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Wholesale Market Participation of Storage with
State-of-Charge Dependent Bids

Cong Chen, Student Member, IEEE and Lang Tong, Fellow, IEEE

Abstract—Wholesale market participation of storage with
state-of-charge (SoC) dependent bids results in a non-convex
cost in a multi-interval economic dispatch, which requires a
mixed-integer linear program in the market clearing. We show
that the economic dispatch can be convexified to the standard
linear program when the SoC-dependent bid satisfies the equal
decremental-cost ratio (EDCR) condition. Such EDCR bids are
shown to support individual rationalities of all market partic-
ipants in both the day-ahead multi-interval economic dispatch
under locational marginal pricing and the rolling-window look-
ahead dispatch under temporal-locational marginal pricing in
the real-time market. A numerical example is presented to
demonstrate a higher profit margin with an SoC-dependent bid
over that from an SoC-independent bid.

Index Terms—Multi-interval economic dispatch, SoC-
dependent bid, convexification, individual rationality, locational
marginal pricing, temporal locational marginal pricing.

I. INTRODUCTION

There have been recent proposals that allow storage par-
ticipants in the wholesale electricity market to submit state-

of-charge (SoC) dependent offers and bids [1]. Such bids in-

corporate SoC-dependent operation [2] and opportunity costs
[3] of merchant storage participants into bidding parameters

submitted to a bid-based market clearing process. In that

way, the central market clearing can produce an economic
dispatch program that schedules the battery SoC within a

range favorable to the battery’s health and the storage’s ability

to capture future profit opportunities under uncertainty.

However, SoC-dependent bids and offers result in a non-

convex optimization for the multi-interval dispatch in the

electricity market, causing computationally expensive market
clearing processes, especially when we have large amounts of

storage participating in the market. Such nonconvexity also

distorts the current locational marginal pricing (LMP) signals,
requiring out-of-the-market uplifts in the day-ahead and real-

time markets to support the dispatch-following incentive.

The LMP signal is also distorted by the inconsistency of
rolling-window look-ahead dispatch in the real-time market

[4]. Recently, the real-time electricity market in California

ISO (CAISO) has seen frequent out-of-merit storage dis-
patches in the rolling-window dispatch [5] that requires the
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discriminative out-of-the-market uplift payments to ensure

storage participants follow the operator’s dispatch signals.
This paper aims to uncover causes of nonconvexity from

SoC-dependent bids and offer simple remedies that convexify
the multi-interval economic dispatch to conform with stan-

dard market clearing and pricing processes.

A. Related work

The cost structure of storage is explored by many literature
and experimental results, which can be categorized into (i)

depth-of-discharge (DoD) dependent cost [2], [6]–[8] , (ii)

SoC-dependent degradation cost [2], [7], [9]–[11] and (iii)
SoC-dependent opportunity cost [3], [12]. Incorporating these

costs in dispatch decisions is directly or indirectly related to

the SoC operating range of the storage, and has the potential
to reduce storage operating costs and bring economic benefits

to merchant storage participants.
To include SoC-dependent cost into the market clear-

ing problem, some of the literature adopted SoC-dependent

weights with a mixed integer program when computing
the throughput of storage [13]–[15], making the storage

operation cost SoC-dependent. But these authors are not

intended for the deregulated electricity market with a bid-
based market clearing process. Most recently, CAISO has

initiated discussions about allowing SoC-dependent bids for
storage, which is a piecewise linear function between the

storage bids/offers and the SoC [1]. Furthermore, a market

clearing mechanism considering such SoC-dependent bids is
formulated into a mixed integer program in [16]. Note that,

all existing market clearing solutions to SoC dependent bids

rely on mixed integer programs, making the market clearing
process computationally expensive for large-scale practical

implementations. The nonconvexity of the market clearing
problem brought by the SoC-dependent bid also presents

pricing challenges, resulting in out-of-merit dispatch and the

need for out-of-the-market settlements in both one-shot and
rolling-window dispatch.

To the best of our knowledge, our earlier work [17]
is the first to convexify the market clearing problem with

SoC-dependent bids, thus removing the necessity of integer

variables, although it doesn’t explore the influence of SoC-
dependent bids on the pricing schemes in the one-shot and

rolling-window dispatch.
This paper is also related to literature about pricing storage

operation in the multi-interval dispatch under uncertainty.

http://arxiv.org/abs/2210.03903v1
cc2662@cornell.edu
lt35@cornell.edu
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Many researchers have analyzed the dispatch-following in-
centive issue of LMP caused by the inconsistency of rolling-

window dispatch, and propose new pricing schemes for

generators [4], [18]–[21] and storage [19], [22]. Our earlier
result shows that, in the rolling-window dispatch, there’s

no uniform price that can fully support dispatch-following
incentives without out-of-the-market uplifts [20], [22]. And

our idea of generalizing LMP to the nonuniform temporal

locational marginal pricing (TLMP) for storage [22], can
support the dispatch-following incentive without uplifts for

merchant storage participants. Here, we further extend our

earlier results about TLMP with SoC-independent bids [22]
to the rolling-window dispatch with SoC-dependent bids.

B. Summary of results

This paper focuses on the convexification and pricing of

the SoC-dependent multi-interval market clearing problem.

The main contribution of this work is threefold.

First, we provide insights into non-convexity introduced
by SoC-dependent cost and the rationale for imposing the

so-called equal decremental-cost ratio (EDCR) constraint

proposed in [17]. We also provide a new cost expression
(c.f. Theorem 1) under EDCR that is critical in pricing

storage with SoC-dependent costs in rolling-window look-

ahead scheduling.

Second, we establish that the standard LMP guarantees
dispatch-following incentives in the one-shot multi-interval

economic dispatch typically used in the day-ahead market

with bids satisfying the EDCR condition. We also provide a
numerical example demonstrating the impact of EDCR SoC-

dependent bids* on the profit, the millage, and the profit
margin of storage participants.

Finally, we show that EDCR bids priced under TLMP
guarantee dispatch-following incentives for rolling-window

dispatch, independent of forecasting errors. In particular, the
rolling-window dispatch of storage achieves the maximum

individual profit for the storage given the realized (ex-post)

price over the entire scheduling horizon.

This paper is organized as follows. We first introduce the

SoC-dependent cost structure in Sec. II. Sec. III provides
insights into the nonconvexity induced by SoC-dependent

costs and the rationale that the EDCR condition convexifies
the dispatch optimization. In Sec. IV, we introduce the

rolling-window dispatch with the SoC-dependent bid and

the effects of TLMP. A numerical example illustrating the
benefits of SoC-dependent bids is given in Sec. V,

II. SOC-DEPENDENT BID AND STAGE COST MODELS

In this section, we will introduce the SoC dependency of

storage operation cost, and then explain the SoC-dependent
bid together with the single-stage cost models.

*EDCR SoC-dependent bids refers to the SoC-dependent bid satisfying
the EDCR condition.

A. SoC-dependent battery degradation cost

The battery degradation cost is shown to be SoC-dependent

by many lab degradation test results like [2], [9]–[11]. A
general relation between SoC and battery lifetime degra-

dation is shown in Fig. 1, plotted based on data from
[2]. It can be observed that storage has more equivalent

full cycles when operating in the middle SoC range. This

means storage degradation cost is lower in the middle SoC
range than that approaching SoC operating boundaries. In

the current electricity market, merchant storage participants

can only participate with a SoC-independent bid [23]. This
means storage needs to do approximation over the true SoC-

dependent cost, or keep updating the bid-in parameters for
costs and physical limits based on its SoC.
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Fig. 1: SoC-dependent degradation cost of storage.

B. SoC-dependent bid and cost models

To reduce the barrier to the economic storage operation,
recent proposals [1] have allowed merchant storage partici-

pants in wholesale electricity to submit SoC-dependent offers

and bids. A standard piecewise-linear SoC-dependent bid
model is shown in Fig. 2. We partition the SoC axis into K
consecutive segments, within each segment Ek = [Ek, Ek+1],
a pair of bid-in cost/benefit parameters (cC

k, c
D

k) is defined.

This SoC-dependent bid is composed of bid-in parameters

cC := (cC

k), c
D := (cD

k) and E := (Ek). For simplicity, storage
index and storage ramping costs are ignored in this section.

Fig. 2: SoC-dependent bid.

Additionally, we introduce Assumption 1 for the SoC-
dependent bids based on two considerations. Firstly, for the

longevity of the battery and the ability to capture profit
opportunities, it is more costly to discharge when the SoC

is low, and the benefit of charging is less when the SoC

is high. Therefore, typical bid-in discharge costs (cD

k) and
charging benefits (cC

k) are monotonically decreasing. Sec-

ondly, the storage participant is willing to discharge only
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if the selling price is higher than the buying price. Hence,
the storage participant’s willingness to sell by discharge

(adjusted to discharging efficiency) must be higher than its

willingness to purchase (adjusted to charging efficiency),
i.e., cD

kη
D > cC

k/η
C, ∀k, with charging/discharging efficiencies

ηC, ηD ∈ (0, 1].

Assumption 1. The SoC-dependent cost/benefit parameters

{(cC

k, c
D

k), η
C, ηD} satisfy the following monotonicity condi-

tions ∀k = 1, · · · ,K − 1:
{

cC

k ≥ cC

k+1

cD

k ≥ cD

k+1
and cC

1/η
C < cD

K
ηD.

As for the physical operation parameters of storage, we

adopt the standard imperfect storage model. In the scheduling
interval t, let et be the storage SoC, gC

t the charging power,

and gD

t the discharging power, respectively. The storage SoC
evolves according to

et+1 = et + gC

tη
C − gD

t/η
D, gC

tg
D

t = 0, (1)

SoC-dependent bids and offers induce SoC-dependent

scheduling costs involving the (ex-ante) SoC et in scheduling

stage t before dispatch and the (ex-post) SoC et+1 that may
be in a different SoC partitioned segment. Specifically, the

stage cost in interval t is given by

f(gC

t , g
D

t ; et) = f D(et, g
D

t )− f C(et, g
C

t), (2)

where f C(·) and f D(·) are charging and discharging costs.

For every et ∈ Em, et+1 = et + gC

tη
C − gD

t/η
D ∈ En, f C(·)

and f D(·) are respectively defined as follows:

f C(et, g
C

t) :=











gC

tc
C

n m = n

gC

tc
C

n +
∑n−1

k=m
∆cC

k

ηC (Ek+1 − et) n > m

0 otherwise

f D(et, g
D

t ) :=







gD

t c
D

n m = n
gD

t c
D

n +
∑m

k=n+1 η
D∆cD

k(Ek − et) n < m
0 otherwise

with ∆cC

k := cC

k − cC

k+1 and ∆cD

k := cD

k − cD

k+1. The stage
cost above is first explained in [17] together with an example

illustrating the computation of f C(et, g
C

t) from the perspective

of lebesgue integral. Note that the stage cost f(gC

t , g
D

t ; et) is
non-convex, although it is convex if given et.

III. ONE-SHOT DISPATCH AND PRICING

In this section, we first explain the one-shot multi-interval
economic dispatch model adopted in the day-ahead electricity

market and then propose a sufficient condition to convexify
the market clearing problem for the one-shot dispatch. A toy

example is illustrated here to give intuitive virtualization of

the convexification procedure. Furthermore, under one-shot
LMP, the individual rationality and truthful-bidding incentive

for storage with the SoC-dependent bid is analyzed.

A. Multi-interval economic dispatch and one-shot LMP

We consider a bid-based electricity market involving one

inelastic demand, N storage units, and a system (market)
operator†. And we model all market participants with the

generalized storage model [22]. For example, the generalized

storage model for elastic demand has the charge power
representing the demand, and the SoC representing the accu-

mulated consumption. The physical limit is zero for discharge
power and infinite for SoC.

The scheduling period of storage involves T unit-length

intervals H = {1, · · · , T }, where interval t covers the time

interval [t, t+1). Typically, T is the number of intervals in a
day. Denote the charge power vector of storage indexed by i
by gC

i := (gC

i1, · · · , g
C

iT ) (and, similarly gD

i ). Given the initial
SoC ei1 = si and G := {gC

i , g
D

i } , the total cost of N storage

over multi-interval H is

F̄ (G, s) =
∑N

i=1 Fi(g
C

i , g
D

i ; si)

=
∑N

i=1

∑T
t=1 fi(g

C

it, g
D

it; eit).
(3)

Given the load forecast (d̂t), the T -interval economic

dispatch minimizes the total system operation costs is

G : minimize
{(gC

it
,gD

it
,eit)}

F̄ (G, s) =
∑N

i=1 Fi(g
C

i , g
D

i ; si)

s.t. ∀t ∈ H, ∀i ∈ {1, ..., N}

λt :
∑N

i=1(g
D

it − gC

it) = d̂t,
(µC

it
, µ̄C

it) : −rC

i ≤ gC

it − gC

i(t−1) ≤ r̄C

i ,

(µD

it
, µ̄D

it) : −rD

i ≤ gD

it − gD

i(t−1) ≤ r̄D

i ,

φit : eit + gC

itη
C − gD

it/η
D = ei(t+1),

ei ≤ ei(t+1) ≤ ēi, ei1 = si,
0 ≤ gC

it ≤ ḡC

i ,
0 ≤ gD

it ≤ ḡD

i ,

(4)

where operation constraints sequentially included are power
balance constraints, charging & discharging ramp limits,

SoC state transition constraints, SoC limits, and charging &

discharging capacity limits. Dual variables most relevant in
defining prices are SoC shadow prices φit, ramping shadow

prices (µC

i
, µ̄C

i , µ
D

i
, µ̄D

i ), and power balance shadow prices λit.
Note that we ignore the non-convex constraint gC

tg
D

t = 0, ∀t
that prevents simultaneous charging/discharging decisions in

(4). Following references [24], [25], the following lemma first

proposed in [17] shows that such a relaxation can be justified
for cases with non-negative LMPs.

Lemma 1. Under Assumption 1 and non-negative LMPs, the

optimal solution of (4) satisfies gC∗
it g

D∗
it = 0, ∀i, t.

Although the constraints of (4) are convex, the objec-

tive function is not because the stage-cost function Fi(·)
is non-convex in a multi-interval dispatch. Therefore, the
SoC-dependent bid causes nonconvexity in the multi-interval

economic dispatch. And pricing non-convex multi-interval

dispatch becomes nontrivial. However, for some choices of

†Network constraints are ignored here for simplicity, and our analysis can
be easily extended to the case with network constraints.
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bidding parameters, the objective is convex, for which an
example is shown in Fig. 3 (top right). In this case, the

one-shot locational marginal price‡ (LMP for short) is a

uniform price (πLMP

t ) with πLMP

t defined by the marginal energy
providing cost with respect to the demand in interval t. In

particular, we have, by the envelope theorem,

πLMP

t :=
∂

∂dt
F̄ (G∗, s) = λ∗t , (5)

where F̄ (G∗, s) is the objective (3) at the optimal solution.

B. A sufficient condition convexifying multi-interval dispatch

Theorem 1 below gives a condition on bid-in cost param-

eters that convexify the market clearing optimization (4). For
simplicity, storage index i is omitted here.

Theorem 1. If a storage participant’s bid-in parameters

satisfy the equal decremental-cost ratio (EDCR) condition,

cC

k − cC

k−1

cD

k − cD

k−1

= ηCηD, ∀k, (6)

under Assumption 1 and non-negative LMPs, the total cost

of a storage dispatch over multi-interval for the given initial

SoC e1 = s is a piecewise linear convex function of gC :=
(gC

t ) and gD = (gD

t ) given by

F (gC, gD; s) = max
j∈{1,...,K}

{αj(s)− cC

j1
⊺gC + cD

j1
⊺gD},

= −cC

n1
⊺gC + cD

n1
⊺gD

+











∑n−1
k=m

−∆cC
k

ηC (Ek+1 − s), n > m

0, m = n
∑m

k=n+1 η
D∆cD

k−1(Ek − s), n < m

,

(7)

where αj(s) := −
∑j−1

k=1
∆cC

k(Ek+1−E1)
ηC −

cC
j(s−E1)

ηC + hC(s),

hC(s) :=
∑K

i=1 I{s ∈ Ei}(
cC
i (s−E1)

ηC +
∑i−1

k=1
∆cC

k(Ek+1−E1)
ηC )§.

m and n are respectively indexes for SoC partitioned seg-

ments that the initial and the end-state SoC respectively fall

into, i.e., e1 = s ∈ Em and eT+1 ∈ En.

The EDCR condition is first proposed in [17] with detailed

proof, and here we provide an alternative new equivalent
formulation of the multi-interval storage cost, which indicates

the multi-interval cost is linear given the initial and the
end-state SoC. This is critical in pricing the rolling-window

dispatch in Sec. IV with the SoC-dependent bid considered.

C. Convexification Insights of the EDCR condition

Knowing that a function is non-convex if the composition

of the function with an affine function is non-convex [26],
we use such a composition to demonstrate the insight of the

nonconvexity and convexification in the following example.

‡We retain the LMP terminology even though the model considered here
does not involve a network.

§
I{s ∈ Ei} is indicator function, which equals to 1 when s ∈ Ei.

Fig. 3: Top: SoC-dependent cost of storage in the 2-interval dispatch
(left: non-convex true cost; right: convex EDCR cost. Middle:
SoC-dependent bid (left: true SoC-dependent marginal cost; right:
EDSR bid. Bottom: the composition of storage cost function with
the affine function g1 = −g2 (left: non-convex true cost; right:
convex EDCR cost).

Consider ideal storage in a 2-interval dispatch with true

non-convex multi-interval storage cost shown in the top left

of Fig. 3, and convexified storage cost function based on the
EDCR bid shown in Fig 3 (top right). The x-axis notation

represents the net-producing power of storage, defined by
gt := gD

t − g
C

t , ∀t = 1, 2. Detailed parameters of this example

are explained in Sec. V. Figures related to the true SoC-

dependent marginal cost are shown in the left column of
Fig. 3, and figures related to the EDCR SoC-dependent bid

are shown in the right column.

The composition of storage cost function with the affine
function g1 = −g2 is shown in the bottom of Fig. 3 where

g1 = g. Such affine function restricts that the storage will

always loop back to the initial SoC in this 2-interval dispatch.
The slope of Fig. 3 (bottom) is cD

1 − cC

1 when g + s1 ∈ E1,

and cD

2 − cC

2 when g + s1 ∈ E2. With true SoC-dependent
bidding parameters (cC, cD,E) shown in Fig. 3 (middle left),

the EDCR condition (6) is not satisfied, and the nonconvexity

is observed at the breakpoint E2 in Fig. 3 (bottom left). But
with the EDCR bids (c̃C, c̃D)¶ shown in Fig. 3 (middle right),

we have c̃D

1− c̃
C

1 = c̃D

2− c̃
C

2. So, the composition of the storage

cost function with the affine function g1 = −g2 is linear, as
is illustrated in Fig. 3 (bottom right).

D. Individual rationality and truthful-bidding under LMP,

Apart from the market clearing conditions restricted by the

power balance constraint, the individual rationality defined
below is the key for a general equilibrium price [27, p. 547].

¶The EDCR conditions in (6) decreased to c̃C
k
− c̃C

k−1
= c̃D

k
− c̃D

k−1
, ∀k,

for this ideal storage, i.e., ηD
= ηC

= 1.
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Definition 1 (Individual rationality for storage||). We say

vectors of multi-interval price and dispatch (π, gC, gD) sup-

port individual rationality for storage, if the dispatch is the

solution to the individual profit maximization given by:

Q(π) = maximize
{pD,pC,q}

(

π⊺pD − π⊺pC − F (pC,pD; s)
)

s.t. ηCpC − pD/ηD = Aq,
−rD ≤ BpD ≤ r̄D,
−rC ≤ BpC ≤ r̄C,
e ≤ q ≤ ē, q1 = s,
0 ≤ pD ≤ ḡD,
0 ≤ pC ≤ ḡC,

(8)

where pD,pC, q are, respectively, decision variables for dis-

charging power, charging power and SoC. The SoC evolution

is defined by matrix A ∈ R
T×(T+1) with most zero elements

except for Aii = −1 and Ai(i+1) = 1, ∀i ∈ {1, .., T }. The

ramping constraints are defined by lower bidiagonal matrix

B ∈ R
T×T with 1 as diagonals and −1 left next to diagonals.

In the context of analyzing dispatch-following incentives,

we are interested in whether price signal π and dispatch
G satisfy the Individual rationality condition for all market

participants. It turns out that, in the absence of forecasting
error, the one-shot LMP supports the one-shot economic

dispatch as stated in Theorem 2.

Theorem 2 (Individual rationality and truthful-bidding incen-

tive under one-shot LMP). When the EDCR condition and

Assumption 1 are satisfied, the one-shot LMP and dispatch

(πLMP, gD∗
i , g

C∗
i ) over H computed from (4) can support

individual rationality for storage i. And it is optimal for a

price-taking storage to bid truthfully with its marginal costs

of charging and discharging.

Proof: See Appendix for the proof.

This result is analogous to the well-known property of

LMP [28]. The proof of Theorem 2 replies on the convexity
of (4) when the EDCR condition is satisfied.

IV. ROLLING-WINDOW DISPATCH AND PRICING

In this section, we first introduce the rolling-window

dispatch, and the definition of lost opportunity cost. Then,
we extend our previous results of rolling-window temporal

location marginal pricing (R-TLMP) with SoC-independent

bids [22] to the case with SoC-dependent bids and end-state
SoC control.

A. Rolling-window settlement and pricing rules

The rolling-window economic dispatch policy relies on

solving a series of one-shot economic dispatch Gt defined
in (4) with T = W , i.e., GR-ED := (G1, · · · ,GT ). The

look-ahead horizon of each rolling-window is defined by
Ht = {t, · · · , t + W − 1}. The interval t is called the

||Storage index i is omitted here for simplicity.

binding interval and the rest of Ht the advisory intervals.

As time t increases, Ht slides across the entire scheduling

period H. Let (gD∗
it , g

C∗
it ) and (λ∗t ) be the solution to (4).

The rolling-window dispatch, GR-ED := {GR-ED-D,GR-ED-C}, and
rolling-window LMP (R-LMP), πR-LMP, in interval t are given

by policy GR-ED with

gR-ED-D

it := gD∗
it , g

R-ED-C

it := gC∗
it , π

R-LMP

t := λ∗t , ∀i. (9)

This means, in each rolling window, the binding interval dis-
patch and pricing signals are implemented, and those signals

for advisory intervals are not guaranteed to be materialized.

B. LOC as a measure of individual rationality

The lost opportunity costs (LOC) payment of individ-

ual storage is a measure of the individual rationality (or
the dispatch-following incentive), defined by the difference

between the payment that would have been received had

the storage self-scheduled and the payment received within
the market clearing process. Let π = (π1, · · · , πT ) be the

column vector of a realized uniform price over the entire

scheduling horizon H. Denote gR-ED := {gR-ED-C, gR-ED-D}. We
here omit storage index i for simplicity. And the LOC over

the scheduling horizon H is given by

LOC(π, gR-ED) = Q(π)− π⊺(gR-ED-D − gR-ED-C) + F (gR-ED; s),
(10)

where Q(π) is the maximum profit the storage would have

received through the individual profit maximization (8). Note
that Theorem. 2 indicates LOC(πLMP, gD∗

i , g
C∗
i ) = 0, ∀i in the

one-shot dispatch. But this nice property of LMP fails to be
extended to the rolling-window dispatch [20]. Our previous

results [22] show that rolling-window temporal locational

marginal pricing (R-TLMP) needs zero LOC payment to
support the individual rationality of all market participants

with SoC-independent bids, although it’s a discriminative

price . What happens if we have SoC-dependent bids? Can
R-TLMP still maintain this nice property? The answer is yes

and details are explained in the following section.

C. R-TLMP and SoC-dependent bids with end-state control

TLMP is a non-uniform marginal cost pricing that mea-

sures the marginal contribution of the resource to meeting

the demand dt at the optimal dispatch. Let F̄
(−i)
t (G∗

t , s) be
the total cost in rolling-window t, excluding the contribution

of storage i in interval t by treating (gC*

it , g
D*

it) as parameters

set at the optimal dispatch point, i.e.

F̄
(−i)
t (G∗, s) = F̄ (G∗, s)− (f D

it(g
D*

it )− f C

it(g
C*

it)).
(11)
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With envelope theory, the marginal contribution from storage
i in interval t can be computed with the optimal primal and

dual solutions of (4) by

πTLMP

it :=

{

∂
∂gC

it

F̄
(−i)
t (G∗, s) charging

− ∂
∂gD

it

F̄
(−i)
t (G∗, s) discharging

(12)

=

{

λ∗t − ηC

iφ
∗
it −∆C∗

it := πC

it, charging
λ∗t − 1/ηD

iφ
∗
it +∆D∗

it := πD

it, discharging
(13)

where ∆C∗
it (and, similarly, ∆D∗

it ) is defined by

∆C∗
it := (µ̄C∗

i(t+1) − µC∗
i(t+1)

)− (µ̄C∗
it − µC∗

it
). (14)

TLMP prices the inelastic demand with the same way as

LMP. Note that TLMP πTLMP

it for storage i can be decom-
posed into the energy price πLMP

t = λ∗t , the SOC price φ∗it,
and ramping prices (∆C∗

it ,∆
D∗
it ). When there is no binding

ramping and SOC constraints, TLMP reduces to LMP. The
above formulation of TLMP is in parallel with that in [22]

since the multi-interval dispatch is convex with the EDCR

condition in each rolling window.

Corresponding to the rolling-window pricing rules in (9),

we have R-TLMP πR-TLMP

i := (πD

i ,π
C

i) in interval t given by

policy GR-ED with

πR-TLMP

it := πTLMP

it . (15)

The following theorem establishes that, under R-TLMP, the
LOC for every storage is zero with the end-state SoC control

eT+1 ∈ Eγ , which requires the end-state SoC falls into certain
SoC partition Eγ for a given γ. And it is locally optimal

that every price-taker bids truthfully under R-TLMP in the

rolling-window dispatch.

Theorem 3 (Individual rationality and truthful-bidding incen-

tive under R-TLMP). For storage i, let gR-ED

i be the rolling-

window economic dispatch computed from (9) and πR-TLMP

i be

its R-TLMP from (15). With end-state SoC control eT+1 ∈ Eγ ,

we have

LOC(πR-TLMP

i , gR-ED

i ) = 0, ∀i, (16)

when the EDCR condition and Assumption 1 are satisfied.

And it is optimal for a price-taking storage to bid truthfully

with its marginal costs of charging and discharging.

Proof: See Appendix for the proof.

From Theorem 1, we know that with the end-sate SoC

control, i.e., eT+1 ∈ Eγ , the cost of storage over multi-
interval is a linear function rather than piecewise linear. So,

in each rolling-window solving economic dispatch (4), the

piecewise linear cost function F (gC, gD; s) is replaced by the
linear function F (gC, gD; s, γ). So does the individual profit

maximization in (8). Therefore, with the end-state control,
Theorem 3 can be proved based on the convexity credit to

the EDCR condition and the linear objective functions.

The truthful-bidding incentive follows the individual ratio-
nality property. Known that LOC is zero and the rolling win-

dow dispatch signal is an optimal solution for (8), truthful-

bidding storage will receive the rolling window dispatch
signal that is optimal for individual profit maximization.

V. A NUMERICAL EXAMPLE

The individual rationality of one-shot LMP stated in
Theorem 2 guarantees that the individual optimal dispatch

from (8) is optimal to the centrally one-shot dispatch (4)

if they use/reach the same one-shot LMP. So, we establish
the following numerical example with exogenous LMP to

analyze the mileage, profit, and profit margin of storage with

different bid-in costs. This numerical example is equivalent
to the simulation of a central market clearing model with

storage and other market participants reaching the same LMP
as the adopted exogenous LMP scenarios.
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Fig. 4: Top left: exogenous LMP scenarios (dash line represents mean
value). Top right: Mileage of storage vs. price STD. Bottom left:
profit of storage vs. price STD. Bottom right: Profit margin vs.
price STD.

Consider ideal storage in the 2-interval dispatch with

initial SoC s1 = 17.5 MWh. For the true SoC-dependent

marginal cost, we have K = 2, cC = (40.3, 9.3) $/MWh,
cD = (106.7, 50.7) $/MWh, and E = (9, 20, 25)MWh.

And the optimal EDSR SoC-dependent bid computed by the

method from [17] has c̃C = cC $/MWh, c̃D = (106.7, 75.7)
$/MWh. Let the capacity limit of charge and discharge power

be ḡC = ḡD = 5MW, and ramping limits are ignored. We
compare the mileage, profit, and profit margin of storage with

different bids including the true SoC-dependent marginal

cost, the SoC-independent bid, and the EDCR SoC-dependent
bid, into the electricity market. And the market is cleared by

one-shot dispatch G and LMP πLMP. Note that the optimal

SoC-independent bid is also computed by the EDCR approx-
imation method from [17], and the result is 88.94$/MWh

for discharge power and 30.47$/MWh for charge power. We
solve the optimal profit of storage (8) under 200 exogenous

LMP scenarios, which are generated from a CAISO baseline

scenario [29] with the normalized standard deviation (STD)
varying from 3% to 9%. The pricing scenarios are shown in

Fig. 4 (top left).
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Simulation results related to the average mileage, average
profit, and average profit margin of storage are respectively

shown in the top right, bottom left, and bottom right of Fig. 4.

Profit of storage is computed by the objective value of (8),
where we have revenue minus storage cost. And profit margin

is computed by profit divided by the revenue of storage. We
can observe that the storage is less frequently used with the

EDCR SoC-dependent bid. And the profit of storage with

EDCR bid is less than the true SoC-dependent marginal
cost. However, the storage has the highest average profit

margin with the EDCR SoC-dependent bid. As for the SoC-

independent bid, which is adopted in the current electricity
market, it fails to give an accurate approximation of the true

SoC-dependent marginal cost in this example, and the storage
doesn’t receive an economic enough operation with the SoC-

independent bid.

VI. CONCLUSION

The nonconvexity of the multi-interval market clearing

problem resulting from the SoC-dependent bid is analyzed
in this paper, and we propose a sufficient convexification

condition on the bidding format, the equal decremental-cost

ratio (EDCR) condition, to transform the market clearing
problem into a standard convex piecewise linear program.

Such EDCR SoC-dependent bids convexify the economic dis-
patch, reducing the integer programming problem to a linear

program, reducing the computation burden of including large-

scale storage deployment, and requiring minimal changes in
the market clearing and pricing engine.

With the convex multi-interval dispatch preserved by the

EDCR condition, we further establish the individual ratio-
nality for storage under one-shot LMP and rolling-window

TLMP. Therefore, we can price storage operation with the
dispatch-following incentive support, and eliminates the need

for out-of-the-market uplifts.
Many relevant issues are outside the scope of this work, re-

quiring further investigation. One is deriving optimal EDCR

bids based on SoC-dependent costs. To this end, the pre-

liminary work in [17] offers a possible solution. The other
is the generalization of the results presented here to time-

varying EDCR bids. Finally, more extensive simulations

and empirical analysis are needed to evaluate the costs and
benefits of SoC-dependent bids.
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APPENDIX

A. Proof of Theorem 2

The following proof comes directly from the strong duality

between the primal and dual problem of the one-shot dispatch
(4) because the one-shot dispatch (4) is convex with the

EDCR condition satisfied.

The individual profit maximization problem (8) with com-

plete dual variables is shown below

Q(π) = maximize
{pD,pC,e}

πTpD − πTpC − F (pC,pD; s)

subject to
ψ : ηCpC − pD/ηD = Aq,

(ξD, ξ̄
D
) : −rD ≤ BpD ≤ r̄D,

(ξC, ξ̄
C
) : −rC ≤ BpC ≤ r̄C,

(ζD, ζ̄
D
) : 0 ≤ pD ≤ ḡD,

(ζC, ζ̄
C
) : 0 ≤ pC ≤ ḡC,

e ≤ q ≤ ē,
(17)

And the individual optimal dispatch computed from (8)
satisfies KKT conditions**:

∇pDF (·)− π + 1/ηDψ∗ − χD∗ +∆ζD∗ = 0,
−∇pCF (·) + π − ηCψ∗ − χC∗ +∆ζC∗ = 0,

(18)

where we have χD∗
t := ∆ξD∗

t+1 − ∆ξD∗
t , ∆ξD∗

t := ξ̄D∗
t − ξD∗

t
,

and ∆ζD∗ = ζ̄
D∗

− ζD∗ (and, similarly, ∆ζC∗, χC∗
t ).

The compact form of the one-shot dispatch problem (4) is

GED : minimize
{(gC

it
,gD

it
,eit)}

F̄ (G, s)

s.t. ∀i ∈ {1, ..., N}
ei ≤ ei ≤ ēi, ei = si,

φi : gC

iη
C − gD

it/η
D = Ae,

(ρC

i
, ρ̄C

i) : 0 ≤ gC

i ≤ ḡ
C

i ,

(ρD

i
, ρ̄D

i ) : 0 ≤ gD

i ≤ ḡD

i ,

(µC

i
, µ̄C

i) : −rC

i ≤ Bg
C

i ≤ r̄
C

i ,

(µD

i
, µ̄D

i ) : −rD

i ≤ Bg
D

i ≤ r̄D

i ,

λ :
∑N

i=1(g
D

i − g
C

i ) = d̂.

(19)

**Subgradients are used for nondifferentiable points.

And the optimal solution satisfies KKT conditions:

∇gDF (·)− λ∗ + 1/ηDφ∗
i −∆D∗

i +∆ρD∗
i = 0, ∀i

−∇gCF (·) + λ∗ − ηCφ∗
i −∆C∗

i +∆ρC∗
i = 0, ∀i,

(20)

where ∆D∗
it := ∆µD∗

i(t+1) − ∆µD∗
it , ∆µD∗

it := µ̄D∗
it − µD∗

it
, and

∆ρD∗
it := ρ̄D∗

it −ρ
D∗
it

(and, similarly, ∆C∗
it ,∆µ

C∗
it ). By definition,

we have πLMP

t = λ∗t .

The KKT conditions of the individual optimization shown
in (18) for all storage i and KKT conditions of one-shot

dispatch (20) can be simultaneously satisfied by setting

πt = πLMP

t , gD∗
it = pD∗

it , ρ̄
D∗
it = ζ̄D∗

it , ρ
C∗
it

= ζC∗

it
, ξ̄D∗

it =
µ̄D∗
it , ξ

D∗

it
= µ̄D∗

it , φ
∗
it = ψ∗

it, ∀i, t (The same group of equations

are applied for variables with superscript C). And we have

LOC(πLMP, gD∗
i , g

C∗
i ) = 0 from the LOC definition (10).

Next, we prove the truthful-bidding incentive for price

takers under one-shot LMP. Let θ be the bidding parameter

of the storage in the wholesale market. Under the price taker
assumption, each individual storage has profit given by

Π(θ∗) = (πLMP)⊺(gD∗(θ∗)− gC∗(θ∗))
−F (gC∗(θ∗), gD∗(θ∗); s, θ∗)

≥ (πLMP)⊺(gD∗(θ)− gC∗
i (θ))

−F (gC∗(θ), gD∗(θ); s, θ),

(21)

where θ∗ is the the truthful bidding parameter. The second

inequality follows that there will be no LOC under the
one-shot LMP. So, the storage has optimal profit when bid

truthfully. �

B. Proof of Theorem 3

With the end-sate SoC control, i.e., eT+1 ∈ Eγ , the multi-

interval cost of storage is a linear function rather than
piecewise linear (From Theorem 1). So, in each rolling-

window solving multi-interval look-ahead dispatch (19), the

piecewise linear cost function F (gC, gD; s) is replaced by the
linear function F (gC, gD; s, γ). So does the individual profit

maximization in (17).
Also note that KKT conditions for the rolling-window

dispatch, i.e., (20), come from the binding interval of each

rolling-window optimization rather than a single multi-
interval dispatch problem. We here show that KKT con-

ditions of the individual profit maximization (18) and the

rolling-window dispatch can be simultaneously satisfied by
setting πt = πR-TLMP

it , gR-ED-D

it = pD∗
it , g

R-ED-C

it = pC∗
it ,∆ρ

D∗
it =

∆ζD∗
it ,∆ρ

C∗
it = ∆ζC∗

it , ξ̄
D∗
it = ξD∗

it
= ξ̄C∗

it = ξC∗

it
= ψ∗

it = 0, ∀i, t.
That way, we have LOC(πR-TLMP

i , gR-ED

i ) = 0, ∀i from the

definition of LOC (10).
Since we have zero LOC under the R-TLMP for each

storage participant, the truthful-bidding incentive can be

similarly proved by using πR-TLMP

i and rolling-window dispatch
signals gR-ED

i in equation (21). �

http://oasis.caiso.com/mrioasis/logon.do
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