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Abstract—A model selection framework is presented for
function estimation under limited information, where only a
small set of (noisy) data points are available for inferring
the nonconvex unknown function of interest. The framework
introduces information-theoretic metrics which quantify model
complexity and are used in a multi-objective formulation of the
function estimation problem. The intricate relationship between
information obtained through observations and model complexity
is investigated. The framework is applied to the hyperparameter
selection problem in Gaussian Process Regression. As a result of
its generality, the framework introduced is applicable to a variety
of settings and practical problems with information limitations
such as channel estimation, black-box optimisation, and dual
control.

I. INTRODUCTION

In many real-world problems unknown functions of in-

terest have to be estimated using limited information. The

available data is often small due to resource limitations (e.g.

high cost of observation) and/or fast-changing nature of the

underlying system (time limitations). These constraints rule

out several conventional methods for estimating the function

such as Monte Carlo sampling, randomised algorithms [1],

evolutionary algorithms, or simulated annealing [2].

The function of interest often plays a significant role in

the overall system performance. It may represent fading in

a communication channel, the objective function in a black-

box optimisation problem or a dynamical system in dual

control [3]. Hence, a principled approach is needed to interpret

the collected data and make most of it in such joint learning

and decision-making problems.

Recent works [4]–[6] have presented novel results on using

information-theoretic metrics for quantifying and selecting

new data points for black-box optimisation problems. How-

ever, model selection problem has not been discussed in

those works, where it was assumed that the hyperparame-

ters of the Gaussian regression models used for estimating

objective functions were optimally chosen. Building upon

these earlier results, this paper focuses solely on the model

(meta- or hyperparameter) selection problem and investigates

the intricate relationship between information availability and

model complexity. Adopting a frequency domain approach,

two information-theoretic metrics are defined and used in

a multi-objective formulation. The resulting framework is

applied to the hyperparameter selection in Gaussian Process

Regression (GPR) [7].

There is a large literature on the applications of information-

theoretic concepts to model selection problems. A comprehen-

sive and accessible overview is provided in [8]. Information-

based model selection criteria for regression are presented

in [9]. Model selection in the context of GPR is discussed

in [7, Chap. 5]. This paper differentiates from earlier work

due to its frequency-based approach to model complexity and

the resulting multi-objective formulation of the problem.

The rest of the paper is organised as follows. The next

section presents the problem formulation. Section III intro-

duces two information metrics motivated by frequency-domain

analysis. Section IV applies the concepts introduced to GPR

and illustrates the framework with a numerical example. The

paper concludes with a brief discussion in Section V.

II. PROBLEM FORMULATION

Let X ⊂ R be the compact real domain of a continuous

real-valued function f : X → R. In order to keep to notation

clean in the paper, the function f takes a scalar argument

defined on the unit interval, X = [0, 1], without loss of

any generality. Consequently, f is bounded and assumes its

minimum and maximum on X [10, p. 47]. Assume that f is

also differentiable and Lipschitz continuous with a constant L
such that |df(x)/dx| ≤ L.
The main objective here is to estimate the unknown function

f which is known only on a finite set of data points

D = {[x1, f(x1)], . . . , [xD, f(xD)]} (1)

that are obtained through observations. Let f̂(x) be the best

estimate of f(x) given D. Finding the “best” f̂ is known as

the regression problem.

Choosing the right model plays a very important role in

addressing the function approximation problem defined.1 To

simplify the task, let α denote the unknown model hyper-

parameter and reduce model selection to the selection of

the best α. There are three factors directly affecting this

modelling problem. The first one is how well the estimated

function f̂ approximates f on D or how well it fits the

observed data, e.g. minf̂
∑

x∈D

∣

∣

∣
f̂(x)− f(x)

∣

∣

∣
. The second

factor is the descriptive model complexity. Following Occam’s

razor [11], a simpler model is desirable as long as it performs

1Since a non-parametric regression method is assumed in this paper, the
“model selection” translates to the choice of meta- or hyperparameters.



satisfactorily, i.e. it should be as simple as possible but not

simpler [8]. This principle is closely related to the concepts

of generalisation and regularisation which are well known in

the pattern recognition literature [12].

These two factors are in direct conflict with each other.

A perfect match between f̂ and f on D can be obtained

by increasing model complexity which is also known as

“overfitting” [12]. The third and often ignored factor is how

much “information” the existing data D provides to the model

at hand or how much information is needed to learn a model

of certain learning complexity.

A principled way of approaching the model selection task

is to quantify the second and third factors using information-

theoretic metrics and pose it as a multi-objective optimisation

problem. Let CM (f̂) measure the non-negative descriptive

complexity. Further define a measure on model learning com-

plexity CL(f̂) and a bound on it B(D) based on the available

data D. Then, the second objective is minf̂ CM (f̂) and the

third one can be formulated as CL(f̂) ≤ B(D). One possible

combination of all three objectives [13] leads to the following

optimisation problem:

min
f̂

w1

∑

x∈D

1

|D|
∣

∣

∣
f̂(x)− f(x)

∣

∣

∣
+ w2 CM (f̂)

subject to CL(f̂) ≤ B(D), (2)

where w1, w2 are weighting and normalisation parameters,

and |D| is the cardinality of the set D.

An alternative formulation based on the “entropy maximi-

sation principle” in the literature maximises entropy subject

to a constraint imposed by the information contained in

the observed data [8, Chap. 2.12.1]. Using the definitions

introduced above this corresponds to

max
f̂

CM (f̂) subject to CL(f̂) ≤ B(D). (3)

Note that the first objective is automatically taken care of by

the nonparameteric learning method considered here.

The problem formulations (2) and (3) are closely related to

each other. While the former searches for the simplest model

justified by the data set which fits the observed data points,

the latter aims to find the most complex (maximum entropy)

model justified by the data set.

III. INFORMATION METRICS FOR MODEL SELECTION

A typical way of describing (encoding) a function is tak-

ing its (e.g. Fourier) transform and then using the resulting

frequency domain parameters as commonly done in image

and sound compression. The same approach can also be used

to derive the relevant information metrics to formulate and

address the problem in (2).

The function f defined in Section II is assumed to be

differentiable and Lipschitz continuous with constant L on

[0, 1]. Let F (ω) denote the Fourier transform of f(x). Then,
its energy is finite and given by Ef =

∫∞

−∞
|F (ω)|2 dw from

Perseval’s theorem [14].

The function f(x) is of bounded variation,
∫ 1

0
|df(x)/dx| dx ≤ L < ∞, due to its differentiability

and Lipschitz-continuity. It then follows directly from the

Riemann lemma [14, p. 95] that

F (ω) =

∫ 1

0

f(x)e−jωtdt = O(
1

ω2
) |ω| → ∞,

where O(·) denotes the following: for any real valued func-

tions g(x) and h(x), g(x) = O(h(x)) x → ∞, means there

exists a positive M ∈ R such that g(x) ≤ M h(x) as x → ∞.

Since f is duration-limited, it can be perfectly reconstructed

from its countably many Fourier series coefficients, Fs(n) =
1
T

∫ 1

0
f(x)e−2πjxn/T dx, where n is an integer. Since T = 1 in

this special case, we have Fs(n) = F (n/T ) = F (n), i.e. the
Fourier series coefficients of f can be interpreted as uniform

samples of its Fourier transform. Let S(ω) := |F (ω)|2 be

the power spectrum of the function f(x) and Ss(n/T ) =
Ss(n) := |Fs(n)|2 be its discrete counterpart corresponding

to a uniformly sampled version of S(ω).

Definition III.1. Let the function f(x) defined on x ∈ X =
[0, 1] be real-valued, differentiable, and Lipschitz-continuous

with the constant L. Let S(ω) be the spectral density of f and

Ss(n) be its discrete counterpart. The entropy-like functional

capturing the descriptive model complexity of f(x) is defined
as

CM (f) := −
∞
∑

n=−∞

Ss(n) log2(Ss(n)). (4)

Couple of interesting observations can be made based on the

definition of CM (f). Firstly, the functional CM (f) clearly has

an entropy interpretation, if ω is considered as a (frequency)

random variable with probability mass function Ss(n). Sec-
ondly, the value CM (f) provides naturally an upper-bound on

the Kolmogorov complexity of f up to a fixed constant [11].

The descriptive complexity measure in Definition III.1

makes intuitive sense. Let f1(x) = (1/
√
2)sin(ω1x) be

sinusoidal function and f2(x) be a band-limited white noise

function on X such that S2(ω) = 1/(2W ), |ω| ≤ W . Then,

CM (f1) = 1 and CM (f2) = log2(2W ). Furthermore, the

complexity of white noise becomes infinite as W → ∞. In

other words, a single sinusoid (a basis function of the Fourier

transform) has unit and the white noise has infinite descriptive

model complexity.

The entropy-like measure CM of Definition III.1 quantifies

the frequency spread or information content of an already

known function and exhibits intuitive behaviour as discussed

above. However, it assigns high and low frequency functions

the same complexity. For example, the function f1(x) =
(1/

√
2)sin(ω1x) has unit model complexity regardless of

whether ω1 is 1 or 106. This is in contrast to the fact that

learning a slowly varying unknown function is easier, i.e.

requires less number of observations, than a function that has

most of its energy in high frequencies. It is therefore necessary

to distinguish these two separate concepts and define another

metric measuring model learning complexity which differs

from the descriptive model complexity in Definition III.1.



Fortunately, the very-well known concept of bandwidth can

be used for this purpose.

As the first step, define the band-limited function

fW (x) :=
1

2π

∫ W

−W

F (ω)ejωtdω, (5)

on X = [0, 1] that approximates f arbitrarily well for increas-

ing W . The residual energy of the approximation error, ea,
quadratically decreases to zero as |W | → ∞:

ea(f − fW ) =

∫ 1

0

|f(x)− fW (x)|2 dx = O(
1

W 2
),

which is a consequence of the Riemann lemma and Parseval’s

theorem [14]. The spectral density of fW is then

SW (ω) =

{

|F (ω)|2 , for |ω| ≤ W

0 , else
. (6)

Definition III.2. Under the same assumptions of Defini-

tion III.1, define the energy-based bandwidth W (λ) of f such

that the energy of the bandlimited version of the function

fW (λ)(x) (5) is EfW (λ)
=

∫

SW (ω)dω = λEf , where

0 ≤ λ ≤ 1. The learning complexity functional, based on

this bandwidth criterion, is defined as

CL(f, λ) := W (λ).

Remark III.3. The definition of learning complexity can be

extended to any meaningful definition of bandwidth. Note,

however, that the classical definition of bandwidth equating

it to the support of the spectral density S(ω) leads to a trivial

result where CL(f, 1) = ∞ for any duration-limited f .

The choice of λ presents a trade-off between how closely

the estimated function f̂ is desired to approximate f in the

frequency domain by including higher frequency components,

which increases the number of data points needed to justify

such an estimate. Clearly, the closer λ is to one, the more

observations are needed to estimate the high-frequency com-

ponents in f̂ , which affects hyperparameter selection of the

model. In this paper, λ is chosen somewhat arbitrarily as 0.9
corresponding to retain 90% of the signal energy.

The amount of information contained in the current set

of observations D, defined in (1), provides an upper-bound

on learning model complexity, CL(f), in the Definition III.2.

The principle here is choosing a model which has a learning

complexity consistent with the amount of available data. The

results presented next aim to express this principle in mathe-

matical terms using Nyquist-Shannon sampling theorem [14].

Consider the case where the data points in D are equi-

spaced on X = [0, 1]. Then, the data set D can be interpreted

as a sampling of function f(x), which can be approximated

by its band-limited version, fua(x), through interpolation

fua(x) :=

2Ws
∑

k=0

f(
k

2Ws
)
sin(Wsx− k)

Wsx− k
,

where Ws is the bandwidth (support set) of fua(x). In fact,

under the assumptions made on f(x), the uniform approxima-

tion error is bounded by:

|eunif (t)| := |f(x)− fua(x)| ≤
2

π

∫ ∞

Ws

F (ω)dω. (7)

Moreover, this bound can be refined to

|eunif (t)| ≤
2L

Ws
, Ws > 1, (8)

where L is the Lipschitz constant. Both error bounds (7) and

(8), which are corollaries of Theorems 2 and 3 in [15], are

satisfied if the number of samples is chosen as N = 2Ws.

When the uniform sampling assumption is relaxed to allow

data points in D be chosen according to any distribution on

X , then the following result is obtained [16]. First, define a

counterpart of fua as

fnua(x) :=
1

N

∑

k

f(tk)
sin(W (t− tk))

π(t− tk)
,

where tk, k = 1, . . . , N is any ordered set of points on X .

Then, the general approximation error between fW (x) defined
in (5) and fnua(x) is given by

|egen(t)| = |fW (x)− fnua(x)| =
O(W log(W ))

N
. (9)

It is now possible to derive how many data points are needed

to satisfy a given error bound, ε, when approximating f(x) or
fW (x) using an interpolation based on a given D.

Proposition III.4. Let ε > 0 bound the error in approximating
f(x) or fW (x) using an interpolation based on D. Let

Nunif and Ngen be the number of uniformly and arbitrarily

distributed observations, respectively, i.e. the cardinality of D
for each case. Then, the following hold:

Nunif ≥ 4L

ε
, Ngen ≥ O(W log(W ))

ε
.

Proof: The result in (8) provides the minimum number of

data points in D that are uniformly distributed on X , Nunif ,

needed to achieve the given error bound, whereas the one in

(9) provides the counterpart, Ngen, for a general distribution

of data points.

Note that, the number Ngen is independent of distribution

and increases with the bandwidth of fW (x), i.e. as fnua
approximates f better.

IV. MODEL SELECTION IN GP REGRESSION

A. GP Regression Overview

A short overview of Gaussian Process (GP) regression is

presented next for completeness [7], [17]. A GP is formally

defined as a collection of random variables, any finite number

of which have a joint Gaussian distribution. In general, it

is completely specified by its mean function m(x) which is

assumed to be zero here for simplicity, and covariance function

c : (X ,X ) → R, c(x, x̃) := E[f(x)f(x̃)], ∀x, x̃ ∈ X .



Hence, the GP is characterised in this special case entirely by

its covariance function c(x, x̃).
Given a set of data D and assuming fixed Gaussian obser-

vation noise, the covariance matrix is defined as the sum of a

kernel matrix Q and noise variance σ:

Cij(α) := Qij(α) + σ, ∀i, j = 1, . . . , card(D) (10)

where card(D) is the cardinality of the data set D and α is a

kernel hyperparameter. While it is possible to choose here any

(positive definite) kernel function qα(x, x̃) : (X ,X ,R+) → R,

one classical choice is the Gaussian kernel,

qα(x, x̃) = exp

[

−|x− x̃|2
2α2

]

. (11)

which leads to the kernel matrix Qij(α) = qα(xi, xj), where
xi, xj ∈ D.

The Fourier transform of the stationary covariance function

gives the spectral density S(ω) which follows directly from

Wiener-Khinchin theorem [7]. The spectral density of the

covariance function with Gaussian kernel (11), when there is

no observation noise, is

Sα(ω) = α
√
2π e−2π2α2ω2

. (12)

Given the data set D, define the vector

k(D) := [qα(x1, f(x1)), . . . qα(xD, f(xD))] (13)

and scalar

κ := qα(x, x) + σ = 1 + σ. (14)

Then, the predictive distribution at a given point x, px̂(D, x),
is a Gaussian random variable, N (f̂ , v), with the mean f̂ and

variance v:

f̂(D, x) := kTC−1f̄(D) and v(D, x) := κ− kTC−1k, (15)

where f̄(D) = [f(x1), f(x2), . . . , f(xD)]T . Note that the

variance is independent of the individual state dimension. This

is a key result that defines GP regression. The mean function

f̂(x) of the Gaussian distribution provides a prediction of the

objective function f(x). Furthermore, the variance function

v(x) can be used to measure the uncertainty level of the

predictions provided by f̂ .

B. Model Selection

In the GP regression context, the model selection problem

(2) becomes one of hyperparameter selection due to the

non-parametric nature of GP. Specifically, let α denote the

unknown model hyperparameters in the chosen GP kernel.2

Then, the estimated function f̂α is parameterised by α. Using
the respective definitions of CM (α) in Definition III.1 and

CL(α) in Definition III.2, the model selection problem (2) is

converted to selection of the hyperparameter α as follows:

min
α

w1

∑

x∈D

1

|D|
∣

∣

∣
f̂α(x)− f(x)

∣

∣

∣
+ w2 CM (f̂α)

subject to CL(α) ≤ B(D). (16)

2This paper assumes that a kernel function is already chosen for simplicity.
The kernel choice can also be posed as a model selection problem itself.

This formulation clearly provides multiple degrees of freedom

in the choice of the parameters such as the weights w1, w2

balancing the objectives and the upper-bound on bandwidth

B. The selection of these parameters is rather problem and

context dependent in practice.

The power spectral density S(α) (12) of the widely-used

Gaussian kernel function (11) has unit energy and is param-

eterised by α. The entropy of S(α), ES(α) is ES(α) =
−0.5 ln 2πe−lnα. Thus, the model complexity of the GP with

Gaussian kernel (11) based on the Definition III.1 becomes

CM (α) = − lnα− 1

2
ln 2πe. (17)

Likewise, using the 90% energy-based bandwidth in Defini-

tion III.2 and (12), the learning model complexity is

CL(α) ≈
1

απ
√
2
erf−1(0.8) =

0.204

α
, (18)

where erf−1(·) is the inverse error function.

The discussion in Section III, which can be seen as an

extension of the well-known Nyquist criterion [14] to duration-

limited signals, provides the background for deriving the value

B(D) in (16). First, assume that the data points in D are equi-

spaced. Then, given N , which corresponds to the sampling

frequency on X = [0, 1], one choice for the bound B is simply

B(D) = N/2. However, the approximation errors in (7) and

(8) for Ws = N/2 should be taken into account. For the

non-uniform case, a heuristic approximation such as using the

mean or maximum distance between samples as a basis for

sampling frequency can be used. In that case, the result on

the error bound in (9) holds.

Using the above results, the model (hyperparameter) selec-

tion problem (16) can be reformulated in the special case of

GP regression with Gaussian kernel as

min
α

w1

∑

x∈D

1

|D|
∣

∣

∣
f̂α(x)− f(x)

∣

∣

∣
− w2 lnα

subject to α ≥ 0.408

N
, (19)

where N is the cardinality of D. Here, data uniformity is

assumed to simplify the formulation.

For the specific GP kernel chosen (11), the smaller α the

higher is the model complexity. For the same set of given

data, choosing a smaller α leads to overfitting and increases

the uncertainty of the estimation (see [7, Chap. 5.4] for a nice

discussion on this). Therefore, the lower bound on α in (19)

limits the the tendency of choosing a more complicated model

than the available data warrants. In effect, the formulation (19)

finds the simplest possible model which fits the observed data

well-enough under the learning constraint.

The alternative problem formulation (3) for the special case

of GP regression becomes

min
α

lnα subject to α ≥ 0.408

N
, (20)

which clearly admits the boundary solution α∗ = 0.408/N . In

other words, the “entropy maximisation principle” chooses the



most complex model justified by the available data (learning

constraint). In comparison, the formulation (19) allows ex-

plicitly tuning the balance between the data fitting and model

complexity objectives.

C. Numerical Example

The presented framework is illustrated with a numerical ex-

ample. The unknown function to be estimated is the arbitrarily

chosen polynomial:

f(x) := 20.48x4+2.56x3−3.84x2−0.49x−0.02, x ∈ [0, 1].

Based on the discussion in the previous section, the problem

formulation in (19) is used to choose the hyperparameter α and

derive the estimate f̂(x). The objectives in (19) are normalised

using standard methods and given equal weights.

The function estimates f̂(x) are obtained for different

number of data points and plotted against the real values of

f(x) in Figures 1-4. The corresponding lower bounds on α
and the optimal α∗ values are listed in Table I. The estimated

functions qualitatively match intuitive expectations.

TABLE I
OPTIMAL α VALUES AND LOWER BOUNDS

Figure α
∗ Lower bound

1 0.988 0.136

2 0.129 0.102

3 0.085 0.082

4 0.085 0.068

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

1

x

f(
x
)

Real versus estimated function

 

 

variance

estimated

real

data points

Fig. 1. Estimation with 3 data points; α ≥ 0.136, α∗
= 0.988.

Next, in order to illustrate the role of learning complexity

the lower bound on α is ignored in solving (19), which yields

an optimal hyperparameter of α∗ = 0.002. The resulting

function estimate, shown in Figure 5, is clearly overfitting.

During the simulations, it was noted that the objective function

in (19) is not convex and has multiple minima. Therefore, the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

1

x

f(
x
)

Real versus estimated function

 

 

variance

estimated

real

data points

Fig. 2. Estimation with 4 data points; α ≥ 0.102, α∗
= 0.129.
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Fig. 3. Estimation with 5 data points; α ≥ 0.082, α∗
= 0.085.
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Fig. 4. Estimation with 6 data points; α ≥ 0.068, α∗
= 0.085.



constraint on α, and hence the learning complexity clearly

plays a significant role in choosing the right model along with

descriptive complexity.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−0.5

0

0.5

1

x

y

 

 

variance

estimate

real

data points

Fig. 5. Estimation with 4 data points ignoring learning complexity bound;
α ≥ 0, α∗

= 0.002.

If the alternative formulation (3) based on the maximum

entropy principle is used, the lower bounds in the Table I

become the optimal hyperparameters, α∗, of (20). The results

are then visually similar to those in the Figures 1-4. The

difference between the two sets of results is directly affected

by the weighting parameters w1, w2 in (19), which provide an

additional freedom of choice to the designer in formulating the

problem.

V. CONCLUSION

A model selection framework is presented for function esti-

mation under limited information. The framework introduces

information-theoretic metrics for quantifying descriptive and

learning model complexity, which are then used in a multi-

objective formulation. As a concrete example, the framework

is applied to the hyperparameter selection problem in Gaussian

Process Regression (GPR) and illustrated with a numerical

example. The results have interesting implications for online

learning and provide a novel method for adjusting model com-

plexity during the estimation process based on data availability.

As a result of its generality, the framework introduced is

applicable to a variety of settings and practical problems with

information limitations such as channel estimation, black-box

optimisation, and dual control.

Future research directions include further analysis of the

concepts introduced in relation to the existing information

criteria, extension to multi-variate functions, and applications

to parametric learning frameworks.
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