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Abstract—We propose two new measures for extracting the
unique information in X and not Y about a message M , when
X,Y and M are joint random variables with a given joint
distribution. We take a Markov based approach, motivated by
questions in fair machine learning, and inspired by similar
Markov-based optimization problems that have been used in the
Information Bottleneck and Common Information frameworks.
We obtain a complete characterization of our definitions in
the Gaussian case (namely, when X,Y and M are jointly
Gaussian), under the assumption of Gaussian optimality. We
also examine the consistency of our definitions with the partial
information decomposition (PID) framework, and show that
these Markov based definitions achieve non-negativity, but not
symmetry, within the PID framework.

I. INTRODUCTION

Consider the problem of designing machine learning algo-

rithms that can make fair decisions despite biases present in

training data. Concretely, suppose we are given a feature set

X , from which we need to extract a decision T that captures,

as accurately as possible, the true labels of the data M , while

avoiding dependence on certain protected attributes Y , such

as gender or race. Producing a fair decision, in this instance,

is equivalent to extracting that information from the data X
about the true labels M , which is independent of Y . This

can be seen as extracting information from X about M that

is uniquely present in X and not in Y . Thus, we want to

compute a random variable T from X through a Markov Chain

T—X—(M,Y ), where T captures the maximum possible

information relevant to M , I(T ;M), while being independent

of Y , i.e., T ⊥⊥ Y . An important question that arises in this

context is, what is this variable T , and how much information

about M can it contain?

An alternative, but closely related problem, arises in the

context of “post-processing” the decision of a machine learn-

ing algorithm, e.g., when the algorithm is a black box to the

fairness engineer. Here, given the decision of an algorithm,

M , the goal is to process it into some variable T to make the

dependence on Y (the protected attribute) small, while keeping

it as faithful to X (the features) as possible. One motivation for

keeping T faithful to X could be that the original algorithm

was trained to generate an M that extracted the information

from X that is most relevant to an accurate decision, and now

we want to keep that information while excluding information

from Y . Thus, we wish to extract those parts T of the true

labels M through the Markov chain T—M—(X,Y ), which

contain as much information as possible about X , while being

independent or agnostic to Y . So once again, T has only

information about M that is uniquely present in X but not

in Y .

The question of quantifying how much information about

M is uniquely present in X and not in Y has been addressed

in the recent and growing literature on Partial Information

Decomposition (PID). The PID framework seeks measures that

explain the information interactions of two random variables

X and Y regarding a third variable M . More precisely, it

decomposes the mutual information I(X,Y ;M) into four

parts: (i) redundant information (R) about M that can be

extracted from either X or Y , (ii) unique information about

M in X (UIX ), which is not in Y , (iii) unique information

about M in Y (UIY ) not available in X , and (iv) synergistic

information S about M , which can only be obtained from

the combined pair X and Y . First proposed in the work of

Williams and Beer [1], this gives us the fundamental “sum”-

axioms for PID:

I(M ;X,Y ) = R+UIX +UIY +S, (1)

I(M ;X) = R+UIX , (2)

I(M ;Y ) = R+UIY . (3)

Here, (2) and (3) are seen as natural extensions of the intuitive

explanations for these quantities: the mutual information that

X (alone) has about M should equal the amount that can

be uniquely extracted from X plus that which is redundantly

present in both X and Y . In addition, one also requires that

the four partial information components, R, UIX , UIY and S,

be non-negative, so that they may be interpreted meaningfully

as information quantities.

These sum and non-negativity axioms form the basis of the

PID framework; however, they do not uniquely specify a defi-

nition for the four partial information components. Therefore,

various definitions of these partial information components

have been proposed, with different goals and approaches [1]–

[5] (see [6] for a review).

While these definitions were obtained using an axiomatic

development and to maintain consistency with certain canon-

ical examples, they fall short of our requirements in one

important dimension: they do not compute a specific random

variable T . Instead, they quantify the amount of mutual
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information that is unique, redundant or synergistic. 1

In this paper, we make the following contributions:

1) We propose two definitions that are motivated by each of

the two fairness problems described at the start of this

section. These definitions provide two ways to quantify

unique, redundant, and synergistic information while also

providing a random variable T (jointly distributed with

M , X and Y ) that represents the unique information.

2) We also analyze the case where M , X and Y are jointly

Gaussian, and obtain closed-form expressions for the

unique information in terms of the kernel and image

spaces of the covariance matrices involved. These results

are derived under the assumption that the optimal solution

is also Gaussian (formally specified later).

3) Examining consistency with the PID framework, we find

our definition also satisfies the non-negativity axiom,

although it does not give rise to a symmetric redundancy

(we show this using a counterexample in the Gaussian

case).

Our definitions are motivated by Markov-based problem for-

mulations proposed earlier in the literature, such as in the

information bottleneck framework [7] and in the definitions

of Wyner [8] and Gács-Körner [9] common information (the

latter two seek meaningful decompositions of two random

variables into common and unique parts). In essence, a Markov

relationship is assumed between the solution variable (here, T )

and the variables that specify the problem (M , X and Y ): this

means T can be seen as a stochastic function of one or more

of M , X or Y . Inspired by these frameworks as well as PID-

like quantities in applications, we propose a natural Markov

based approach to PID.

The two problems we discuss are based on the Markov

chains T—X—(M,Y ) and T—M—(X,Y ), and we define

only the unique information in both settings. Both these

problems require us to extract the unique information present

in X but not Y about M , and produce theoretically equivalent

optimization problems, differing only in the interchange of

message M and variable X . Although these optimization

problems are equivalent for the purpose of analysis, in practice,

an interchange of the variables M and X may be highly non-

trivial, for e.g. when the message and source variables are

of very different dimensionalities. They also have different

properties and meanings, when considering the full PID frame-

work (redundancy and synergy, rather than merely unique

information).

One important limitation of our definitions is that the unique

information for X and for Y (UIX and UIY ) do not lead to a

symmetric notion of redundancy (or synergy). That is, if we

define redundancy as the difference of the mutual information

and the unique information (refer Eqs. (2), (3)), we find that

RX := I(M ;X)−UIX 6= I(M ;Y )−UIY =: RY ,

1Thus, these definitions could be said to be more statistical than structural.
Harder et al. [2] discuss a similar idea very briefly in the context of measuring
redundancy, calling it “mechanistic” vs. “source” redundancy rather than
statistical vs. structural.

in general. However, this is a common problem across many

PID definitions (e.g., [2], [4], [10]), and is commonly dealt

with by assigning R to be the minimum of RX and RY . We

do not explicitly define the PID this way, however, since it

disrupts the interpretation of the variable T , which encodes

the part of the information about M that is uniquely present

in X and not in Y . We leave a more detailed analysis of the

possibility of symmetrization and its effects to future work.

The remainder of the paper is organized as follows: in

Section II, we propose the two Markov-based measures for

extracting unique information. We also define variants for

the Gaussian case, restricting the search space of Markov

chains to jointly Gaussian random variables. In Section III, we

fully solve this Gaussian subvariant of the unique information

problem to obtain a closed form solution in terms of the

covariance matrices of the joint distribution. Further, looking

beyond unique information, in Section IV, we examine the

consistency of these Markov-based definitions with the PID

framework, namely their compatibility with the sum, non-

negativity and symmetry axioms proposed in Williams and

Beer [1] as well as the matching of intuitive expectations in

simple logical operator examples.

II. NOTATION AND DEFINITIONS

A. Notation

Upper case letters (e.g. T,M,X, Y ) are used to denote

random variable/vectors. Random vectors are assumed to be

column vectorized. ⊥⊥ is used to denote independence and

conditional independence relationships. The notation X −
Y − Z denotes a Markov chain between the three random

variables (i.e., X ⊥⊥ Z|Y ). Σ is used to denote covariance

and cross-covariance matrices. E.g., for random vectors M
and X , ΣM denotes the covariance E

[

MMT
]

, ΣMX de-

notes the cross-covariance E
[

MXT
]

, and Σ(MX) denotes

the covariance of the appended vector [MT ;XT ]T , i.e.,

E
[

[MT ;XT ]T [MT ;XT ]
]

(for zero mean random vectors).

UIX = UI(M : X\Y ) and UIY = UI(M : Y \X) are both

used interchangeably to refer to unique information, as per the

level of detail needed.

B. Definitions of Unique Information

Definition II-B.1 (TMXY-Unique Information). If message

M , and targets X,Y are random variables jointly distributed

as p(m,x, y), the TMXY -Unique Information present in X
but not Y about M is defined as

UI(M : X\Y ) = max
T−M−XY, T⊥⊥Y

I(T ;X).

Definition II-B.2 (TMXY-Gaussian Unique Information). If

message M , and targets X,Y are jointly Gaussian random

variables, the TMXY -Gaussian Unique Information present

in X but not Y about M is defined as

UI(N )(M : X\Y ) = max
T−M−XY, T⊥⊥Y

TMXY jointly Gaussian

I(T ;X).

Definition II-B.3 (MYXT-Unique Information). If message

M , and sources X,Y are random variables jointly distributed

2



as p(m,x, y), the MYXT -Unique Information present in X
but not Y about M is defined as

ÛI(M : X\Y ) = max
MY −X−T, T⊥⊥Y

I(T ;M).

Definition II-B.4 (MYXT-Gaussian Unique Information). If

message M , and sources X,Y are jointly Gaussian random

variables, the MYXT -Gaussian Unique Information present

in X but not Y about M is defined as

ÛI
(N )

(M : X\Y ) = max
MY−X−T, T⊥⊥Y

MXY T jointly Gaussian

I(T ;M).

Remark II-B.1. Note that Definitions II-B.2 and II-B.4 are

not merely special cases of Definitions II-B.1 and II-B.3. This

is because the optimizations in Definitions II-B.2 and II-B.4

are performed not over all joint distributions satisfying the

Markov relationship, but only over distributions that are jointly

Gaussian. Whether the optimal solutions for Definitions II-B.1

and II-B.3 for Gaussian M,X, Y turn out to be Gaussian

remains to be established.

III. RESULTS

Theorem III-.1. If M,X, Y are jointly Gaussian random

variables, prewhitened such that ΣM ,ΣX ,ΣY are identity

matrices of their respective dimensions, then we have

UI(N )(M : X\Y )

= −
1

2
log det(I − VY⊥MΣMXΣXMVMY⊥

).

where VMY⊥
is the orthonormal matrix whose columns span

Ker(ΣY M ).

Proof. The constraints and relevant terms in the problem

assuming all variables have been pre-whitened as T 7→

Σ
− 1

2

T T,M 7→ Σ− 1

2M and similarly for X and Y , can

be written in terms of fixed covariance matrices, and free

parameter ΣMT as follows:

First, to check the positive semi-definiteness constraint

Σ(TMXY ) < 0, given Σ(MXY ) < 0, it suffices to check

that the Schur complement Σ(TMXY )/Σ(MXY ) < 0. Sub-

stituting the Markov constraint T − M −XY in this matrix

(namely, ΣT (XY ) = ΣTMΣM(XY ) using Lemma A.1), we

find this reduces to Σ(TMXY )/Σ(MXY ) = Σ(TM)/ΣM =
I −ΣTMΣMT < 0. For the remaining constraint T ⊥⊥ Y and

the objective function, we find

T ⊥⊥ Y ⇐⇒ ΣY T = ΣY MΣMT = 0

I(T ;X) = −
1

2
log det(I − ΣTXΣXT )

= −
1

2
log det(I − ΣTMΣMXΣXMΣMT )

Thus, in terms of parameter ΣMT , UI(N )(M : X\Y ) is

max−
1

2
log det(I − ΣTMΣMXΣXMΣMT )

over ΣMT such that ΣYMΣMT = 0, ΣTMΣMT 4 I

Now, since ΣY MΣMT = 0, we must have Im(ΣMT ) ⊆
Ker(ΣYM ). We use this to parametrize ΣMT as follows:

choose an orthonormal basis for Ker(ΣYM ) and let VMY⊥

be the matrix whose columns are this basis. Then we have

ΣYMVMY⊥
= 0 and V T

MY⊥
VMY⊥

= Ip. Now, ΣYMΣMT = 0
iff ΣMT = VMY⊥

Σ for some matrix Σ ∈ R
p×t, and this yields

a parametrization ΣMT (Σ).

ΣTMΣMT = ΣTVY⊥MVMY⊥
Σ = ΣTΣ

ΣTXΣXT = ΣTVY⊥MΣMXΣXMVMY⊥
Σ

Then the optimization problem, in terms of Σ becomes

UI(N )(M : X\Y ) =

max
ΣTΣ4I

−
1

2
log det(I − ΣTVY⊥MΣMXΣXMVMY⊥

Σ)

Let A = VY⊥MΣMXΣXMVMY⊥
, for every Σ such that

ΣTΣ 4 I , we must have

det(I − ΣAΣT ) ≥ det(I −A)

by reasoning using simple determinant identities as follows:

det(I − ΣTAΣ) = det(I −AΣΣT )

= det(I −A+A(I − ΣΣT ))

≥ det(I −A) + det(A) det(I − ΣΣT )

≥ det(I −A)

Note that ΣΣT 4 I precisely whenever ΣTΣ 4 I , as can

be seen by reasoning with Schur complements. Note also that

equality is achieved by Σ : ΣΣT = I , i.e., by ΣMT = VMY⊥
.

Thus the unique information is obtained to be

max
T−M−XY, T⊥⊥Y

TMXY jointly Gaussian

I(T ;X)

= −
1

2
log det(I − VY⊥MΣMXΣXMVMY⊥

).

Theorem III-.2. If M,X, Y are jointly Gaussian random

variables, prewhitened such that ΣM ,ΣX ,ΣY are identity

matrices of their respective dimensions, then we have

ÛI
(N )

(M : X\Y )

= −
1

2
log det(I − VY⊥XΣXMΣMXVXY⊥

)

where VXY⊥
is the orthonormal matrix whose columns span

Ker(ΣYX).

Proof. The proof follows very similarly to the previous result,

as the optimization problems for the two definitions differ

only in an interchange of the message random variable M
and source random variable X . In effect, here we obtain an

optimization problem in the free parameter ΣXT that would

yield ÛI
(N )

(M : X\Y ) as

max−
1

2
log det(I − ΣTXΣXMΣMXΣX)

over ΣXT such that ΣYXΣXT = 0, ΣTXΣXT 4 I

which is solved by ΣXT = VXY⊥
.

3



IV. PROPERTIES

In this section, we turn to examine the consistency of our

definitions with the PID axioms.

Beginning with our definition of unique information, we

define unsymmetrized redundant and synergistic information

terms,

RX = I(M ;X)−UIX , SX = I(M ;X |Y )−UIX

RY = I(M ;Y )−UIY , SY = I(M ;Y |X)−UIY

A. Non-Negativity

We study the consistency of these unsymmetrized terms

with Williams and Beer’s non-negativity axiom, namely

whether UIX ,UIY , RX , RY , SX , SY are all non-negative.

It is easy to see that the unique information terms, being

mutual information quantities, are always non-negative. Below,

we show that both redundancy and synergy terms are also non-

negative in every case.

Proposition IV-A.1.

UI(M : X\Y ) ≤ I(M ;X) (4)

Proof. First, for the TMXY − UI, it follows from the

data processing inequality that for every T − M − X , we

must have I(T ;X) ≤ I(M ;X), thus taking maximum

over such a set of T , we must have UI(M : X\Y ) =
maxT−M−XY, T⊥⊥Y I(T ;X) ≤ I(M ;X).

The proof for the second definition follows likewise from

the data processing inequality.

Proposition IV-A.2.

UI(M : X\Y ) ≤ I(M ;X |Y ) (5)

Proof. First, for the TMXY−UI definition, we show that for

every T such that T −M −XY and T ⊥⊥ Y , we must have

I(T ;X) ≤ I(M ;X |Y ). For this first, by the chain rule of

mutual information,

I(T ;XY ) = I(T ;Y ) + I(T ;X |Y ) = I(T ;X |Y )

= I(T ;X) + I(T ;Y |X)

Thus, I(T ;X) ≤ I(T ;X |Y ), so it suffices to show

I(T ;X |Y ) ≤ I(M ;X |Y ). For this, we use

I(X ;TM |Y ) = I(T ;X |Y ) + I(X ;M |TY )

= I(X ;M |Y ) + I(X ;T |MY )

So it would suffice to show I(X ;T |MY ) = 0 to obtain the

desired inequality. To this end, we show that I(X ;TMY ) =
I(X ;MY ) as follows:

I(X ;TMY ) = I(X ;M) + I(X ;Y T |M)

= I(X ;M) + I(X ;T |M) + I(X ;Y |MT )

= I(X ;M) + I(X ;Y |M)

= I(X ;YM)

And thus, I(X ;T |MY ) = I(X ;TMY )− I(X ;MY ) = 0.

Second, for the MYXT − UI definition, the proof follows

from the interchange of variables M and X .

B. Counterexample to Symmetry

Turning to symmetry however, we show that it is not in

general the case that the unsymmetrized redundancy terms RX

and RY are identical.

When the cross-covariance matrices whose kernels are in-

volved the Gaussian Unique information expressions are full-

rank, they drive the extractable unique information to zero.

Counterexample. Consider, for the Gaussian TMXY − UI
definition, random variables M,X, Y distributed as

X,Y,M ∼ N



0,





1 0 ρX
0 1 ρY
ρX ρY I









for any ρ2X + ρ2Y < 1. This yields UIX = UIY = 0, and in

turn RX = I(M ;X) 6= I(M ;Y ) = RY .

Likewise, for the MYXT −UI definition, the random vari-

ables M,X, Y distributed as

X,Y,M ∼ N



0,





1 ρ ǫ
ρ 1 0
ǫ 0 I









yield terms RX = I(M ;X) 6= I(M ;Y ) = RY .

Thus, it is not in general true that redundant information is

symmetric in either of these Markov-based approaches.

It is important to note here, that these counterexamples are

for the Gaussian variant, which by restricting the search space

of Markov chains to joint Gaussian variables, solves a different

optimization problem than the general definition. As a result,

these joint Gaussian distributions are only counterexamples to

the general definitions (II-B.1 and II-B.3) under the assump-

tion of Gaussian optimality for joint Gaussian distributions.

C. Binary Examples

For the simple binary operator examples displayed in Table

1, however, these definitions match our intuitive expectations,

including symmetry of redundancy and synergy.

These examples are derived with the help of Lemma B.1,

which provides a strong independence condition for binary

random variables.

V. DISCUSSION AND CONCLUSIONS

In this work, we provided two measures of unique informa-

tion through optimization under Markov-relations constraints,

motivated by application scenarios in fairness. A key benefit

of our optimization, in contrast with commonly used measures

of PID quantities, is that we obtain a random variable jointly

distributed with M,X, Y that represents unique information.

This can be useful in understanding what function of the

random variables captures unique information, which can help

obtain inferences in AI and neuroscience, two of the areas

where PID framework’s applications are envisioned [3], [11],

[12]. We provide solutions for these optimization problems

in the Gaussian case, and examine these measures using

simple examples. The solutions in the Gaussian case are

obtained under the assumption that the optimal solution is also

4



UIX ,UIY , R, S RDN UNQ XOR AND

Williams and Beer [1] 0, 0, 1, 0 1, 1, 0, 0 0, 0, 0, 1 0, 0, 0.311, 0.500

Bertschinger [3] 0, 0, 1, 0 1, 1, 0, 0 0, 0, 0, 1 0, 0, 0.311, 0.500

TMXY 0, 0, 1, 0 1, 1, 0, 0 0, 0, 0, 1 0, 0, 0.311, 0.500

MYXT 0, 0, 1, 0 1, 1, 0, 0 0, 0, 0, 1 0, 0, 0.311, 0.500

TABLE I

UNIQUE, REDUNDANT AND SYNERGISTIC INFORMATION FOR FOUR OF THE EXAMPLES CONSIDERED IN [5] AND [3]. IN EACH CASE, THE

QUANTIFICATION OF OUR DEFINITIONS MATCH WITH THOSE IN [1] AND [3].

Gaussian. The proof of this assumption is a part of our ongoing

work.

Possible relaxations of our definitions include cases where

strict independence is not required in optimization (e.g., for

unique information of M in X , we could bound I(T ;Y ) by

a non-zero constant). Our analysis reveals that the Gaussian

version of this problem can also be addressed (assuming again

that the optimal distribution is Gaussian). Such relaxation also

yields a version where the definition has Blackwell sufficiency,

and we are examining whether it may also yield symmetry in

redundant information definitions that our current definition

lacks (in general).

We do not yet understand whether our definition satisfies

(what we call) the Independent Sums Property:

Definition V-.1 (Independent Sums Property). A unique in-

formation measure, UI, is said to have the indepedent sums

property if when (M1, X1, Y1) ⊥⊥ (M2, X2, Y2), we have

UI(M1,M2 : X1, X2\Y1, Y2)

= UI(M1 : X1\Y1) + UI(M2 : X2\Y2).

We conjecture that our definitions do satisfy this property.

Conjecture V-.1. TMXY-UI has the independent sums prop-

erty.

Conjecture V-.2. MYXT-UI has the independent sums prop-

erty.
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APPENDIX

A. Lemmas for the Gaussian Results

Lemma A.1. If X,W, Y are jointly multivariate Gaussian

random variables,

X −W − Y ⇐⇒ ΣXY = ΣXWΣ−1
WWΣWY .

Proof. We simply expand covariance terms, using the fact that

the covariance matrices of conditional distributions, for jointly

Gaussian variables are given by Schur complements [16].

0 = Cov(X ;Y |W ) = ΣXY |W

= Σ(XW )(Y W )/ΣWW

=

[

ΣXY ΣXW

ΣWY ΣWW

]

/ΣWW

= ΣXY − ΣXWΣ−1
WWΣWY .
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Therefore, X ⊥⊥ Y |W iff ΣXY = ΣXWΣ−1
WWΣWY .

B. Lemmas for Binary Examples

Lemma B.1. If X−Y −Z are finite random variables jointly

distributed as p(x, y, z), and further Y, Z are binary, then if

X ⊥⊥ Z and Y 6⊥⊥ Z , then X ⊥⊥ Y .

Proof. Assume w.l.o.g. that X,Y, Z are random variables

over the alphabets {xi}i∈[l], {yi}i∈[2], {zi}i∈[2] respectively.

For every i ∈ [l], we have

p(xi|z1) =
∑

j∈[2]

p(xi|yj)p(yj |z1) (6)

p(xi|z2) =
∑

j∈[2]

p(xi|yj)p(yj |z2). (7)

Subtracting the second equation from the first, we obtain

0 = p(xi|y1)(p(y1|z1)− p(y2|z2))

+ p(xi|y2)(p(y2|z1)− p(y2|z2)).

Or in matrix form,

0 =







p(x1|y1) p(x1|y2)
...

...

p(xl|y1) p(xl|y2)







[

p(y1|z1)− p(y2|z2)
p(y2|z1)− p(y2|z2)

]

.

Now, since Y 6⊥⊥ Z , we know the vector [p(y1|z1) −
p(y2|z2), p(y2|z1) − p(y2|z2)]T is non-zero. Thus, p[x|y] has

nullity ≥ 1, while being an l × 2 matrix. Thus it is rank 1,

and for each i ∈ [l], we must have p(xi|y1) = p(xi|y2).
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