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Abstract

In 2004, Dai, Lathrop, Lutz, and Mayordomo defined and investigated the finite-
state dimension (a finite-state version of algorithmic dimension) of a sequence S ∈
Σ∞ and, in 2018, Case and Lutz defined and investigated the mutual (algorithmic)
dimension between two sequences S ∈ Σ∞ and T ∈ Σ∞. In this paper, we propose
a definition for the lower and upper finite-state mutual dimensions mdimFS(S : T )
and MdimFS(S : T ) between two sequences S ∈ Σ∞ and T ∈ Σ∞ over an alphabet
Σ. Intuitively, the finite-state dimension of a sequence S ∈ Σ∞ represents the density
of finite-state information contained within S, while the finite-state mutual dimension
between two sequences S ∈ Σ∞ and T ∈ Σ∞ represents the density of finite-state
information shared by S and T . Thus “finite-state mutual dimension” can be viewed
as a “finite-state” version of mutual dimension and as a “mutual” version of finite-state
dimension.

The main results of this investigation are as follows. First, we show that finite-state
mutual dimension, defined using information-lossless finite-state compressors, has all of
the properties expected of a measure of mutual information. Next, we prove that finite-
state mutual dimension may be characterized in terms of block mutual information
rates. Finally, we provide necessary and sufficient conditions for two normal sequences
to achieve mdimFS(S : T ) = MdimFS(S : T ) = 0.

1 Introduction

The study of algorithmic dimension has yielded various mechanisms for quantifying the
density of information contained within infinite objects, such as points in Euclidean
space [21] and sequences [17]. Recent investigations into the dimensions of points
and sequences have produced new characterizations of classical Hausdorff dimension
[13, 19, 20] and insights into self-similar fractal geometry [21, 10, 12], among other
results. Originally defined in terms of gales (a generalization of martingales) [17], the
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dimension dim(S) and strong dimension Dim(S) of a sequence S ∈ Σ∞ were shown
to have the characterizations

dim(S) = lim inf
n→∞

K(S ↾ n)

n log |Σ|

and

Dim(S) = lim sup
n→∞

K(S ↾ n)

n log |Σ|
,

where K(S ↾ n) is the Kolmogorov complexity of the first n symbols of S [22, 2].
These characterizations show that dim(S) and Dim(S) can be thought of as the lower
and upper densities of algorithmic information contained within S. The algorithmic
dimension and algorithmic randomness of sequences have been shown to have inter-
esting relationships. For example, if a sequence S ∈ Σ∞ is (algorithmically) random,
then dim(S) = 1. However, not all sequences that achieve dim(S) = 1 are necessarily
random [17].

The notion of the dimension of a sequence has been adapted to operate within dif-
ferent contexts in the fields of computability and information theory. For example, Dai,
Lathrop, Lutz, and Mayordomo developed the notion of finite-state dimension, which
is a finite-state version of algorithmic dimension [9]. In their paper, the authors define
finite-state dimension in terms of finite-state gamblers. In [9] and [2] the authors show
that the finite-state dimension dimFS(S) and finite-state strong dimension DimFS(S)
of a sequence S ∈ Σ∞ may be characterized by

dimFS(S) = inf

{

lim inf
n→∞

|C(S ↾ n)|

n log Σ

∣

∣

∣

∣

C is an ILFSC

}

(1)

and

DimFS(S) = inf

{

lim sup
n→∞

|C(S ↾ n)|

n log Σ

∣

∣

∣

∣

C is an ILFSC

}

, (2)

where C is an information-lossless finite-state compressor (ILFSC) and |C(S ↾ n)|
is the length of the output that C produces when given the first n symbols of S as
input. These quantities can be thought of as the lower and upper densities of finite-state
information contained within S and are also known as the lower and upper compression
ratios of S as studied by Ziv and Lempel [25].

Other characterizations of finite-state dimension have been shown. For example,
Bourke, Hitchcock, and Vinodchandran proved that the lower and upper finite-state
dimensions of a sequence S ∈ Σ∞ are equal to the lower and upper block entropy
rates of S, respectively (i.e., the lower and upper limiting normalized entropies of the
frequencies of aligned blocks of symbols contained within S) [5]. In a recent paper,
Kozachinskiy and Shen show that finite-state dimension can also be characterized in
terms of the entropy rates of non-aligned blocks of symbols and in terms of superaddi-
tive calibrated functions on strings [15].

There have been several interesting explorations into the relationships between
finite-state dimension and the concept of normality, which was introduced by Borel
in 1909 [11]. A sequence S ∈ Σ∞ is normal if every string of the same length occurs
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with the same limiting frequency within S. Normality can be viewed as a weaker
form of randomness, since every algorithmically random sequence is also normal but
not vice-versa. In fact, it has been shown that a sequence is normal if and only if
dimFS(S) = 1 [9, 5]. Thus the normal sequences can be completely characterized as
the sequences that achieve finite-state dimension one. This equivalence has recently
been quantitatively refined using the Kullback-Leibler divergence [14].

Another way in which the dimensions of sequences has been adapted to fit other con-
texts within information theory can be found in the development of mutual dimension,
which was introduced in 2015 by the present authors in [6]. In this paper, the authors
defined the mutual dimension between two points in Euclidean space and showed that
it has all the properties expected of a measure of mutual information, including sev-
eral data processing inequalities. In 2018, the same authors extended this framework
to sequences and defined the lower and upper mutual dimensions, mdim(S : T ) and
Mdim(S : T ), respectively, between two sequences S ∈ Σ∞ and T ∈ Σ∞ by

mdim(S) = lim inf
n→∞

I(S ↾ n : T ↾ n)

n log |Σ|

and

Mdim(S) = lim sup
n→∞

I(S ↾ n : T ↾ n)

n log |Σ|
,

where I(S ↾ n : T ↾ n) is the algorithmic mutual information between the first n bits of
S and T [7]. The algorithmic mutual information I(u : w) between two strings u ∈ Σ∗

and w ∈ Σ∗ is
I(u : w) = K(w)−K(w |u),

where K(w |u) is the Kolmogorov complexity of w given u. However, this quantity can
also be characterized by

I(u : w) = K(u) +K(w) −K(u,w) + o(|u|),

where K(u,w) is the joint Kolmogorov complexity of u and w. (The interested reader
may refer to [16] for an in-depth discussion on algorithmic mutual information.) There-
fore, we can view the lower and upper mutual dimensions as the lower and upper den-
sities of algorithmic mutual information shared by two sequences. In the same paper,
the authors demonstrate that, if two sequences S ∈ Σ∞ and T ∈ Σ∞ are indepen-
dently random, then Mdim(S : T ) = 0. However, they also show that not all pairs of
sequences that achieve mutual dimension zero are necessarily independently random
[7].

The purpose of this article is to develop a notion of finite-state mutual dimension,
which includes defining it using information-lossless finite-state compressors, proving
that it can be characterized in terms of block entropy rates, and exploring its relation-
ship with normal sequences. The outline of this article is as follows. In Section 2, we
define the joint compression ratio of two strings as well as the mutual compression ratio
between two strings. Using Ziv and Lempel’s Generalized Kraft Inequality [25], we es-
tablish several relationships between the Shannon entropy of the joint block frequency
of two strings u ∈ Σn and w ∈ Σn and the joint compression ratio of u and w. Using
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these relationships, we are able to prove the basic properties of the mutual compression
ratio between finite strings. In Section 3, we extend the notion of the mutual com-
pression ratio to infinite sequences and use it to define the lower and upper finite-state
mutual dimensions. We prove an important theorem regarding the interchangeability
of the iterated limits within the definition of finite-state mutual dimension, which we
then use to prove the basic properties of finite-state mutual dimension. In Section 4, we
introduce the lower and upper block mutual information rates between two sequences
S ∈ Σ∞ and T ∈ Σ∞ and show that they are equal to the lower and upper finite-state
mutual dimensions, respectively. In Section 5, we obtain a result regarding the inde-
pendence of sequences at the finite-state level. Specifically, we prove that, if R1 ∈ Σ∞

and R2 ∈ Σ∞ are normal, then the sequence (R1, R2) ∈ (Σ × Σ)∞ is normal if and
only if MdimFS(R1 : R2) = 0, where (R1, R2) is the sequence obtained by pairing the
symbols of R1 and R2 at the same index.

2 Joint andMutual Compression Ratios of Strings

In this section, we define and investigate the joint compression ratio of two strings.
To do this, we make use of some relationships between the compression ratios and
entropies of the relative frequencies of strings that were originally established by Ziv
and Lempel [25] and further examined by Sheinwald [24]. We also introduce the mutual
compression ratio between two strings and explore its properties.

In this paper, we assume that Σ is an alphabet consisting of k symbols. We write
Σ∗ to represent the set of all strings over Σ and Σ∞ to represent the set of all sequences
over Σ. The length of a string u ∈ Σ∗ is denoted by |u| and we represent the set of all
strings of length n ∈ N by Σn. For any sequence S ∈ Σ∞, we write S ↾ n for the first
n ∈ N symbols of S. For any string u ∈ Σ∗ and sequence S ∈ Σ∞, we write u[i] and
S[i] for the ith bit of u and the ith bit of S, respectively. For any two strings u ∈ Σn

and w ∈ Σn, we write (u,w) to represent the string

(u,w) = (u[1], w[1])(u[2], w[2]) · · · (u[n], w[n]) ∈ (Σ× Σ)n.

Note that the lengths of u and w must be equal in order to use the notation (u,w)
for strings. Similarly, for any two sequences S ∈ Σ∞ and T ∈ Σ∞, we write (S, T ) to
represent the sequence

(S, T ) = (S[1], T [1])(S[2], T [2]) · · · ∈ (Σ × Σ)∞.

We will write log for the base-2 logarithm function and logk for the base-k logarithm
function.

A discrete probability measure α on a finite set X is a function α : X → [0, 1] such
that

∑

x∈X

α(x) = 1.

Definition. Let α be a discrete probability measure on X . The Shannon entropy of
α is

H(α) =
∑

x∈X

α(x) log
1

α(x)
.
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If α is a discrete probability measure on X ×X (sometimes called a joint probability
measure on X ), we will write α(x, y) to denote the value α((x, y)) assigned to the pair
(x, y) by α. The first and second marginal probability measures of α are the probability
measures α1 and α2 on X defined by

α1(a) =
∑

b∈X

α(a, b) and α2(b) =
∑

a∈X

α(a, b),

respectively.
The following theorem states well-known inequalities regarding Shannon entropy

[8].

Theorem 2.1. Let α be a probability measure on X × X .

1. H(α) ≤ H(α1) + H(α2).

2. max{H(α1),H(α2)} ≤ H(α).

3. If
∑

a∈Σ α(a, a) = 1, then H(α) = H(α1) = H(α2).

For any n, ℓ ∈ Z+ such that n is a multiple of ℓ and all x ∈ Σℓ and u ∈ Σn, we
denote the number of block occurrences of x in u to be

#�(x, u) =

∣

∣

∣

∣

{

m ≤
n

ℓ

∣

∣

∣
u[mℓ . . . (m+ 1)ℓ− 1] = x

}∣

∣

∣

∣

and the block frequency of x in u by the function πu : Σ∗ → Q[0,1] defined by

πu(x) =
l

n
#�(x, u),

where Q[0,1] is the set of all rationals in [0, 1]. For all n, ℓ ∈ Z+ such that n is a multiple

of ℓ and u ∈ Σn, we denote the restriction of πu to strings in Σℓ by π
(ℓ)
u . It is important

to note that π
(ℓ)
u represents a discrete probability measure on the finite set Σℓ.

For all x, y ∈ Σℓ and u,w ∈ Σn, we denote the joint block frequency of x in u and
y in w by the function πu,w : Σ∗ × Σ∗ → Q[0,1] defined by

πu,w(x, y) =
ℓ

n
#�((x, y), (u,w)).

We denote the restriction of πu,w to the pairs of strings in Σℓ×Σℓ by π
(ℓ)
u,w. Once again,

we note that π
(ℓ)
u,w is a discrete probability measure on Σℓ ×Σℓ. It is easy see that, for

all x, y ∈ Σℓ, π
(ℓ)
(u,w)((x, y)) = π

(ℓ)
u,w(x, y). Also, it is also important to observe that the

first and second marginal probability measures of π
(ℓ)
u,w are π

(ℓ)
u and π

(ℓ)
w , respectively.

By applying Theorem 2.1 to π
(ℓ)
u,w, where α = π

(ℓ)
u,w, α1 = π

(ℓ)
u , and α2 = π

(ℓ)
w , we

obtain the following corollary.

Corollary 2.2. For every ℓ ∈ Z+ and every n ∈ N and u,w ∈ Σn such that n is a
multiple of ℓ, the following hold.

1. H(π
(ℓ)
u,w) ≤ H(π

(ℓ)
u ) + H(π

(ℓ)
w ).
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2. max{H(π
(ℓ)
u ),H(π

(ℓ)
w )} ≤ H(π

(ℓ)
u,w).

3. H(π
(ℓ)
u,u) = H(π

(ℓ)
u ).

4. H(π
(ℓ)
u,w) = H(π

(ℓ)
w,u).

We now proceed to discuss the finite-state compressibility of strings. A finite-state
compressor (FSC) C on Σ is a 4-tuple

C = (Q, δ, ν, q0),

where Q is a nonempty finite set of states, δ : Q × Σ → Q is the transition function,
ν : Q × Σ → {0, 1}∗ is the output function, and q0 is the initial state. We define the
extended transition function δ∗ : Q× Σ∗ → Q by the recursion

δ∗(q, λ) = q,

δ∗(q, wa) = δ(δ∗(q, w), a),

for all q ∈ Q, u ∈ Σ∗, and a ∈ Σ. The output function ν is defined by the recursion

ν(q0, λ) = λ,

ν(q0, wa) = ν(q0, w)ν(δ
∗(q0, w), a),

for all u ∈ Σ∗ and a ∈ Σ. The output of C on the input string u ∈ Σ∗ is denoted by
C(u) = ν(q0, u). An information-lossless finite-state compressor (ILFSC) C is an FSC
where the function f : Σ∗ → {0, 1}∗×Q, defined by f(u) = (C(u), δ∗(u)), is one-to-one.

The compression ratio of u ∈ Σn attained by an ILFSC C on Σ is

ρC(u) =
|C(u)|

n log k
.

Likewise, the joint compression ratio of u ∈ Σn and w ∈ Σn attained by an ILFSC
C on Σ× Σ is

ρC(u,w) =
|C((u,w))|

n log k
.

Definition. The r-state compression ratio of u ∈ Σn is

ρr(u) = min
{

ρC(u)

∣

∣

∣

∣

C is an ILFSC on Σ that has r states
}

.

Definition. The r-state joint compression ratio of u ∈ Σn and w ∈ Σn is

ρr(u,w) = min
{

ρC(u,w)

∣

∣

∣

∣

C is an ILFSC on Σ× Σ that has r states
}

.

It is important to note that ρr((u,w)) is the r-state compression ratio of the string
(u,w) ∈ (Σ × Σ)n and ρr(u,w) is the r-state joint compression ratio of u ∈ Σn and
w ∈ Σn.

The following lemma was proven by Ziv and Lempel in [25].
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Lemma 2.3 (Generalized Kraft Inequality [25]). For any ILFSC C on Σ with a state
set Q = {q1, q2, . . . , qs},

∑

w∈Σr

2−LC(w) ≤ s2
(

1 + log
s2 + kr

s2

)

,

where
LC(w) = min

q∈Q
{|Cq(w)|}

and Cq is the ILFSC that is like C except that it uses q as the start state.

For the remainder of this article, we will make use of the following family of func-
tions. For each s, k, r ∈ Z+, let

fk
s (r) =

log

(

s2
(

1 + log s2+kr

s2

)

)

r log k
.

It is easy to see that, for any fixed s, k ∈ Z+,

lim
r→∞

fk
s (r) = 0.

For the sake of reducing notation, we write ur for the prefix

u ↾
⌊ |u|

r

⌋

· r,

where r ∈ Z+, u ∈ Σ∗ such that |u| ≥ r. We also write Sn
r for the prefix

S ↾
⌊n

r

⌋

· r,

where S ∈ Σ∞.

Observation 2.4. Let C1 be an ILFSC on Σ and C2 be an ILFSC on Σ × Σ. For
every r, n ∈ Z+ and every u ∈ Σn and w ∈ Σn such that r ≤ n,

ρC1(ur) ≤ ρC1(u) +
⌊n

r

⌋−1
.

and

ρC2(ur, wr) ≤ ρC2(u,w) +
⌊n

r

⌋−1
,

where ur = u ↾

⌊

n
r

⌋

· r and wr = w ↾

⌊

n
r

⌋

· r.

Proof. We proceed to prove the first inequality. The following inequality holds for all
a, b, x ∈ R+ such that a ≤ b and x ≤ b,

a− x

b− x
≤

a

b
.
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Using this inequality, observe that

ρC1(u) =
|C1(u)|

n log k

≥
|C1(u ↾

⌊

n
r

⌋

· r)|

n log k

≥
|C1(u ↾

⌊

n
r

⌋

· r)| − (n mod r) log k

n log k − (n mod r) log k

=
|C1(u ↾

⌊

n
r

⌋

· r)| − (n mod r) log k
⌊

n
r

⌋

· r log k

≥
|C1(u ↾

⌊

n
r

⌋

· r)|
⌊

n
r

⌋

· r log k
−

1
⌊

n
r

⌋

=
|C1(u ↾

⌊

n
r

⌋

· r)|
⌊

n
r

⌋

· r log k
−

⌊n

r

⌋−1

= ρC1(u ↾
⌊n

r

⌋

· r)−
⌊n

r

⌋−1

= ρC1(ur)−
⌊n

r

⌋−1

The proof of the second inequality is identical to the proof of the first inequality.

The following lemma describes an inequality that was noted by Sheinwald in [24].
Originally, Ziv and Lempel noted a similar inequality in [25].

Lemma 2.5 (Sheinwald [24]). Let C be an ILFSC on Σ. For every ℓ, n ∈ Z+ and
u ∈ Σn such that n is a multiple of ℓ,

ρC(u) ≥
1

ℓ log k

∑

x∈Σℓ

π(ℓ)
u (x)LC(x).

It is worth noting that Ziv and Lempel and Sheinwald originally used the notation

P (x, u) in place of π
(ℓ)
u (x).

Lemma 2.6. Let C be an ILFSC on Σ with s ∈ Z+ states. For every ℓ, n ∈ N and
u ∈ Σn such that ℓ ≤ n,

H(π
(ℓ)
uℓ

)

ℓ log k
− ρC(u) ≤

⌊n

ℓ

⌋−1
+ fk

s (ℓ),

where uℓ = u ↾

⌊

n
ℓ

⌋

· ℓ and limm→∞ fk
s (m) = 0.

8



Proof. The following proof uses similar reasoning as Sheinwald’s proof that the upper
compression ratio of a sequence S ∈ Σ∞ is equal to the upper block entropy rate of S
[24]. Let C be an ILFSC on Σ with s ∈ Z+ states. By the first inequality stated in
Observation 2.4 and Lemma 2.5,

H(π
(ℓ)
uℓ

)

ℓ log k
− ρC(u) ≤

1

ℓ log k

∑

x∈Σℓ

π(ℓ)
uℓ

(x) log
1

π
(ℓ)
uℓ

(x)
−

1

ℓ log k

∑

x∈Σℓ

π(ℓ)
uℓ

(x)LC(x) +
⌊n

ℓ

⌋−1

=
1

ℓ log k

∑

x∈Σℓ

π(ℓ)
uℓ

(x)

[

log
1

π
(ℓ)
uℓ

(x)
− log 2LC (x)

]

+
⌊n

ℓ

⌋−1
(3)

=
1

ℓ log k

∑

x∈Σℓ

π(ℓ)
uℓ

(x) log
2−LC(x)

π
(ℓ)
uℓ

(x)
+

⌊n

ℓ

⌋−1
.

By (3), Jensen’s Inequality, and the Generalized Kraft Inequality,

H(π
(ℓ)
uℓ

)

ℓ log k
− ρC(u) ≤

1

ℓ log k
log

(

∑

x∈Σℓ

2−LC(x)

)

+
⌊n

ℓ

⌋−1

≤
1

ℓ log k
log

(

s2
(

1 + log
s2 + kℓ

s2

))

+
⌊n

ℓ

⌋−1

=
⌊n

ℓ

⌋−1
+ fk

s (ℓ).

The following lemma is a “joint” version of Lemma 2.5.

Lemma 2.7. Let C be an ILFSC on Σ×Σ. For every ℓ, n ∈ Z+ and every u,w ∈ Σn

such that n is a multiple of ℓ,

ρC(u,w) ≥
1

ℓ log k

∑

(x,y)∈Σℓ

π(ℓ)
u,w(x, y)LC((x, y)).

Proof. First, recall that that, for all x, y ∈ Σℓ, u
(ℓ)
(u,w)((x, y)) = u

(ℓ)
u,w(x, y). By Lemma

2.5,

ρC(u,w) =
2

2
ρC(u,w)

= 2ρC((u,w))

≥ 2
1

ℓ log k2

∑

(x,y)∈Σℓ

π
(ℓ)
(u,w)((x, y))LC ((x, y))

=
1

ℓ log k

∑

(x,y)∈Σℓ

π(ℓ)
u,w(x, y)LC((x, y)).

Lemma 2.8. Let C be an ILFSC on Σ × Σ with s ∈ Z+ states. For every ℓ, n ∈ N

and every u ∈ Σn and w ∈ Σn such that ℓ ≤ n,

H(π
(ℓ)
uℓ,wℓ

)

ℓ log k
− ρC(u,w) ≤

⌊n

ℓ

⌋−1
+ fk2

s (ℓ),

where uℓ = u ↾

⌊

n
ℓ

⌋

· ℓ, wℓ = w ↾

⌊

n
ℓ

⌋

· ℓ, and limm→∞ fk2

s (m) = 0.
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Proof. The proof of this lemma is identical to the proof of Lemma 2.6, except that it
uses the second inequality from Observation 2.4 instead of the first inequality and it
also uses Lemma 2.7 instead of Lemma 2.5.

If |u| is a multiple of ℓ, we denote CF (ℓ,u) as the ILFSC on Σ consisting of kℓ states
that encodes strings of length ℓ according to Huffman’s algorithm on the frequencies
of each string in Σℓ within u. The following lemma is an inequality that was noted by
Sheinwald in [24].

Lemma 2.9 (Sheinwald [24]). Let C be an ILFSC on Σ. For every ℓ, n ∈ Z+ and
u ∈ Σn such that n is a multiple of ℓ,

ρCF (ℓ,u)
(u) ≤

H(π
(ℓ)
u )

ℓ log k
+

1

ℓ
.

Lemma 2.10. For each r, n ∈ Z+ and each u ∈ Σn,

ρr(u) ≤
H(π

(r′)
ur′

)

r′ log k
+

1

r′
,

where r′ = ⌊logkr⌋ and ur′ = u ↾

⌊

n
r′

⌋

· r′.

Proof. Since, ρkr′ (u) ≤ ρF (r′,ur′)
(u), we have

ρr(u) = ρklogkr(u)

≤ ρkr′ (u) (4)

≤ ρCF (r′,u
r′

)
(u).

By (4), and since |CF (r′,ur′)
(u)| = |CF (r′,ur′)

(ur′)|, we have

ρr(u) ≤
|CF (r′,ur′)

(u)|

n log k

=
|CF (r′,ur′)

(ur′)|

n log k
(5)

≤
|CF (r′,ur′)

(ur′)|
⌊

n
r′

⌋

· r′ log k

= ρCF (r′,u
r′

)
(ur′).

Finally, by (5) and Lemma 2.9, we have

ρr(u) ≤
H(u

(r′)
r′ )

r′ log k
+

1

r′
.

Lemma 2.11. For each r, t, n ∈ Z+ and (u,w) ∈ (Σ × Σ)n such that n ≥ t′,

max{ρt(u), ρt(w)} ≤ ρr(u,w) +
⌊n

t′

⌋−1
+ gkr (t

′),

where t′ = ⌊logk t⌋ and lim
m→∞

gkr (m) = 0.

10



Proof. By Lemma 2.10 and Corollary 2.2, we observe that

ρt(u)− ρr(u,w) ≤
H(π

(t′)
ut′

)

t′ log k
− ρr(u,w) +

1

t′

≤
H(π

(t′)
ut′ ,wt′

)

t′ log k
− ρr(u,w) +

1

t′
, (6)

where t′ = ⌊logk t⌋. Finally, by (6) and Lemma 2.8, we have

ρt(u)− ρr(u,w) ≤
H(π

(t′)
ut′ ,wt′

)

t′ log k
−

H(π
(t′)
ut′ ,wt′

)

t′ log k
+

⌊n

t′

⌋−1
+ fk2

r (t′) +
1

t′

≤
⌊n

t′

⌋−1
+ fk2

r (t′) +
1

t′
,

which immediately implies that

ρt(u) ≤ ρr(u,w) +
⌊n

t′

⌋−1
+ fk2

r (t′) +
1

t′

= ρr(u,w) +
⌊n

t′

⌋−1
+ gkr (t

′),

where gkr (t
′) = fk2

r (t′) + 1
t′
. Similarly, we can show that

ρt(w) ≤ ρr(u,w) +
⌊n

t′

⌋−1
+ gkr (t

′),

which implies the conclusion.

Lemma 2.12. For every r, t, n ∈ Z+ and every (u,w) ∈ (Σ× Σ)n such that n ≥ r′,

ρr(u,w) ≤ ρt(u) + ρt(w) + 2
⌊n

r′

⌋−1
+ hkt (r

′).

where r′ = ⌊logk r⌋ and lim
m→∞

hkt (m) = 0.

Proof. By Lemma 2.10 and Corollary 2.2, we observe that

ρt(u) + ρt(w)− ρr(u,w) = ρt(u) + ρt(w) − 2ρr((u,w))

≥ ρt(u) + ρt(w) − 2

(H
(

π
(r′)
(ur′ ,wr′)

)

r′ log k2
+

1

r′

)

(7)

= ρt(u) + ρt(w) −
H(π

(r′)
ur′ ,wr′

)

r′ log k
−

2

r′

≥ ρt(u) + ρt(w) −
H(π

(r′)
ur′

)

r′ log k
−

H(π
(r′)
wr′

)

r′ log k
−

2

r′
.

Finally, by (7) and Lemma 2.6, we have

ρt(u) + ρt(w) − ρr(u,w) ≥ −2
⌊n

r′

⌋−1
− 2fk

t (r
′)−

2

r′

= −2
⌊n

r′

⌋−1
− hkt (r

′),

where hkt (r
′) = 2fk

t (r
′) + 2

r′
, which immediately implies the conclusion.

11



Lemma 2.13. For each r, t, n ∈ Z+ and u ∈ Σn such that n ≥ max{r′, t′},

ρr(u, u) ≤ ρt(u) +
⌊n

r′

⌋−1
+ ikt (r

′)

and

ρt(u) ≤ ρr(u, u) +
⌊n

t′

⌋−1
+ jkr (t

′),

where r′ = ⌊logkr⌋, t
′ = ⌊logkt⌋, lim

m→∞
ikt (m) = 0, and lim

m→∞
jkr (m) = 0.

Proof. By Lemma 2.10 and Corollary 2.2 we know that

ρr(u, u) − ρt(u) = 2ρr((u, u)) − ρt(u)

≤ 2

(H
(

π
(r′)
(ur′ ,ur′)

)

r′ log k2
+

1

r′

)

− ρt(u)

=
H(π

(r′)
ur′ ,ur′

)

r′ log k
+

2

r′
− ρt(u) (8)

=
H(π

(r′)
ur′

)

r′ log k
− ρt(u) +

2

r′
.

By (8) and Lemma 2.6, we have

ρr(u, u)− ρt(u) ≤
⌊n

r′

⌋−1
+ fk

t (r
′) +

2

r′

=
⌊n

r′

⌋−1
+ ikt (r

′),

where ikt (r
′) = fk

t (r
′) + 2

r′
, which implies the first inequality. Now, by Lemma 2.8,

Lemma 2.10, and Corollary 2.2, we know that

ρr(u, u)− ρt(u) ≥
H(π

(t′)
ut′ ,ut′

)

t′ log k
− ρt(u)−

⌊n

t′

⌋−1
− fk2

r (t′)

≥
H(π

(t′)
ut′ ,ut′

)

t′ log k
−

H(π
(t′)
ut′

)

t′ log k
−

⌊n

t′

⌋−1
− fk2

r (t′)−
1

t′

=
H(π

(t′)
ut′

)

t′ log k
−

H(π
(t′)
ut′

)

t′ log k
−
⌊n

t′

⌋−1
− fk2

r (t′)−
1

t′

= −
⌊n

t′

⌋−1
− jkr (t

′),

where jkr (t
′) = fk2

r (t′) + 1
t′
, which implies the second inequality.

Observation 2.14. For any ILFSC C on Σ × Σ and any u ∈ Σn and w ∈ Σn, there
exists another ILFSC C ′ such that

ρC(u,w) = ρC′(w, u).

and C and C ′ have the same number of states.
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Proof. It is clear that we may relabel the input symbol (a, b) ∈ Σ × Σ along each
transition of C by interchanging the symbols within the pair. So each each (a, b)-
transition becomes a (b, a)-transition. After performing this relabeling, we receive an
ILFSC C ′ on Σ×Σ with the same number of states as C. Since the output string along
each transition has not changed, C compresses (u,w) just as well as C ′ compresses
(w, u).

Lemma 2.15. For every r, n ∈ Z+ and every u ∈ Σn and w ∈ Σn,

ρr(u,w) = ρr(w, u).

Proof. let C be the ILFSC on Σ × Σ such that ρC(u,w) = ρr(u,w). By Observation
2.14, there exists another ILFSC C ′ on Σ × Σ such that ρC(u,w) = ρC′(w, u) and C
and C ′ have the same number of states. Therefore,

ρr(u,w) = ρC(u,w)

= ρC′(w, u)

≥ ρr(w, u).

Using similar reasoning, we can show that ρr(u,w) ≤ ρr(w, u).

We proceed to explore finite-state mutual compression ratios between strings.

Definition. Let r, t ∈ Z+. The r, t-state mutual compression ratio between u ∈ Σn

and w ∈ Σn is
ρr,t(u : w) = ρt(u) + ρt(w) − ρr(u,w).

We now present the main theorem of this section, which lists the basic properties
of mutual compression ratios for finite-length strings.

Theorem 2.16 (Properties of Mutual Compression Ratios between Strings). For every
r, t, n ∈ Z+ and every u ∈ Σn and w ∈ Σn such that n ≥ max{t′, r′},

1. ρr,t(u : w) ≤ min{ρt(u), ρt(w)} +
⌊

n
t′

⌋−1
+ gkr (t

′) and lim
m→∞

gkr (m) = 0,

2. ρr,t(u : w) + 2
⌊

n
r′

⌋−1
+ hkt (r

′) ≥ 0 and lim
m→∞

hkt (m) = 0,

3. ρr,t(u : u) +
⌊

n
r′

⌋−1
+ ikt (r

′) ≥ ρt(u) and lim
m→∞

ikt (m) = 0,

4. ρr,t(u : u) ≤ ρt(u) +
⌊

n
t′

⌋−1
+ jkr (t

′) and lim
m→∞

jkr (m) = 0,

5. ρr,t(u : w) = ρr,t(w : u), and

6. ρr,t(u : w) ≤ ρt,r(u : w) + 3
⌊

n
t′

⌋−1
+ ekr (t

′) and lim
m→∞

ekr (m) = 0,

where r′ = ⌊logkr⌋ and t′ = ⌊logkt⌋.
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Proof. By Lemma 2.11,

ρr,t(u : w) = ρt(u) + ρt(w) − ρr(u,w)

≤ min{ρt(u), ρt(w)}+

⌊

n

t′

⌋−1

+ gkr (t
′),

which proves the first statement. By Lemma 2.12,

ρr,t(u : w) = ρt(u) + ρt(w)− ρr(u,w)

≥ −2
⌊n

r′

⌋−1
− hkt (r

′),

which proves the second statement. By the first inequality of Lemma 2.13,

ρr,t(u : u) = ρt(u) + ρt(u)− ρr(u, u)

≥ ρt(u)−
⌊n

r′

⌋−1
− ikt (r

′),

which proves the third statement. By the second inequality of Lemma 2.13,

ρr,t(u : u) = ρt(u) + ρt(u)− ρr(u, u)

≤ ρt(u) +
⌊n

t′

⌋−1
+ jkr (t

′),

which proves the fourth statement. By Lemma 2.15,

ρr,t(u : w) = ρt(u) + ρt(w)− ρr(u,w)

= ρt(w) + ρt(u)− ρr(w, u)

= ρr,t(w : u),

which proves the fifth statement. Finally, to prove the sixth statement, observe that

ρr,t(u : w)− ρt,r(u : w) = ρt(u) + ρt(w) − ρr(u,w) − ρr(u)− ρr(w) + ρt(u,w)

= ρt(u) + ρt(w) − ρr(u,w) − ρr(u)− ρr(w) + 2ρt((u,w))

By the above inequality and Lemmas 2.6, 2.8, and 2.10,

ρr,t(u : w)− ρt,r(u : w)

≤
H(π

(t′)
ut′

)

t′ log k
+

H(π
(t′)
wt′

)

t′ log k
−

H(π
(t′)
ut′ ,wt′

)

t′ log k
−

H(π
(t′)
ut′

)

t′ log k
−

H(π
(t′)
wt′

)

t′ log k
+ 2

(H
(

π
(t′)
(u,w)t′

)

t′ log k2
+

1

t′

)

+
2

t′
+ 3

⌊n

t′

⌋−1
+ 2fk

r (t
′) + fk2

r (t′)

=
H(π

(t′)
ut′

)

t′ log k
+

H(π
(t′)
wt′

)

t′ log k
−

H(π
(t′)
ut′ ,wt′

)

t′ log k
−

H(π
(t′)
ut′

)

t′ log k
−

H(π
(t′)
wt′

)

t′ log k
+

H(π
(t′)
ut′ ,wt′

)

t′ log k

+
4

t′
+ 3

⌊n

t′

⌋−1
+ 2fk

r (t
′) + fk2

r (t′)

=
4

t′
+ 3

⌊n

t′

⌋−1
+ 2fk

r (t
′) + fk2

r (t′)

= 3
⌊n

t′

⌋−1
+ ekr (t

′),

where ekr (t
′) = 4

t′
+ 2fk

r (t
′) + fk2

r (t′).
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3 Finite-State Mutual Dimension

In this section we define the lower and upper mutual compression ratios and the lower
and upper finite-state mutual dimensions between sequences and explore their proper-
ties.

We begin by discussing the finite-state dimension dimFS(S) of a sequence S ∈ Σ∞,
which was originally defined in 2003 by Dai, Lathrop, Lutz, and Mayordomo in [9]
using finite-state gamblers. In the same paper, the authors proved a characterization
of finite-state dimension using finite-state compressors. In 2007, Athreya, Hitchcock,
Lutz, and Mayordomo defined the finite-state strong dimension of a sequence using
finite-state gamblers and proved that it can also be characterized using finite-state
compressors [2]. In this section, we will use the compressor characterization of finite-
state dimension and finite-state strong dimension and refer to them as the lower and
upper finite-state dimensions, respectively.

Definition. Let r ∈ Z+ and S ∈ Σ∞. The lower and upper r-state compression ratios
of S are

ρr(S) = lim inf
n→∞

ρr(S ↾ n)

and
ρ̂r(S) = lim sup

n→∞
ρr(S ↾ n),

respectively.

Definition. Let r ∈ Z+ and S, T ∈ Σ∞. The lower and upper r-state joint compression
ratios of S and T are

ρr(S, T ) = lim inf
n→∞

ρr(S ↾ n, T ↾ n)

and
ρ̂r(S, T ) = lim sup

n→∞
ρr(S ↾ n, T ↾ n),

respectively.

Definition. Let r, t ∈ Z+. The lower and upper r, t-state mutual compression ratios
between S ∈ Σ∞ and T ∈ Σ∞ are

ρr,t(S : T ) = lim inf
n→∞

ρr,t(S ↾ n : T ↾ n)

and
ρ̂r,t(S : T ) = lim sup

n→∞
ρr,t(S ↾ n : T ↾ n),

respectively.

We now present and prove the properties of the lower and upper r, t-state mutual
compression ratio between sequences.

Lemma 3.1 (Properties of Mutual Compression Ratios between Sequences). Let r, t ∈
Z+. For all S, T ∈ Σ∞,

1. ρt(S) + ρt(T )− ρ̂r(S, T ) ≤ ρr,t(S : T ) ≤ ρ̂t(S) + ρ̂t(T )− ρ̂r(S, T )
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2. ρt(S) + ρt(T )− ρr(S, T ) ≤ ρ̂r,t(S : T ) ≤ ρ̂t(S) + ρ̂t(T )− ρr(S, T )

3. ρr,t(S : T ) ≤ min{ρt(S), ρt(T )}+ gkr (t
′), ρ̂r,t(S : T ) ≤ min{ρ̂t(S), ρ̂t(T )}+ gkr (t

′),
and lim

m→∞

gkr (m) = 0,

4. ρr,t(S : T ) + hk
t (r

′) ≥ 0, ρ̂r,t(S : T ) + hk
t (r

′) ≥ 0, and lim
m→∞

hk
t (m) = 0,

5. ρr,t(S : S) + ikt (r
′) ≥ ρt(S), ρ̂r,t(S : S) + ikt (r

′) ≥ ρ̂t(S), and lim
m→∞

ikt (m) = 0,

6. ρr,t(S : S) ≤ ρt(S) + jkr (t
′), ρ̂r,t(S : S) ≤ ρ̂t(S) + jkr (t

′), and lim
m→∞

jkr (m) = 0,

7. ρr,t(S : T ) = ρr,t(T : S), ρ̂r,t(S : T ) = ρ̂r,t(T : S), and

8. ρr,t(S : T ) ≤ ρt,r(S : T ) + ekr (t
′), and lim

m→∞

ekr(m) = 0,

where r′ = ⌊logkr⌋ and t′ = ⌊logkt⌋.

Proof. To prove the first inequality in the first statement, observe that

ρr,t(S : T ) = lim inf
n→∞

ρr,t(S ↾ n : T ↾ n)

= lim inf
n→∞

[

ρt(S ↾ n) + ρt(T ↾ n)− ρr(S ↾ n, T ↾ n)
]

≥ lim inf
n→∞

ρt(S ↾ n) + lim inf
n→∞

ρt(T ↾ n) + lim inf
n→∞

−ρr(S ↾ n, T ↾ n)

= lim inf
n→∞

ρt(S ↾ n) + lim inf
n→∞

ρt(T ↾ n)− lim sup
n→∞

ρr(S ↾ n, T ↾ n)

= ρt(S) + ρt(T )− ρ̂r(S, T ).

For the second inequality, observe that

ρ̂t(S) + ρ̂t(T )− ρr,t(S : T )

= lim sup
n→∞

ρt(S ↾ n) + lim sup
n→∞

ρt(T ↾ n)− lim inf
n→∞

ρr,t(S ↾ n : T ↾ n)

= lim sup
n→∞

ρt(S ↾ n) + lim sup
n→∞

ρt(T ↾ n) + lim sup
n→∞

−ρr,t(S ↾ n : T ↾ n)

≥ lim sup
n→∞

[

ρt(S ↾ n) + ρt(T ↾ n)− ρr,t(S ↾ n : T ↾ n)
]

= lim sup
n→∞

ρr(S ↾ n, T ↾ n)

= ρ̂r(S, T ),

which implies the second inequality of the first statement. The second statement has
a similar proof as the first statement. The third statement follows from the first
statement of Theorem 2.16 and the fact that, for any t′ ∈ Z+, lim

n→∞
⌊n/t′⌋−1 = 0.

The fourth statement follows from the second statement of Theorem 2.16 and the fact
that, for any r′ ∈ Z+, lim

n→∞
2⌊n/r′⌋−1 = 0. The fifth statement follows from the third

statement of Theorem 2.16 and the fact that, for any r′ ∈ Z+, lim
n→∞

⌊n/r′⌋−1 = 0.

The sixth statement follows from the fourth statement of Theorem 2.16 and the fact
that, for all t′ ∈ Z+, lim

n→∞
⌊n/t′⌋−1 = 0. The seventh statement follows directly from

the fifth statement of Theorem 2.16. Finally, to prove the eighth statement, observe
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that, by the sixth statement of Theorem 2.16 and by the fact that, for all t′ ∈ Z+,
lim
n→∞

3⌊n/t′⌋−1 = 0,

ρr,t(S : T )− ρt,r(S : T ) = lim inf
n→∞

ρr,t(S ↾ n : T ↾ n)− lim inf
n→∞

ρt,r(S ↾ n : T ↾ n)

≤ lim sup
n→∞

[

ρr,t(S ↾ n : T ↾ n)− ρt,r(S ↾ n : T ↾ n)
]

= lim sup
n→∞

[

3
⌊n

t′

⌋−1
+ ekr (t

′)

]

= lim sup
n→∞

[

ekr (t
′)

]

= ekr (t
′).

We proceed to discuss the compression ratio characterization of finite-state dimen-
sion.

Definition. The lower and upper finite-state compression ratios of S ∈ Σ∞ are

ρ(S) = lim
r→∞

lim inf
n→∞

ρr(S ↾ n)

and
ρ̂(S) = lim

r→∞
lim sup
n→∞

ρr(S ↾ n),

respectively.

(Note that, by the monotone convergence theorem, the definitions of the lower and up-
per finite-state compression ratios are equal to those found in (1) and (2), respectively,
since ρr(S ↾ n) is bounded and decreasing in r.)

Definition. The lower and upper joint finite-state compression ratios of S ∈ Σ∞ are

ρ(S, T ) = lim
r→∞

lim inf
n→∞

ρr(S ↾ n, T ↾ n)

and
ρ̂(S, T ) = lim

r→∞
lim sup
n→∞

ρr(S ↾ n, T ↾ n),

respectively.

In the following theorem, the first equality was proven by Dai, Lathrop, Lutz, and
Mayordomo in [9] and the second equality was proven by Athreya, Hitchcock, Lutz,
and Mayordomo in [2].

Theorem 3.2 ([9, 2]). For all S, T ∈ Σ∞,

dimFS(S) = ρ(S)

and
DimFS(S) = ρ̂(S).

The following corollary follows directly from Theorem 3.2.
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Corollary 3.3. For all S, T ∈ Σ∞,

dimFS(S, T ) = ρ(S, T )

and
DimFS(S, T ) = ρ̂(S, T ).

We now present the definitions of the lower and upper finite-state mutual dimensions
between sequences.

Definition. The lower and upper finite-state mutual dimensions between S ∈ Σ∞ and
T ∈ Σ∞ are

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

and
MdimFS(S : T ) = lim

r→∞
lim
t→∞

ρ̂r,t(S : T ),

respectively.

The first limit in the definitions above exists because both ρr,t(S : T ) and ρ̂r,t(S : T )
are decreasing in t since ρt(S ↾ n) and ρt(T ↾ n) are decreasing in t. The second limit
also exists because both

lim
t→∞

ρr,t(S : T ) and lim
t→∞

ρ̂r,t(S : T )

are increasing in r, since −ρr(S ↾ n, T ↾ n) is increasing in r.
Our first theorem of this section is an important result that allows for the inter-

changing of the iterated limits within the definitions of the lower and upper finite-state
mutual dimensions. The proof of the properties of finite-state mutual dimensions (The-
orem 3.5) rely on this result.

Theorem 3.4. For all S, T ∈ Σ∞,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T ) = lim
t→∞

lim
r→∞

ρr,t(S : T )

and
MdimFS(S : T ) = lim

r→∞
lim
t→∞

ρ̂r,t(S : T ) = lim
t→∞

lim
r→∞

ρ̂r,t(S : T ).

Proof. Observe that the iterated limits

lim
t→∞

lim
r→∞

ρr,t(S : T ) and lim
t→∞

lim
r→∞

ρ̂r,t(S : T )

exist for the same reason the iterated limits exist in the original definitions. First, we
show that

mdimFS(S : T ) ≤ lim
t→∞

lim
r→∞

ρr,t(S : T ).
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By the eighth statement of Lemma 3.1,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

≤ lim
r→∞

lim
t→∞

[

ρt,r(S : T ) + ekr (t
′)

]

= lim
r→∞

lim
t→∞

ρt,r(S : T )

= lim
t→∞

lim
r→∞

ρr,t(S : T ).

Next, we show that

mdimFS(S : T ) ≥ lim
t→∞

lim
r→∞

ρr,t(S : T ).

Let ǫ, ǫ1, ǫ2, ǫ3 > 0 such that ǫ = ǫ1 + ǫ2 + ǫ3 and let c ∈ Z+ be large enough so that

0 ≤ lim
r→∞

ρr,c(S : T )− lim
r→∞

lim
t→∞

ρr,t(S : T ) ≤ ǫ1

and
0 ≤ lim

t→∞
lim
r→∞

ρr,t(S : T )− lim
t→∞

ρc,t(S : T ) ≤ ǫ2.

Now, we let d ∈ Z+ be large enough so that

0 ≤ ρd,c(S : T )− lim
r→∞

lim
t→∞

ρr,t(S : T ) ≤ ǫ1, (9)

0 ≤ lim
t→∞

lim
r→∞

ρr,t(S : T )− ρc,d(S : T ) ≤ ǫ2, (10)

and

ekc (d
′) ≤ ǫ3, (11)

where ekc (d
′) comes from the eighth statement of Lemma 3.1. By (9), (10), (11), and

Lemma 3.1, we have

mdimFS(S : T )− lim
t→∞

lim
r→∞

ρr,t(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )− lim
t→∞

lim
r→∞

ρr,t(S : T )

≥ ρd,c(S : T )− ρc,d(S : T )− ǫ1 − ǫ2

≥ −ekc (d
′)− ǫ1 − ǫ2

≥ −ǫ1 − ǫ2 − ǫ3

= −ǫ.

Since the ǫ is arbitrary, we have

mdimFS(S : T ) ≥ lim
t→∞

lim
r→∞

ρr,t(S : T ).

As identical argument can be made to prove the equivalence of the iterated limits for
MdimFS(S : T ).
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The final theorem of this section describes the basic properties of finite-state mutual
dimension.

Theorem 3.5 (Properties of Finite-State Mutual Dimensions). For all S, T ∈ Σ∞,

1. dimFS(S)+dimFS(T )−DimFS(S, T )≤mdimFS(S : T )≤DimFS(S)+DimFS(T )−DimFS(S, T ),

2. dimFS(S)+dimFS(T )−dimFS(S, T )≤MdimFS(S : T )≤DimFS(S)+DimFS(T )−dimFS(S, T ),

3. mdimFS(S : T ) ≤ min{dimFS(S), dimFS(T )}, MdimFS(S : T ) ≤ min{DimFS(S), DimFS(T )},

4. 0 ≤ mdimFS(S : T ) ≤ MdimFS(S : T ) ≤ 1,

5. mdimFS(S : S) = dimFS(S), MdimFS(S : S) = DimFS(S), and

6. mdimFS(S : T ) = mdimFS(T : S), MdimFS(S : T ) = MdimFS(T : S).

Proof. To prove the first statement, observe that, by the first statement of Lemma 3.1,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

≤ lim
r→∞

lim
t→∞

[ρ̂t(S) + ρ̂t(T )− ρ̂r(S, T )]

= lim
t→∞

ρ̂t(S) + lim
t→∞

ρ̂t(T )− lim
r→∞

ρ̂r(S, T )

= DimFS(S) +DimFS(T )−DimFS(S, T ).

Likewise,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

≥ lim
r→∞

lim
t→∞

[ρt(S) + ρt(T )− ρ̂r(S, T )]

= lim
t→∞

ρt(S) + lim
t→∞

ρt(T )− lim
r→∞

ρ̂r(S, T )

= dimFS(S) + dimFS(T )−DimFS(S, T ).

The proof of the second statement is similar to the proof of the first statement. To
prove the third statement, we observe that, by the third statement of Lemma 3.1,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

≤ lim
r→∞

lim
t→∞

[

ρt(S) + gkr (t
′)

]

= dimFS(S).

By a similar argument, we can prove that mdimFS(S : T ) ≤ dimFS(T ), and thus
mdimFS(S : T ) ≤ min{dimFS(S),min{dimFS(T )}. Using a similar argument, we can
also prove that MdimFS(S : T ) ≤ min{DimFS(S),DimFS(T )}. To prove the fourth
statement, observe that, by the fourth statement of Lemma 3.1 and Theorem 3.4,

mdimFS(S : T ) = lim
t→∞

lim
r→∞

ρr,t(S : T )

≥ lim
t→∞

lim
r→∞

−hkt (r
′)

= 0.
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Now, since the upper finite-state dimension of a sequence is no larger than one, we
have

mdimFS(S : T ) ≤ MdimFS(S : T )

≤ min{DimFS(S),DimFS(T )}

≤ 1.

To prove the fifth statement, observe that, by the fifth statement of Lemma 3.1 and
Theorem 3.4,

mdimFS(S : S) = lim
t→∞

lim
r→∞

ρr,t(S : S)

≥ lim
t→∞

lim
r→∞

[

ρt(S)− ikt (r
′)

]

= lim
t→∞

ρt(S)

= dimFS(S).

Also, by the sixth statement of Lemma 3.1,

mdimFS(S : S) = lim
r→∞

lim
t→∞

ρr,t(S : S)

≤ lim
r→∞

lim
t→∞

[

ρt(S) + jkr (t
′)

]

= lim
t→∞

ρt(S)

= dimFS(S).

Using a similar argument, we can prove that MdimFS(S : S) = DimFS(S). Finally,
to prove the sixth statement, observe that, by the seventh statement of Lemma 3.1,

mdimFS(S : T ) = lim
r→∞

lim
t→∞

ρr,t(S : T )

= lim
r→∞

lim
t→∞

ρr,t(T : S)

= mdimFS(T : S).

By a similar argument, we can show that MdimFS(S : T ) = MdimFS(T : S).

4 Block Mutual Information Rates

In this section, we introduce the notion of block mutual information rates between
sequences and prove that the lower and upper finite-state mutual dimensions can be
characterized in terms of block mutual information rates.

Originally, Ziv and Lempel proved that the upper finite-state compression ratio of
a sequence may be characterized in terms of the entropy rates of non-aligned block
frequencies [25] within the sequence. Sheinwald proved a similar characterization of
the upper compression ratio using the entropy rates of aligned block frequencies [24].
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Later, Bourke, Hitchcock, and Vindochandran proved a characterization of the lower
and upper finite-state dimensions of sequences [5] in terms of (aligned) block entropy
rates. Kozachinskiy and Shen recently proved that the lower finite-state dimension can
also be characterized using the entropy rates of non-aligned block frequencies [15].

We begin by discussing Shannon mutual information.

Definition. Let α be a discrete probability measure on X ×X . The Shannon mutual
information between α1 and α2 is

I(α1;α2) = H(α1) + H(α2)−H(α).

By the properties of Shannon entropy found in Theorem 2.1, we have the following
properties regarding mutual information.

Theorem 4.1. Let α be a probability measure on X × X .

1. I(α1;α2) ≥ 0.

2. I(α1;α2) ≤ min{H(α1),H(α2)}.

3. If
∑

a∈Σ α(a, a) = 1, then I(α1;α2) = H(α1) = H(α2) = H(α).

4. I(α1;α2) = I(α2;α1).

Let ℓ, n ∈ Z+ such that n is a multiple of ℓ and let u,w ∈ Σn. By applying Theorem

4.1 to π
(ℓ)
u,w, where α = π

(ℓ)
u,w, α1 = π

(ℓ)
u , and α2 = π

(ℓ)
w , we obtain the following corollary.

Corollary 4.2. For every n, ℓ ∈ Z+ such that n is a multiple of ℓ and all u ∈ Σn and
w ∈ Σn,

1. I(π
(ℓ)
u ;π

(ℓ)
w ) ≥ 0,

2. I(π
(ℓ)
u ;π

(ℓ)
w ) ≤ min{H(π

(ℓ)
u ),H(π

(ℓ)
w )},

3. I(π
(ℓ)
u ;π

(ℓ)
u ) = H(π

(ℓ)
u ), and

4. I(π
(ℓ)
u ;π

(ℓ)
w ) = I(π

(ℓ)
w ;π

(ℓ)
u ).

We now proceed to prove several lemmas which provide bounds on the difference
of the normalized mutual information between the block frequencies of two strings and
the mutual compression ratio between the same two strings. These lemmas will be
needed to prove the main theorem of this section.

Lemma 4.3. For all r, t ∈ Z+ and u,w ∈ Σn such that n ≥ r′,

I(π
(r′)
ur′

;π
(r′)
wr′

)

r′ log k
− ρr,t(u : w) ≤ 2

⌊ n

r′

⌋−1
+ qkt (r

′),

where r′ = ⌊logk r⌋, ur′ = u ↾

⌊

n
r′

⌋

· r′, wr′ = w ↾

⌊

n
r′

⌋

· r′, and lim
m→∞

qkt (m) = 0.
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Proof. By Lemmas 2.6 and 2.10,

I(π
(r′)
ur′

;π
(r′)
wr′

)

r′ log k
− ρr,t(u : w)

=
H(π

(r′)
ur′

)

r′ log k
+

H(π
(r′)
wr′

)

r′ log k
−

H(π
(r′)
ur′ ,wr′

)

r′ log k
− ρt(u)− ρt(w) + ρr(u,w)

=
H(π

(r′)
ur′

)

r′ log k
+

H(π
(r′)
wr′

)

r′ log k
−

H(π
(r′)
ur′ ,wr′

)

r′ log k
− ρt(u)− ρt(w) + 2ρr((u,w))

≤ ρt(u) + ρt(w) −
H(π

(r′)
ur′ ,wr′

)

r′ log k
− ρt(u)− ρt(w) + 2

(H
(

π
(r′)
(ur′ ,wr′)

)

r′ log k2
+

1

r′

)

+ 2
⌊n

r′

⌋−1
+ 2fk

t (r
′)

= ρt(u) + ρt(w) −
H(π

(r′)
ur′ ,wr′

)

r′ log k
− ρt(u)− ρt(w) +

H(π
(r′)
ur′ ,wr′

)

r′ log k
+

2

r′
+ 2

⌊ n

r′

⌋−1
+ 2fk

t (r
′)

=
2

r′
+ 2

⌊n

r′

⌋−1
+ 2fk

t (r
′)

= 2
⌊ n

r′

⌋−1
+ qkt (r

′),

where qkt (r
′) = 2

r′
+ 2fk

t (r
′).

Lemma 4.4. For all r, t ∈ Z+ and u,w ∈ Σn such that n ≥ r′,

ρt,r(u : w)−
I(π

(r′)
ur′

;π
(r′)
wr′

)

r′ log k
≤

⌊n

r′

⌋−1
+ pkt (r

′),

where r′ = ⌊logk r⌋, ur′ = u ↾

⌊

n
r′

⌋

· r′, wr′ = w ↾

⌊

n
r′

⌋

· r′, and lim
m→∞

pkt (m) = 0.

Proof. By Lemmas 2.8 and 2.10,

ρt,r(u : w)−
I(π

(r′)
ur′

;π
(r′)
wr′

)

r′ log k

= ρr(u) + ρr(w)− ρt(u,w) −
H(π

(r′)
ur′

)

r′ log k
−

H(π
(r′)
wr′

)

r′ log k
+

H(π
(r′)
ur′ ,wr′

)

r′ log k

≤
H(π

(r′)
ur′

)

r′ log k
+

H(π
(r′)
wr′

)

r′ log k
−

H(π
(r′)
ur′ ,wr′

)

r′ log k
−

H(π
(r′)
ur′

)

r′ log k
−

H(π
(r′)
wr′

)

r′ log k
+

H(π
(r′)
ur′ ,wr′

)

r′ log k
+

2

r′
+

⌊n

r′

⌋−1
+ fk2

t (r′)

=
2

r′
+

⌊n

r′

⌋−1
+ fk2

t (r′)

=
⌊n

r′

⌋−1
+ pkt (r

′),

where pkt (r
′) = 2

r′
+ fk2

t (r′).

We now discuss the ℓth block entropy rates of sequences. For any n,m ∈ Z+,
x, y ∈ Σm, and S, T ∈ Σ∞, we denote the nth block frequency of x in S by the function
πS,n : Σ∗ → Q[0,1], defined by

πS,n(x) = πS↾nm(x) =
#�(x, S ↾ nm)

n
,
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and the nth joint block frequency of x in S and y in T by the function πS,T,n : Σ∗×Σ∗ →
Q[0,1], defined by

πS,T,n(x, y) = πS↾nm,T ↾nm(x) =
#�((x, y), (S, T ) ↾ nm)

n
.

As before, for each ℓ ∈ Z+, we denote the restriction of πS,n to the strings in Σℓ by

π
(ℓ)
S,n and the restriction of πS,T,n to the pairs of strings in Σℓ × Σℓ by π

(ℓ)
S,T,n.

Definition. Let ℓ ∈ Z+ and S ∈ Σ∞. The ℓth lower and upper block entropy rates of
S are

Hℓ(S) =
1

ℓ log k
lim inf
n→∞

H(π
(ℓ)
S,n)

and

Ĥℓ(S) =
1

ℓ log k
lim sup
n→∞

H(π
(ℓ)
S,n)

respectively.

Definition. Let ℓ ∈ Z+ and S ∈ Σ∞. The ℓth lower and upper joint block entropy
rates of S and T are

Hℓ(S, T ) =
1

ℓ log k
lim inf
n→∞

H(π
(ℓ)
S,T,n)

and

Ĥℓ(S, T ) =
1

ℓ log k
lim sup
n→∞

H(π
(ℓ)
S,T,n)

respectively.

We make note that the ℓth lower and upper block entropy rates Hℓ((S, T )) and
Ĥℓ((S, T )) of (S, T ) ∈ (Σ×Σ)∞ are normalized by ℓ log k2 and the ℓth lower and upper
joint block entropy rates Hℓ(S, T ) and Ĥℓ(S, T ) of S ∈ Σ∞ and T ∈ Σ∞ are normalized
by ℓ log k.

Definition. Let ℓ ∈ Z+ and S, T ∈ Σ∞. The ℓth lower and upper block mutual
information rates between S and T are

Iℓ(S;T ) =
1

ℓ log k
lim inf
n→∞

I(π
(ℓ)
S,n;π

(ℓ)
T,n)

and

Îℓ(S;T ) =
1

ℓ log k
lim sup
n→∞

I(π
(ℓ)
S,n;π

(ℓ)
T,n)

respectively.

The following theorem regarding the properties of block mutual information rates
between sequences follows directly from Corollary 4.2 and the definitions of lim inf and
lim sup.

Lemma 4.5 (Properties of ℓth Block Mutual Information Rates between Sequences).
Let ℓ ∈ Z+ and S, T ∈ Σ∞.

24



1. Iℓ(S;T ) ≥ 0, Îℓ(S;T ) ≥ 0.

2. Hℓ(S) + Hℓ(T )− Ĥℓ(S, T ) ≤ Iℓ(S;T ) ≤ Ĥℓ(S) + Ĥℓ(T )− Ĥℓ(S, T ).

3. Hℓ(S) + Hℓ(T )−Hℓ(S, T ) ≤ Îℓ(S;T ) ≤ Ĥℓ(S) + Ĥℓ(T )−Hℓ(S, T ).

4. Iℓ(S;T ) ≤ min{Hℓ(S),Hℓ(T )}, Îℓ(S;T ) ≤ min{Ĥℓ(S), Ĥℓ(T )}.

5. Iℓ(S;S) = Hℓ(S), Îℓ(S;S) = Ĥℓ(S).

6. Iℓ(S;T ) = Iℓ(T ;S), Îℓ(S;T ) = Îℓ(T ;S).

We now make an observation that will be used to prove two lemmas that provide
upper-bounds on the difference of the block mutual information and mutual compres-
sion ratio between two sequences.

Observation 4.6. For any ℓ ∈ Z+ and S, T ∈ Σ∞,

Iℓ(S;T ) =
1

ℓ log k
lim inf
n→∞

I(π
(ℓ)
S,⌊n

ℓ
⌋;π

(ℓ)
T,⌊n

ℓ
⌋)

and

Îℓ(S;T ) =
1

ℓ log k
lim sup
n→∞

I(π
(ℓ)
S,⌊n

ℓ
⌋;π

(ℓ)
T,⌊n

ℓ
⌋).

Lemma 4.7. For all r, t ∈ Z+ and S, T ∈ Σ∞,

Ir′(S;T )− ρr,t(S : T ) ≤ qkt (r
′)

and
Îr′(S;T )− ρ̂r,t(S : T ) ≤ qkt (r

′)

where r′ = ⌊logk r⌋ and lim
m→∞

qkt (m) = 0.

Proof. By Lemma 4.3 and Observation 4.6,

Ir′(S;T )− ρr,t(S : T )

=
1

r′ log k
lim inf
n→∞

I(π
(r′)
S,⌊ n

r′
⌋;π

(r′)
T,⌊ n

r′
⌋)− lim inf

n→∞
ρr,t(S ↾ n : T ↾ n)

= lim inf
n→∞

I(π
(r′)
S,⌊ n

r′
⌋;π

(r′)
T,⌊ n

r′
⌋)

r′ log k
− lim inf

n→∞
ρr,t(S ↾ n : T ↾ n)

≤ lim sup
n→∞

[ I(π
(r′)
S,⌊ n

r′
⌋;π

(r′)
T,⌊ n

r′
⌋)

r′ log k
− ρr,t(S ↾ n : T ↾ n)

]

≤ lim sup
n→∞

[

2
⌊n

r′

⌋−1
+ qkt (r

′)

]

= qkt (r
′).

An identical argument can be given to prove the second inequality.

25



Lemma 4.8. For all r, t ∈ Z+ and S, T ∈ Σ∞,

ρt,r(S : T )− Ir′(S;T ) ≤ pkt (r
′)

and
ρ̂t,r(S : T )− Îr′(S;T ) ≤ pkt (r

′)

where r′ = ⌊logk r⌋ and lim
m→∞

pkt (m) = 0.

Proof. By Lemma 4.4 and Observation 4.6,

ρt,r(S : T )− Ir′(S;T )

= lim inf
n→∞

ρt,r(S ↾ n : T ↾ n)−
1

r′ log k
lim inf
n→∞

I(π
(r′)
S,⌊ n

r′
⌋;π

(r′)
T,⌊ n

r′
⌋)

= lim inf
n→∞

ρt,r(S ↾ n : T ↾ n)− lim inf
n→∞

I(π
(r′)
S,⌊ n

r′
⌋;π

(r′)
T,⌊ n

r′
⌋)

r′ log k

≤ lim sup
n→∞

[

ρt,r(S ↾ n : T ↾ n)−
I(π

(r′)
S,⌊ n

r′
⌋;π

(r′)
T,⌊ n

r′
⌋)

r′ log k

]

≤ lim sup
n→∞

[

⌊n

r′

⌋−1
+ pkt (r

′)

]

= pkt (r
′).

An identical argument can be given to prove the second inequality.

We now discuss the block entropy rates and joint block entropy rates of sequences
and introduce block mutual information rates between two sequences.

Definition. The lower and upper block entropy rates of S are

H(S) = lim
ℓ→∞

Hℓ(S)

and
Ĥ(S) = lim

ℓ→∞
Ĥℓ(S),

respectively.

Definition. The lower and upper joint block entropy rates of S ∈ Σ∞ and T ∈ Σ∞

are
H(S, T ) = lim

ℓ→∞
Hℓ(S, T )

and
Ĥ(S, T ) = lim

ℓ→∞
Ĥℓ(S, T ),

respectively.

Using the frameworks developed in [25] and [9], Bourke, Hitchcock, and Vinodchan-
dran proved the following theorem in [5].
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Theorem 4.9 ([5]). For every S ∈ Σ∞,

dimFS(S) = H(S)

and
DimFS(S) = Ĥ(S).

The following corollary follows directly from Theorem 4.9.

Corollary 4.10. For every S, T ∈ Σ∞,

dimFS(S, T ) = H(S, T )

and
DimFS(S, T ) = Ĥ(S, T ).

Definition. The lower and upper block mutual information rates between S ∈ Σ∞ and
T ∈ Σ∞ are

I(S;T ) = lim
ℓ→∞

Iℓ(S;T ) (12)

and

Î(S;T ) = lim
ℓ→∞

Îℓ(S;T ), (13)

respectively.

We now present the main theorem of this section, which states that the lower and
upper block mutual information rates coincide with the lower and upper finite-state
mutual dimensions, respectively.

Theorem 4.11. For all S, T ∈ Σ∞,

mdimFS(S : T ) = I(S;T )

and
MdimFS(S : T ) = Î(S;T ).

Proof. Let ǫ > 0, ǫ1 > 0, and ǫ2 > 0 such that ǫ = ǫ1 + ǫ2. First, let c ∈ Z+ such that,

∣

∣ lim
r→∞

ρr,c(S : T )−mdimFS(S : T )
∣

∣ < ǫ1 (14)

and

∣

∣ lim
t→∞

ρc,t(S : T )−mdimFS(S : T )
∣

∣ < ǫ1. (15)

We then choose a constant D ∈ Z+ such that, for all d > D,

qkc (d
′) < ǫ2 and pkc (d

′) < ǫ2 (16)
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where d′ = ⌊logk d⌋ and qkc (d
′) and pkc (d

′) are from Lemmas 4.7 and 4.8, respectively.
By Lemma 4.7, (14), and (16),

Id′(S;T )−mdimFS(S : T ) ≤ ρd,c(S : T )−mdimFS(S : T ) + qkc (d
′)

≤ lim
r→∞

ρr,c(S : T )−mdimFS(S : T ) + qkc (d
′)

≤ ǫ1 + ǫ2

= ǫ.

Likewise, by Lemma 4.8, (15), and (16),

Id′(S;T )−mdimFS(S : T ) ≥ ρc,d(S : T )−mdimFS(S : T )− pkc (d
′)

≥ lim
t→∞

ρc,t(S : T )−mdimFS(S : T )− pkc (d
′)

≥ −ǫ1 − ǫ2

= −ǫ.

Therefore, for every ǫ > 0, there exists a constant D ∈ Z+ such that, for all d > D,

|Id′(S;T )−mdimFS(S : T )| < ǫ,

which proves that the limit from the definition of I(S;T ) exists and is equal tomdimFS(S :
T ). An identical argument can be given to prove that the limit from the definition of
Î(S;T ) exists and is equal to MdimFS(S : T ).

The following theorem regarding the properties of block-mutual information rates
between sequences follows from Theorem 3.5, Theorem 4.9, Corollary 4.10, and The-
orem 4.11. This theorem may also be proven using the properties listed in Lemma
4.5.

Theorem 4.12 (Properties of Block Mutual Information Rates between Sequences).
For all S, T ∈ Σ∞,

1. H(S) + H(T )− Ĥ(S, T ) ≤ I(S;T ) ≤ Ĥ(S) + Ĥ(T )− Ĥ(S, T )

2. H(S) + H(T )−H(S, T ) ≤ Î(S;T ) ≤ Ĥ(S) + Ĥ(T )−H(S, T )

3. I(S;T ) ≤ min{H(S),H(T )}, Î(S;T ) ≤ min{Ĥ(S), Ĥ(T )},

4. 0 ≤ I(S;T ) ≤ Î(S;T ) ≤ 1,

5. I(S;S) = H(S), Î(S;S) = Ĥ(S), and

6. I(S;T ) = I(T ;S), Î(S;T ) = Î(T ;S).

5 Finite-State Mutual Dimension and Indepen-

dence

In this section we explore some of the relationships between finite-state mutual di-
mension and normal sequences. More specifically, we provide necessary and sufficient
conditions for when two normal sequences achieve finite-state mutual dimension zero.
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Becher, Carton, and Heiber provided a notion of finite-state independence using
the conditional compression ratio of a sequence given another sequence. Specifically,
they define two sequences S ∈ Σ∞ and T ∈ Σ∞ to be finite-state independent if the
conditional compression ratio ρ(S |T ) of S given T is equal to the compression ratio
ρ(S) of S, the conditional compression ratio ρ(T |S) of T given S is equal to the
compression ratio ρ(T ) of T , and both ρ(S) and ρ(T ) are greater than zero. In their
investigation they showed that, for any two normal sequences R1 ∈ Σ∞ and R2 ∈ Σ∞,
if R1 and R2 are finite-state independent, then (R1, R2) is normal. However, they also
showed that the converse does not hold, i.e., there are two normal sequences R1 and R2

such that (R1, R2) is normal and not finite-state independent [3]. Alvarez, Becher, and
Carton also proved several characterizations of finite-state independence using various
kinds of Büchi automata [1].

We now proceed to discuss the concept of normality and its relationship to finite-
state dimension.

Definition. Let α be a probability measure on Σ, S ∈ Σ∞, and ℓ ∈ Z+.

1. S is α-ℓ-normal if, for all x ∈ Σℓ,

lim
n→∞

πS,n(x) = α(x).

2. S is α-normal if S is α-ℓ-normal for all ℓ ∈ Z+.

3. S is normal if S is µ-normal, where µ is the uniform probability measure on Σ.

4. S has asymptotic frequency α, and we write S ∈ FREQα, if S is α-1-normal.

In [18], Lutz explored the lower and upper finite-state β-dimensions dimβ
FS(S) and

Dimβ
FS(S) of a sequence S ∈ Σ∞, where β is a probability measure on Σ. These quanti-

ties are essentially finite-state versions of Billingsley dimension and strong Billingsley
dimension, respectively [4]. We will need to use these concepts to prove our main
theorem.

Let β be a probability measure on Σ. The Shannon self-information of a string
w ∈ Σ∗ with respect to β on Σ is

ℓβ(w) =

|w|−1
∑

i=0

log
1

β(w[i])
.

The β-compression ratio of u ∈ Σ∗ attained by an ILFSC C on Σ is

ρβC(u) =
|C(u)|

ℓβ(u)
.

Definition. Let β be a probability measure on Σ. The r-state β-compression ratio of
u ∈ Σ∗ is

ρβr (u) = min
{

ρβC(u)

∣

∣

∣

∣

C is an ILFSC on Σ that has r states
}
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Definition. Let β be a probability measure on Σ. The lower and upper finite-state
β-dimensions of S ∈ Σ∞ are

dimβ
FS(S) = lim

r→∞
lim inf
n→∞

ρβr (S ↾ n)

and
Dimβ

FS(S) = lim
r→∞

lim sup
n→∞

ρβr (S ↾ n),

respectively.

Schnorr and Stimm proved a characterization of normal sequences in terms of finite-
state gamblers [23]. Later, Dai, Lathrop, Lutz, and Mayordomo showed that any
normal sequence achieves finite-state dimension one [9], while Bourke, Hitchcock, and
Vinodchandran showed that any sequence that achieves finite-state dimension one is
normal. [5]. This result can easily be generalized to α-normal sequences.

Theorem 5.1 ([23, 5]). For each probability measure α on Σ and each R ∈ Σ∞, R is
α-normal if and only if dimα

FS(R) = 1.

The main theorem of this section provides a similar characterization for pairs of normal
sequences that achieve finite-state mutual dimension zero.

Theorem 5.2. Let α1 and α2 be positive probability measures on Σ. If R1 is α1-normal
and R2 is α2-normal, then (R1, R2) is (α1 × α2)-normal if and only if MdimFS(R1 :
R2) = 0.

Note that, in the above theorem, the product probability measure (α1 × α2) on Σ × Σ
is defined by

(α1 × α2)(a, b) = α1(a)α2(b),

for all a, b ∈ Σ. We present the proof of Theorem 5.2 at the end of this section.
Thus finite-state mutual dimension provides a mechanism in which to reason about
the degree to which two sequences are independent of one another at the finite-state
level.

First, we make the following observation regarding α-normal sequences over Σ×Σ.

Observation 5.3. Let α be a probability measure on Σ×Σ. If a sequence (R1, R2) ∈
(Σ× Σ)∞ is α-normal, then R1 is α1-normal and R2 is α2-normal.

Lutz proved the following theorem about α-normal sequences [18].

Theorem 5.4 ([18]). If α is a probability measure on Σ, then, for every α-normal
sequence R ∈ Σ∞,

dimFS(R) = DimFS(R) =
H(α)

log k
.

The following corollary follows from Theorem 5.4.

Corollary 5.5. If α is a probability measure on Σ × Σ, then, for every α-normal
sequence (R1, R2) ∈ (Σ × Σ)∞,

dimFS(R1, R2) = DimFS(R1, R2) =
H(α)

log k
.
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Our first theorem of this section is a “mutual” version of Theorem 5.4.

Theorem 5.6. If α is a probability measure on Σ × Σ, then, for every α-normal
sequence (R1, R2) ∈ (Σ × Σ)∞,

mdimFS(R1 : R2) = MdimFS(R1 : R2) =
I(α1;α2)

log k
.

Proof. If (R1, R2) is α-normal, then, by Observation 5.3, R1 is α1-normal and R2 is
α2-normal. By the properties of finite-state mutual dimension listed in Theorem 3.5,
we have

dimFS(R1) + dimFS(R2)− dimFS(R1, R2) ≤ mdimFS(S : T )

and
mdimFS(S : T ) ≤ DimFS(R1) +DimFS(R2)− dimFS(R1, R2).

Furthermore, by applying Theorem 5.4 and Corollary 5.5, we obtain

H(α1)

log k
+

H(α2)

log k
−

H(α)

log k
≤ mdimFS(R1 : R2) ≤

H(α1)

log k
+

H(α2)

log k
−

H(α)

log k
.

Finally, by the definition of Shannon mutual information,

I(α1;α2)

log k
≤ mdimFS(R1 : R2) ≤

I(α1;α2)

log k
.

A similar argument can be given to show that MdimFS(R1 : R2) =
I(α1;α2)
log k .

Definition. Let α and β be probability measures on Σ. The Kullback-Leibler diver-
gence between α and β is

D(α ||β) =
∑

a∈Σ

α(a)
α(a)

β(a)
.

Lutz also proved the following lemma regarding the Shannon self-information of a
sequence with respect to a probability measure.

Lemma 5.7 (Frequency Divergence Lemma [18]). If α and β are positive probability
measure on Σ, then, for all S ∈ FREQα,

ℓβ(S ↾ n) = (H(α) +D(α ||β))n + o(n).

Lemma 5.8. If α1 and α2 are positive probability measures on Σ, then, for all S ∈
FREQα1 and T ∈ FREQα2 ,

ℓα1×α2((S, T ) ↾ n) = (H(α1) + H(α2))n+ o(n).
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Proof. Assume the hypothesis, then,

ℓα1×α2((S, T ) ↾ n)

=

n−1
∑

i=0

log
1

(α1 × α2)((S, T )[i])

=

n−1
∑

i=0

− log(α1 × α2)((S, T )[i])

=

n−1
∑

i=0

− log(α1(S[i])α2(T [i]))

=
n−1
∑

i=0

−
[

logα1(S[i]) + logα2(T [i])
]

=
n−1
∑

i=0

− log α1(S[i]) +
n−1
∑

i=0

− logα2(T [i])

=
n−1
∑

i=0

1

log α1(S[i])
+

n−1
∑

i=0

1

log α2(T [i])

= ℓα1(S ↾ n) + ℓα2(T ↾ n)

By the above equality and the Frequency Divergence Lemma, we have

ℓα1×α2((S, T ) ↾ n)

= (H(α1) + H(α2) +D(α1 ||α1) +D(α2 ||α2))n + o(n)

= (H(α1) + H(α2))n + o(n).

Lemma 5.9. Let α1 and α2 be positive probability measures on Σ. If R1 is α1-normal,
R2 is α2-normal, and

MdimFS(R1 : R2) = 0,

then

dimFS(R1, R2) =
H(α1) + H(α1)

log k
.

Proof. By Theorem 3.5,

dimFS(R1)+dimFS(R2)−dimFS(R1, R2) ≤ 0 ≤ DimFS(R1)+DimFS(R2)−dimFS(R1, R2).

Therefore, by Theorem 5.4,

dimFS(R1, R2) ≥ dimFS(R1) + dimFS(R2)

=
H(α1) + H(α2)

log k

and

dimFS(R1, R2) ≤ DimFS(R1) +DimFS(R2)

=
H(α1) + H(α2)

log k
.
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Thus,

dimFS(R1, R2) =
H(α1) + H(α2)

log k
.

We now prove the main theorem of this section.

Proof of Theorem 5.2. Assume the hypothesis and that (R1, R2) is (α1 × α2)-normal.
By Theorem 5.6, we have

MdimFS(R1 : R2) =
I(α1;α2)

log k

=
H(α1)

log k
+

H(α2)

log k
−

H(α1 × α2)

log k

= 0.

Now, we prove the converse. Assume that

MdimFS(R1 : R2) = 0.

By Lemma 5.9, we have

dimFS(R1, R2) =
H(α1) + H(α2)

log k
.

By the above inequality and since ρr(R1, R2) decreases in r, we know that, for all
r ∈ Z+,

ρr(R1, R2) > dimFS(R1, R2)

=
H(α1) + H(α2)

log k
,

which implies that

Cr((R1, R2) ↾ n) ≥
(H(α1) + H(α2))n log k

log k

= (H(α1) + H(α2))n, (17)

for sufficiently large n ∈ N. By Lemma 5.8 and (17),

dimα1×α2
FS ((R1, R2)) = lim

r→∞
lim inf
n→∞

ρα1×α2
r ((R1, R2))

= lim
r→∞

lim inf
n→∞

Cr((R1, R2) ↾ n)

ℓα1×α2((R1, R2) ↾ n)

≥ lim
r→∞

lim inf
n→∞

(H(α1) + H(α2))n

(H(α1) + H(α2))n + o(n)

= lim
r→∞

lim inf
n→∞

H(α1) + H(α2)

H(α1) + H(α2) + o(1)

= 1.

Since the finite-state dimension of a sequence cannot exceed one, then, by Theorem
5.1, we know that (R1, R2) is (α1 × α2)-normal.
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