)1{τk+1 ≤ C∆̃[k]}dt

∣
∣
∣
∣
∆̃[k]

]]

(43)

≤ E∆̃[k]

[

a(s)[k]Eτk+1

[

τk+11{τk+1 ≤ C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]]

.

(44)

We obtain the inner expectation in (44) as

Eτk+1

[

τk+11{τk+1 ≤ C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]

=

∫ C∆̃[k]

0

τk+1λee
−λeτk+1dτk+1 (45)

=
1

λe

(

1− e−λeC∆̃[k](λeC∆̃[k] + 1)
)

. (46)

For the second term in (42), we break the integral into age

sensing and gossiping phases as follows

E

[∫

Ik

∆i(t)1{τk+1 > C∆̃[k]}dt

]

= E∆̃[k]

[

E

[ ∫

I
(s)
k

∆i(t)1{τk+1 > C∆̃[k]}dt

+

∫

I
(g)
k

∆i(t)1{τk+1 > C∆̃[k]}dt

∣
∣
∣
∣
∆̃[k]

]]

(47)

≤ E∆̃[k]

[

a(s)[k]Eτk+1

[

C∆̃[k]1{τk+1 > C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]]

+ E∆̃[k]

[

a(g)[k]Eτk+1

[

(τk+1 − C∆̃[k])

× 1{τk+1 > C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]]

(48)

= E∆̃[k]

[

(a(s)[k]− a(g)[k])

× Eτk+1

[

C∆̃[k]1{τk+1 > C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]]

+ E∆̃[k]

[

a(g)[k]Eτk+1

[

τk+11{τk+1 > C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]]

.

(49)

We evaluate the inner expectations as

Eτk+1

[

C∆̃[k]1{τk+1 > C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]

= C∆̃[k]P(τk+1 > C∆̃[k]) = C∆̃[k]e−λeC∆̃[k], (50)

and

Eτk+1

[

τk+11{τk+1 > C∆̃[k]}

∣
∣
∣
∣
∆̃[k]

]

=

∫ ∞

C∆̃[k]

τk+1λee
−λeτk+1dτk+1 (51)

=
1

λe
e−λeC∆̃[k](λeC∆̃[k] + 1). (52)

Therefore, we rewrite (42) as

E [βi[k]]

≤ E∆̃[k]

[
a(s)[k]

λe

(

1− e−λeC∆̃[k](λeC∆̃[k] + 1)
)

︸ ︷︷ ︸

bounded quantity

+ (a(s)[k]− a(g)[k])C∆̃[k]e−λeC∆̃[k]

︸ ︷︷ ︸

bounded quantity

+
a(g)[k]

λe
e−λeC∆̃[k](λeC∆̃[k] + 1)

︸ ︷︷ ︸

bounded quantity

]

. (53)

Now, we evaluate the asymptotic scaling limn→∞ E [βi[k]].
Since all the age metrics a(s)[k], a(g)[k] and ∆̃[k] on the right

hand side of (53) are upper bounded by k for all values of n,

and C is bounded, we use the bounded convergence theorem

to exchange the limit and expectation to calculate its scaling as

n becomes large. From (37), it is evident that a(s)[k] ∼ O(1).
From Lemma 1, we have that a(g)[k] ∼ O(1). As n → ∞,
the quantity λeC∆̃[k] → 0. Thus, we have

lim
n→∞

E [βi[k]] ≤ E∆̃[k]

[

lim
n→∞

a(g)[k]

λe

]

(54)

= E∆̃[k]



 lim
n→∞

λe +
B

n−1 ã[k]

λe

(
λ
n
+ B

n−1

)



 (55)

= E∆̃[k]

[
λe + λã[k]

λeλ

]

=
λe + λã[k]

λeλ
. (56)

Therefore, using (56) in (41), we obtain the asymptotic upper-

bound for the average version age as

lim
n→∞

ai ≤ lim
k→∞

λe ×
λe + λã[k]

λeλ
=

2λe
λ

+ 1, (57)

concluding the proof. �

IV. NUMERICAL RESULTS

In this section, we compare our analytically derived results

to numerical simulations. We choose C = 1
n

for the simula-

tions and calculate the average version age of a single node

for up to n = 600 nodes. We use λe

λ
= 1 and λe

λ
= 2 for the

calculations. We also simulate the average version age from

[4] gossiping policy as a comparison.

The results of the simulations are shown in Fig. 4. From

Fig. 4, it is evident that the opportunistic gossiping of

ASUMAN performs better than uniform gossiping. The uni-

form gossip average age scales as O(log n), whereas the

asymptotic upper bound for the average age in opportunistic
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Fig. 4. Average version age of a single node versus the total number of nodes
in the network n.

gossiping scales as O(1) as proven in Theorem 1. As calcu-

lated from (57), the upper bound is 3 and 5, for λe

λ
= 1 and

λe

λ
= 2, respectively. The simulations show that the upper

bound is loose when n is small, and it gets tighter as n
becomes large. This is expected because the overall network

is being updated from the source with rate λ. Therefore, with

large n, the update rate of each individual node λ
n

gets smaller.

Hence, in the interval Ik, only a few nodes get updated directly

from the source. However, for small n, the number of such

nodes will be higher. This results in the average node age to

be lower than the upper bound in (57). Also, we notice that

the asymptotic upper bound is an increasing function of λe

λ
.

This result matches intuition. If λe

λ
increases, that means that

the source is updating itself more frequently as compared to

updating the network. This would result in higher average age.

The opposite effect happens when λ increases instead of λe,

thus, resulting in lower average age.

V. CONCLUSION

We proposed ASUMAN, a gossiping policy for a network

of nodes, where the nodes gossip opportunistically instead of

uniformly. The network gets synchronized when the source

updates itself, and the fresher nodes of the network enter into

gossiping phase, following an age sensing phase. This policy

allows nodes with relatively fresher versions to gossip with

higher rates and nodes with staler versions to remain silent.

We showed that in dense networks, the average age of a node

for such a system scales as O(1), which is an improvement

compared to gossiping uniformly, where the average version

age of a node scales as O(log n).
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