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Abstract—Free space optical communications through fading

atmospheric channels can achieve improved throughput by using

adaptive transmission techniques. This paper considers the use

of adaptive symbol-rate and transmit-power methods. We use

an idealised model of channel coding that assumes zero errors

can be achieved above some SNR threshold and adjust the

transmission rate and power as the channel varies to operate

above the required threshold. Results are presented for two noise

models appropriate to non-coherent photodetection. Substantial

performance gains are demonstrated compared to non-adaptive

transmission. Most of the benefit from adaptive power control

can be obtained with modest peak to average power constraints.

I. INTRODUCTION

Free space optical (FSO) communications offers the poten-
tial for Gbit point-to-point wireless transmission without using
any radio frequency spectrum. Unfortunately, fading caused
by small variations in the atmosphere’s refractive index, has
limited the uptake of FSO communications (e.g. [1], [2]).
During the last decade advances in channel coding have been
applied to FSO links and demonstrated greatly improved bit
error performance (e.g. [3], [4], [5]). While other approaches
such as multiple transmitters, adaptive optics or the use of
hybrid FSO and RF channels can further mitigate the effects of
atmospheric scintillation, the use of powerful channel coding
techniques is particularly attractive due to the low additional
cost and large performance gains.

Given the relatively large FSO channel coherence time of
milliseconds, interleaving over tens of milliseconds plus iter-
ative channel coding methods can be used to achieve reliable
transmission at a fixed information rate (e.g. [6]). A relatively
small number of authors have explored adaptive methods that
aim to vary the transmission rate to suit the channel conditions,
either on a short term or long term basis. For example, in
terrestrial applications as the channel attenuation varies due to
cloud or rain attenuation, provided a feedback channel exists
from the receiver to the transmitter, the encoder may adjust its
code rate, say by puncturing, to suit slowly varying channel
conditions (e.g. [7]). In satellite scenarios, [8] demonstrates
adaptive datarates can provide gains up to a factor 3 in overall
throughput for low-earth-orbit optical downlinks.

If the data rate is large enough and the feedback delay is
small, adaptive methods may be applied on short time scales

to reduce (or even stop) data transmission during FSO channel
fades. This approach is similar to the adaptive methods used
in RF communications, such as [9]. In [10], [11] the use
of varying modulation and/or transmit power for FSO links
is shown to provide useful increases in the average Mutual
Information. The first of these papers and [12] also illustrate
that a feedback path is not necessarily required for adaptive
FSO methods as the fading in each direction of axially-aligned
bidirectional FSO link may be highly correlated.

In this paper we continue the investigation into short-term
adaptive FSO methods. We consider a link that can vary the
symbol period T over some small finite set of values, and
possibly the transmit power, depending of channel state. We
assume an ideal decoder that corrects all errors given that the
received signal-to-noise ratio is above some given threshold
and determine the throughput gain of the adaptive scheme
compared to the use of a fixed symbol period. Since noise
models for FSO links can vary significantly, we employ two
different models and demonstrate the relative benefit in each
case.

The rest of the paper is organised as follows. In Section
II we introduce the system model including two options for
noise. We include measured results showing a good match
to these noise models. In Section III a method of channel
coding, either for an adaptive or a fixed symbol-period scheme
is described, together with simulations of the performance
gain with adaptive selection of transmission rate, for various
fading channels. In Section IV the adaptive scheme is extended
to optimise optical transmit power over the same range of
transmission rate options. The last section provides brief
conclusions.

II. SYSTEM MODEL

Figure 1 shows a model of a FSO link with adaptive symbol
rate. We assume intensity modulation with direct detection.
Coded symbols are represented by optical pulses of length
T seconds with mean transmit power P . The multiplier h

represents a lognormal fading channel, with power scintillation
index �

2
I

= E{h2}/(E{h})2� 1, normalised so that E{h} =

1. Lognormal fading with varying scintillation levels has been
used in this paper as provides a good match for measured FSO
channels under a wide range of conditions (e.g. [1], [12]). We
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Fig. 1. FSO transmission model with adaptive symbol period controlled by
channel state, including both optical and electrical noise components.

assume initially that both transmitter and receiver know the
value of h at all times and that the transmitter periodically
adjusts the symbol period T , as described below, to optimise
throughput. We assume an ideal conversion from received
optical irradiance to electrical voltage with unit gain.

At the receiver the electrical signal after the photodetector
can be written as

r = xPh+ n

o

+ n

e

(1)

where x is the transmitted symbol value and the last two terms
represent optical and electrical noise sources.

A wide range of noise sources can affect FSO communica-
tions and a variety of models have been applied at both device
and system levels (e.g. [13], [14]. In this paper we consider
two simple noise models at either end of the normally assumed
models: that the optical noise sources are small compared to
electrical noise and the overall distribution is Gaussian, or that
electrical noise can be neglected and Poisson statistics may be
employed with the number of photons large enough to allow a
Gaussian approximation. While (1) is a continuous-time model
and r would normally be the input to a matched filter, in the
latter noise model it will be more convenient to consider the
receiver front-end as a photon counting device.

A. Noise Models

1) Model 1: In this model the overall noise from both
optical and electrical components is modelled as an additive
white Gaussian noise (AWGN) term of constant power spectral
density. We assume the received irradiance is converted to
voltage with unit gain. Due to the unipolar optical signal and
assuming on-off keying (OOK), the DC component of the
noisy electrical signal can be neglected, which is equivalent
to using symbol values of ±1 with the same optical power
P . A matched filter and sampler is then used to provide an
optimum detection statistic z to a channel decoder.

Since the noise power within the receiver bandwidth is
N0/2T , by scaling the time units we may write the instan-
taneous signal to noise ratio at the receiver input as1

�

e

= h

2
P

2
T. (2)

1Note that the average SNR depends on the scintillation index since in
this model E{h2} = 1 + �2

I . To avoid later confusion we measure codec
performance under different fading conditions via optical power P .

The model also applies to binary pulse position modulation
(BPPM) although the normalisation factor will be different.
Note in the above equation, unlike RF systems, the SNR
depends on the square of the transmitted power but since the
noise power is still proportional to the symbol rate, the SNR
also depends on the symbol period.

2) Model 2: In contrast to the previous model dominated
by electrical noise, in this case we neglect electrical noise and
assume Poisson statistics for each received optical pulse. Given
that the standard deviation for a Poisson random variable is the
square root of the mean value, the SNR will be (hPT )

2
/hPT .

This is a common assumption for photon counting and ideal
optical detectors, e.g. [13], but is difficult to achieve in practice
as electrical noise is always present to some extent. Since PT

is proportional to the number of photons per bit (ppb), in this
model performance will depend only on this quantity, rather
than bit rate.

With respect to the modulations considered in this paper,
this is a good model for the BPPM case where the same mean
number of photons will be received for either symbol value.
Assuming Gaussian statistics is reasonable if the number of
photons in large enough. For the OOK case the assumption
of signal independent Gaussian noise (SIGN) is clearly loose
since in the absence of background radiation no photons will
be received for the “off” symbol value. Nevertheless averaging
signal and noise terms across the two symbols values still gives
this expression, thus we have retained the same model:

�

o

= hPT. (3)

3) Comparison of noise models with sample APD results:
Figure 2 illustrates the measured BER performance of a
photoreceiver as bit rate and bandwidth was varied. These
OOK measurements were made by the German Aerospace
Center (DLR) with an InGaAs avalanche photodiode (APD)
at 1550nm followed by a fixed transimpedance amplifier
and a variable-bandwidth amplifier [15]. Raw bit error rate
was measured as the data rate, bandwidth and optical power
was varied, while keeping the receiver performance close
to optimum in terms of APD-voltage. This figure shows a
summary of performance in terms of photons per bit to achieve
the specified BERs.

Note that our second noise model predicts a constant
number of ppb to achieve a given BER which would result
in horizontal lines in Figure 2. Also shown in the figure are
lines of ppb proportional to

p
(T ) which implies PT / p

T

or constant P 2
T for a given BER, as predicted by our receiver

model 1. The closer agreement of these measured results to
the first model may be related to the method of only varying
the receiver bandwidth via a separate filter-amplifier, while the
TIA feedback impedance was kept constant in the equipment.
However, with the measurements having a flatter slope towards
lower data rates the receiver proves to be not completely
thermal noise-limited. Therefore, to model practical APD-
receivers, the exponent of T in (2) has to be chosen somewhere
between 1 and 2. The degradation at the highest data rates
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Fig. 2. Sample measurements of APD-receiver performance in photons per
bit over a wide range of bit rates.

(1.7Gbps) in Figure 2 are due to bandwidth-limiting effects,
while the receiver performs best at 1.5Gbps.

B. Adaptive Model

In order to compare adaptive and fixed transmission-rate
schemes for FSO links we will assume that each system is
used in conjunction with the same powerful channel code.
The fixed rate scheme is assumed to use a large interleaver,
say 100 milliseconds, so that each codeword experiences the
full range of channel fading. In the following the coded fixed-
rate throughput will be compared to the adaptive approach.

In contrast to the fixed scheme, we consider an adaptive
scheme without interleaver where the symbol period is ad-
justed using (2) or (3) to achieve the required SNR for the
decoder to converge with no errors. In a high-rate FSO link,
even relatively long codewords of several thousand symbols
can be transmitted over an interval during which the channel
can be assumed constant amplitude (say 1 millisecond). In
practice the choice of T will be constrained to a finite set of
values T = {T1, . . . , Tm

}, rather than continuously variable.
Without loss of generality, we assume T1 � T2 � . . . � T

m

.
We have simulated this situation in Section III.

Furthermore, we will consider jointly adapting symbol du-
ration T and transmit power P , subject to the peak power con-
straint P  Ppeak and average power constraint E {P}  Pav.
The adaptation rule is developed in Section IV, which brings
significant gains in throughput performance.

Figure 3 shows sample BER performance for a rate 0.8
LDPC code versus optical power P . The dashed lines, from
left to right, represent fading channels with �

2
I

= 0.5, 1 and
2 respectively. Since the error rate falls very rapidly with
increasing transmit power in the “waterfall” region of the
BER curve, we make the simple assumption that the BER
drops to zero abruptly at a given threshold value of power P .
This example is a regular LDPC code with variable nodes of
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Fig. 3. Example of bit error rate performance for N = 10000,K = 0.8
LDPC code under AWGN and three LN fading channels, simulated with z =
±hP + n where n ⇠ N(0, 1), T = 1..

degree 3. Optimised irregular codes would show even sharper
threshold performance.

III. ADAPTIVE TRANSMISSION

Given the models outlined above the scheme has been
simulated for the specific code mentioned in Figure 3. A BER
threshold of 10�3 has been used to approximate the waterfall
cliff. For example, in the non-fading case the optical power
P

a

of 2.6 dB is assumed to give zero errors while 6.1 dB is
required for the fading optical power threshold P

f

when the
scintillation index is 1.

Under these assumptions the first adaptive scheme has been
simulated by generating a large number of fading channel
samples and selecting the symbol period to keep �

e

at least
equal to the SNR required for the non-fading (AWGN) LDPC
decoder, P

2
a

. Keeping the optical power at P

f

for a fair
comparison with the non-adaptive scheme, for each value of
h, the minimum value of T is selected from a discrete set2 to
ensure

h

2
P

2
f

T � P

2
a

(4)

The second model is the same except that now the symbol
period is selected to ensure that the optical energy per pulse
is maintained at the required non-fading decoder threshold.
Using the same options for T selection, for each h we choose

hP

f

T � P

a

(5)

In each case the relative throughput R
TPn

of the adaptive
scheme to the non-adaptive scheme is the mean value of T�1.
Sample results for this code are given in Table I with the third
and fourth columns for models 1 and 2 respectively.

This waterfall cliff approach has the advantage of giving
a simple ratio in total throughput whereas more accurate

2Octave steps from 2�5 to 2
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TABLE I
SAMPLE THROUGHPUT RESULTS FOR THE ADAPTIVE TRANSMISSION

MODELS AND CODE SHOWN IN FIGURE 3.

�2
I Pf RTP1 RTP2

0.5 4.7 dB 2.7 1.2
1 6.1 dB 5.2 1.6
2 7.8 dB 8.1 2.3

models of the decoder BER will not allow this. However
the differences due to codec performance are still likely to
be small compared to the variation due to the noise model
employed.

IV. POWER AND SYMBOL RATE ADAPTATION

In this section, we will jointly adapt the symbol duration
T and transmit power P to improve the relative throughput
achieved in Section III. For a system with a peak power
constraint Ppeak and an average power constraint Pav, the
optimal adaptive strategy solves the following optimisation
problem

8
>>><

>>>:

Maximise

T (h),P (h)

R1
0

1{P (h)nhn
T (h)�P

n
a }

T (h) f

h

(h)dh

Subject to

R1
0 P (h)f

h

(h)dh  Pav

P (h)  Ppeak

T (h) 2 T ,

(6)

where n = 2 and 1 for the first and second noise model
correspondingly.

To solve the optimisation problem (6), we first have the
following Propositions.

Proposition 1. Let P ⇤
(h), T

⇤
(h) be the solution of (6), then

P

⇤
(h) =

(
Pa

(T⇤(h))1/n
1
h

, h 2 H
0, otherwise

(7)

for some H ⇢ R.

Sketch of Proof: The result can be obtained by a
contradiction proof. Intuitively, the optimal scheme allocate
just sufficient power to satisfy the non-fading LDPC decoding
threshold P

n

a

. However, if maintaining P

n

a

is too costly, for
e.g. when h is small, the transmitter saves power by turning
off transmission.

Therefore the optimisation problem in (6) reduces to
8
>>>><

>>>>:

Maximise

T (h)

R1
0

1
T (h)fh(h)dh

Subject to

R1
0

Pa

hT (h)1/n
f

h

(h)dh  Pav

T (h) � Pa
P

n
peakh

n

T (h) 2 T [ {1} ,

(8)

where we have replaced P (h) by (7) and the element 1 was
included to cover the case P (h) = 0, so that T (h) = 1, h /2
H. The problem can be further simplified by the following
Proposition.

Proposition 2. Assume that T ⇤
(h) is a solution of (8), then

T

⇤
(h) is a non-increasing function of h.

Sketch of Proof: The proof is based on contradiction.
Specifically, for a given adaptation rule T (h), if there exists
h1 � h2 such that T

i

= T (h1) � T (h2) = T

j

, we can
find a new adaptation rule T

0
(h) that outperforms T (h) by

interchanging T (h1) and T (h2).
Therefore, letting T0 = 1, the optimal adaptation rule

satisfies
T (h) = T

i

, h 2 [h

i

, h

i+1) (9)

for i = 0, . . . ,m, where h0 = 0, h

m+1 = 1 and h1, . . . hm

is the solution of
8
>><

>>:

Maximise

P
m

i=1
1
Ti

R
hi+1

hi
f

h

(h)dh

Subject to

P
m

i=1
1

T

1/n
i

R
hi+1
hi

1
h

f

h

(h)dh  Pav
Pa

h

i

� Pa
Ppeak

1

T

1/n
i

, i = 1, . . . ,m.

(10)

The optimisation problem is separable, and thus can be solved
using the branch-and-bound linear programming technique.
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Fig. 4. Throughput obtained by power and symbol rate adaptation in channels
with �2

I = 0.5

We perform the optimisation for the available symbol rates
T as in Section III with average power constraint Pav and
peak power constraint Ppeak = PAPR⇥ Pav. In this context,
PAPR = 0 dB corresponds to a non-power-adaptive system
discussed in Section III; while PAPR = 1 corresponds to a
system without peak power constraint.

The throughputs achieved by power and symbol rate adap-
tation are represented in Figures 4, 5 and 6 for log-normal
fading channels with scintillation indices �

2
I

= 0.5, 1 and 2
correspondingly. The figures show that significant gains in
throughput can be achieved by power adaptation. Specifically,
in systems without peak power constraint, power adaptation
can bring more than 3dB gains on average power in most
cases. More importantly, most of these gains can be obtained

125



0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

30

Pav (dB)

R
el

at
iv

e 
Th

ro
ug

hp
ut

 

 

Model 1

Model 2

PAPR= 0dB
PAPR= 3dB
PAPR= 6dB
PAPR= ∞
Mutual Info.

Fig. 5. Throughput obtained by power and symbol rate adaptation in channels
with �2

I = 1.0
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Fig. 6. Throughput obtained by power and symbol rate adaptation in channels
with �2

I = 2.0

by a PAPR as low as 6dB. At PAPR=3dB, more than 2dB
gains on average power are observed.

Figure 5 also illustrates the mutual information I(Pav)

achieved by the transmission scheme with no power adaptation
(PAPR = 0):

I(Pav) , E
h

⇢
max

T2T

I(P

n

avh
n

T )

T

�
, (11)

where I(⇢) is the input-output mutual information of an optical
channel with binary input, Gaussian noise and signal-to-noise
ratio ⇢. This simulation also used a LN fading channel with
�

2
I

= 1. It is observed that the code performance when
there is no power adaptation is 2dB (1dB) below the mutual
information limit for model 1 (and 2 correspondingly). The
performance loss is partly due to the suboptimality of the

LDPC code being used; and partly due to the omission of
bad channel realisations in the adaptation approach. However,
with 3dB PAPR, the power adaptive system can achieve
better throughput compared to the non-power-adaptive mutual
information limit, even with suboptimal LDPC codes.

V. CONCLUSIONS

This paper has described an adaptive transmission scheme
suited to very high speed free-space-optical communication
links. By assuming the transmitter has perfect knowledge
of the current fading channel amplitude and can adjust its
transmission rate in order to ensure convergence of a pow-
erful high-rate channel code, we demonstrate by simulation
that substantial improvements in average information bit rate
are possible. This approach requires rapid adaption, say on
millisecond timescales, but this is quite feasible for Gbit links.
The performance benefit improves as the power scintillation
increases.

Given the wide range of noise models commonly used for
FSO communications, this paper illustrates the benefits of
adaptive transmission for two different noise models. These
are shown to have a large impact on the relative performance
and clearly warrants further investigation including the use
of signal dependent noise models where required. The paper
assumes a modest set of symbol rate options, in octave steps.
These values have not been optimised.

In addition to adaptive symbol-rate transmission at fixed
optical power, we show that further improvements are possible
with adaptive control of both symbol rate and transmit power.
By considering the impact of the peak to average power ratio,
we demonstrate that most of the gain due to adaptive power
control can be realised with quite modest values of peak to
average power. Finally, as a check on the ideal channel code
assumption, the adaptive symbol-rate performance has been
measured using a mutual information approach and shown to
provide reasonably consistent estimates.
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