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Abstract—We propose a location-based beamforming scheme
for wiretap channels, where a source communicates with a
legitimate receiver in the presence of an eavesdropper. We assume
that the source and the eavesdropper are equipped with multiple
antennas, while the legitimate receiver is equipped with a single
antenna. We also assume that all channels are in a Rician fading
environment, the channel state information from the legitimate
receiver is perfectly known at the source, and that the only
information on the eavesdropper available at the source is her
location. We first describe how the beamforming vector that min-
imizes the secrecy outage probability of the system is obtained,
illustrating its dependence on the eavesdropper’s location. We
then derive an easy-to-compute expression for the secrecy outage
probability when our proposed location-based beamformingis
adopted. Finally, we investigate the impact location uncertainty
has on the secrecy outage probability, showing how our proposed
solution can still allow for secrecy even when the source has
limited information on the eavesdropper’s location.

I. I NTRODUCTION

Physical layer security has attracted significant research
attention recently. Compared to the traditional upper-layer
cryptographic techniques using secret keys, physical layer
security safeguards wireless communications by directly ex-
ploiting the randomness offered by wireless channels with-
out using secret keys, and thus has been recognized as an
alternative for cryptographic techniques [1]. The principle of
physical layer security was first studied in [2] assuming single-
input single-output systems. It was shown that secrecy can
only exist when the wiretap channel between the source and
the eavesdropper is a degraded version of the main channel
between the source and the legitimate receiver. Subsequently,
this result was generalized to the case where the main channel
and the wiretap channel are independent [3].

Most recently, implementing multi-input multi-output
(MIMO) techniques at the source/legimitmate receiver has
been shown to significantly improve the physical layer security
of wiretap channels [4–14]. In terms of MIMO techniques,
beamforming [4–9], artificial noise (AN) [10–12], and transmit
antenna selection [13, 14] are just a few techniques that canbe
utilized to boost the physical layer security of wiretap chan-
nels. In [4–14], it is assumed that the channel state information
(CSI) from the eavesdropper is perfectly or statistically known
at the source. This assumption, however, is unlikely to be
valid in practice - especially when the eavesdropper is not
an authorized component of the communication system.

In this paper we propose a location-based beamforming
scheme that does not require any form of CSI be passed by the

eavesdropper back to the source. Rather, we will assume that
somea priori known location information of the eavesdropper
is available to the source. Such a scenario can occur in many
circumstances, such as those detailed in [15]. In our scheme,
we assume thatall of the communication channels are in a
Rician fading environment. That is, the channel between the
source and the legitimate receiver and the channel between the
source and the eavesdropper are a combination of a line-of-
sight (LOS) componentand a random scattered component.
We also assume that the CSI from the legitimate receiver is
perfectly known at the source, while theonly information on
the eavesdropper available at the source is her location. Our
key goal is to determine the beamforming vector at the source
that minimizes the secrecy outage probability of the system,
given the CSI of the main channel and the eavesdropper’s
location.

Perhaps the most relevant work to ours is that of [15] in
which the secrecy outage probability in Rician wiretap chan-
nels was investigated, largely for the case where the location
of the eavesdropper was available at the source but where the
CSI of the main channel was unavailable. Compared to [15],
our work is different in the following main aspects: (i) We
derive a simpler expression of the secrecy outage probability
when the eavesdropper’s location and the CSI of the main
channel are known. We highlight that our expression is valid
for arbitrary values of average signal-to-noise ratios (SNR) and
RicianK factors in the main channel and the wiretap channel.
(ii) Based on this new expression we develop a much more
efficient search algorithm for the determination of the optimal
beamforming scheme that minimizes the secrecy outage proba-
bility when the CSI of the main channel and the eavesdropper’s
location are available at the source. We highlight that our new
search algorithm invokes a one-dimensional search, as opposed
to the multi-dimensional searches required previously, thereby
greatly reducing the computational complexity (importantfor
in-field deployments). (iii) We examine the impact of location
uncertainty on the secrecy outage probability, showing how
secrecy can still exist when only a noisy estimate of the
eavesdropper’s location is available at the source.

II. SYSTEM MODEL

We consider a wiretap channel with Rician fading, as
depicted in Fig. 1, where Alice communicates with Bob in the
presence of Eve (the eavesdropper). In this channel, Alice and
Eve are equipped with uniform linear arrays (ULA) withNA
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Fig. 1: Illustration of a wiretap channel with Rician fading.

andNE antennas, respectively, while Bob is equipped with a
single antenna. We adopt the polar coordinate system. As such,
the locations of Alice, Bob, and Eve are denoted by(0, 0),
(dB , θB), and (dE , θE), respectively. We consider that the
main channel between Alice and Bob and the eavesdropper’s
channel between Alice and Eve are subject to quasi-static
independent and identically distributed (i.i.d) Rician fading
with different RicianK-factors. We also consider that aK-
factor map (K as a function of location) is known in the
vicinity of Alice via somea priori measurement campaign. We
assume that the CSI of the main channel is known to Alice,
while the only available information on Eve is her location.
This assumption is reasonable in some military application
scenarios where Alice can obtain Eve’s location through some
a priori surveillance.

We denoteh as the1 × NA channel vector from Alice to
Bob, which is given by

h =

√
KB

1 +KB

ho +

√
1

1 +KB

hr, (1)

whereKB denotes the RicianK-factor of the main channel,
ho denotes the LOS component, andhr denotes the scattered
component - the elements of which are assumed to be i.i.d
complex Gaussian random variables with zero mean and unit
variance, i.e.,hr ∼ CN (0NA

, INA
). In (1), ho is expressed

as [16]

ho =
[
1, · · · , exp (j2π (NA − 1) δA cos θB)

]
, (2)

where δA denotes the constant spacing, in wavelengths, be-
tween adjacent antennas of the ULA at Alice. We also denote
G as theNE ×NA channel matrix from Alice to Eve, which
is given by

G =

√

KE

1 +KE

Go +

√
1

1 +KE

Gr, (3)

whereKE denotes the RicianK-factor of the eavesdropper’s
channel,Go denotes the LOS component, andGr denotes the
scattered component - the elements of which are assumed to

be i.i.d complex Gaussian random variables with zero mean
and unit variance, i.e.,Gr ∼ CN (0NE

, INE
). In (3), Go is

expressed as [17]

Go = rTo go, (4)

wherero denotes the array responses at Eve, which is given
by

ro =
[
1, · · · , exp (−j2π (NE − 1) δE cosφE)

]
, (5)

where δE denotes the constant spacing, in wavelengths, be-
tween adjacent antennas of the ULA at Eve, andφE denotes
the angle of arrival from Eve to Alice (see Fig. 1), andgo

denotes the array response at Alice, which is given by

go =
[
1, · · · , exp (j2π (NA − 1) δA cos θE)

]
. (6)

According to (1)–(6), we express the received signal at Bob
as

yB =

√

PAd
−η
B hxA + nB, (7)

wherePA denotes the transmit power at Alice,η denotes the
path loss component,xA denotes the transmitted signal by
Alice, andnB denotes the thermal noise at Bob - which is
assumed to be a complex Gaussian random variable with zero
mean and varianceσ2

B, i.e., nB ∼ CN
(
0, σ2

B

)
. In (7), xA is

expressed as

xA = wtA, (8)

wherew denotes the1×NA beamforming matrix, andtA is
a scalar, which denotes the information signal transmittedby
Alice. We assume that‖w‖2 = 1 andE

[
t2A
]
= 1. We then

express the received signal at Eve as

yE =

√

PAd
−η
E GxA + nE , (9)

where nE denotes the thermal noise vector at Eve - the
elements of which are assumed to be i.i.d complex Gaussian
random variables with zero mean and varianceσ2

E , i.e.,
nE ∼ (0NE

, INE
). As such, we express the received SNR

at Bob as

γB = γB|hw|2, (10)

whereγB = PAd
−η
B /σ2

B. Note, we assume that Eve adopts
maximal ratio combining (MRC) [19] to process her received
signal (maximizing her SNR). As per the rules of MRC, the
received SNR at Eve is expressed as

γE = γE‖Gw‖2, (11)

whereγE = PAd
−η
E /σ2

E .



III. L OCATION-BASED BEAMFORMING SCHEME

We first describe in detail how the optimal beamforming
scheme that minimizes the secrecy outage probability is ob-
tained by utilizing Bob’s CSI and Eve’s location. We then
derive an easy-to-compute expression for the secrecy outage
probability when the proposed location-based beamforming
scheme is applied.

Based on (10) and (11), the achievable secrecy rate in the
wiretap channel is expressed as [18]

CS =

{
CB − CE , γB > γE
0, γB ≤ γE ,

(12)

where CB = log2 (1 + γB) is the capacity of the main
channel, andCE = log2 (1 + γE) is the capacity of the
eavesdropper’s channel. In this wiretap channel, ifCS ≥ RS ,
where RS denotes a given secrecy transmission rate, the
perfect secrecy is guaranteed. IfCS < RS , information on
the transmitted signal is leaked to Eve, and the secrecy is
compromised. In order to evaluate the secrecy performance
of the wiretap channel in detail, we adopt the secrecy outage
probability as the performance metric - defined as the prob-
ability that the achievable secrecy rate is less than a given
secrecy transmission rate conditioned onγB. Mathematically,
this is formulated as

Pout (RS) = Pr(CS < RS |γB) . (13)

Our goal is to find the optimal beamforming vector that
minimizes the secrecy outage probability. That is, we wish
to find

w∗ = argmin
w,‖w‖2=1

Pout (RS) . (14)

In order to solve (14), we present the following proposition.
Proposition 1: Given τ ∈ [0, 1], the optimal beamforming

vectorw∗ that minimizes the secrecy outage probability is a
member of the following family of beamformer solutions,

w (τ) =
√
τwZF +

√
1− τw⊥

ZF. (15)

Here, wZF =
Ψ

⊥

Go
h

H

‖Ψ⊥

Go
hH‖

, where Ψ⊥
Go

= INA
−

GH
o

(
GoG

H
o

)−1
Go; and w⊥

ZF =
ΨGo

h
H

‖ΨGo
hH‖ whereΨGo

=

GH
o

(
GoG

H
o

)−1
Go.

Proof: Suppose that{wZF,w
⊥
ZF,w3, · · · ,wNA

} denotes
an orthonormal basis in the complex spaceCNA . As such, any
beamforming vector at Alice can be expressed as [20]

w = λ1wZF + λ2w
⊥
ZF +

NA∑

l=3

λlwl, (16)

whereλ = [λ1, λ2, · · · , λNA
] are complex and‖λ‖2 = 1. We

first note that the achievable secrecy rateCS is a function of
w. We then note that beamforming intowl has no impact on
the capacity of the main channelCB. This is due to the fact
that wl are orthogonal to the plane spanned by

{
wZF,w

⊥
ZF

}

and the main channelh lies in this plane. We also find
that beamforming intowl, on the other hand, may increase

the capacity of the eavesdropper’s channelCE unless the
eavesdropper’s channelG also lies in the plane spanned by
{
wZF,w

⊥
ZF

}
.

Based on the above analysis, we see that beamforming
into wl decreasesCS or has no impact onCS . As such, we
confirm that the optimal beamforming vector has the following
structure, given by

w (τ) =
√
τ exp (jθa)

︸ ︷︷ ︸

λ1

wZF +
√
1− τ exp (jθb)

︸ ︷︷ ︸

λ2

w⊥
ZF. (17)

We note that(θa) and (θb) in (17) are general phases have
no impact onCS , thus without loss of generality we can set
θa = θb = 0. Substitutingθa = θb = 0 into (17) we obtain
the desired result in (15), which completes the proof.

With the aid of Proposition 1, we note that the optimal
beamforming vectorw∗ that solves (14) can be obtained by
finding the optimalτ∗ that minimizes the secrecy outage
probability. As such, we re-express (14) as

τ∗ = argmin
0≤τ≤1

Pout (RS) . (18)

We highlight that Proposition 1 provides a far more efficient
way of obtaining the optimal beamforming vectorw∗ that
solves (14) compared to an exhaustive search. This is due to
the fact that an exhaustive search is performed in the complex
spaceCNA . Consequently, the computational complexity of
the exhaustive search grows exponentially asNA increases.
This is to be compared with our method in Proposition 1 which
involves a one-dimensional search ofτ∗ only, regardless of the
value ofNA.

We now present the expression of the secrecy outage
probability whenw (τ) is adopted as the beamforming vector
in the following theorem.

Theorem 1: The secrecy outage probability whenw (τ) =√
τwZF +

√
1− τw⊥

ZF is adopted as the beamforming vector
is given by

Pout (RS) = 1−
γ
(

NEm̂E ,
2−RS (1+γB)−1

m̂
−1

E
γ̂
E

)

Γ (NEm̂E)
, (19)

whereγ (·, ·) is the lower incomplete gamma function, defined
as [21, Eq. (8.350)],

γ (µ, ν) =

∫ ν

0

exp (−t) tµ−1dt, (20)

m̂E =

(

K̂E + 1
)2

2K̂E + 1
, (21)

whereK̂E = |gow (τ) |2KE ,

γ̂E = E [γE ] =

(
KE |gow (τ) |2 + 1

)
γE

1 +KE

, (22)

andΓ (·) is the Gamma function, defined as [21, Eq. (8.310)],

Γ (z) =

∫ ∞

0

exp (−t) tz−1dt. (23)



Proof: We focus on the probability density function
(PDF) of γE when w (τ) is adopted as the beamforming
vector, which is expressed as [15]

fγE
(γ) =

(
m̂E

γ̂E

)NEm̂E γNEm̂E−1

Γ (NEm̂E)
exp

(

−m̂Eγ

γ̂E

)

. (24)

The cumulative distribution function (CDF) ofγE is then
obtained as

FγE
(γ) =

γ
(

NEm̂E ,
m̂Eγ

γ̂E

)

Γ (NEm̂E)
. (25)

As such, we re-expressPout (RS) in (13) as

Pout (RS) = Pr(CB − CE < RS |γB)
= Pr(CE > CB −RS |γB)
= Pr

(
γE > 2−RS (1 + γB)− 1

)

= 1− FγE

(
2−RS (1 + γB)− 1

)
. (26)

Substituting (25) into (26), we obtain the desired result in
Theorem 1. The proof is completed.

Note, in Theorem 1 Eve’s location is explicitly expressed
in the expressions for̂mE , K̂E , and γ̂E . Note also, that our
derived expression is valid for arbitrary values of average
SNRs and RicianK factors in the main channel and the
wiretap channel. Based on Proposition 1 and Theorem 1, we
see that the optimalτ∗ that minimizesPout (RS) can be easily
obtained through a one-dimensional numerical search.

We point out thatφE disappears in the expression for the
secrecy outage probability in Theorem 1. As an aside, it is
perhaps interesting to show why this is so. To this end, we
re-expressγE in (11) as

γE = γE

NE∑

i=1

|giw (τ) |2, (27)

wheregi is the1×NA channel vector between Alice andi-th
Eve’s antenna, given by

gi =

√

KE

1 +KE

ro,igo +

√
1

1 +KE

gr,i, (28)

where ro,i is the i-th element ofro, given by ro,i =
exp (−j2π (i− 1) θE cosφE) andgr,i is the i-th row of Gr.
Based on (28), we expressgiw (τ) as

giw (τ) =

√

KE

1 +KE

ro,igow (τ) +

√
1

1 +KE

gr,iw (τ) .

(29)

We note that|ro,igow (τ) |2 = |gow (τ) |2 for any ro,i. As
such, we confirm that the value ofφE has no impact on
the secrecy outage probability. This reveals that our analysis
reported here is also applicable for antenna arrays other than
ULA at Eve.

IV. I MPACT OF EAVESDROPPER’ S LOCATION

UNCERTAINTY

Thus far, we have assumed that Eve’s location is perfectly
available at Alice. In this section, we examine the impact of
Eve’s location uncertainty on the secrecy performance of our
proposed location-based beamforming scheme. To this end, we
first characterize the uncertainty in Eve’s location.

We assume that Eve’s location, available at Alice, is ob-
tained through some estimation. This estimation of Eve’s
location can be made by using received signal strength (RSS),
angle of arrival (AOA), time of arrival (TOA), and/or time
difference of arrival (TDOA). In addition, we note that there
will be errors in the estimated Eve’s location due to the noise
in the RSS and timing information measurements. To provide
focus, we assume the use of the TDOA scheme, e.g. [22,
23], as the positioning algorithm. Providing such algorithms
are close to optimal, we can directly utilize in our analysis
a probability distribution of estimated positions derivedfrom
the Fisher matrix of the TDOA scheme.

We now detail the Fisher matrix of the TDOA scheme [24].
For the sake of generality, we assume there existN anchor
points in our system that cooperate to localize Eve. We denote
Eve’s true location and the location of thenth anchor point in
a 2-D plane byξ0 = [x0, y0] and ξn = [xn, yn], respectively.
We denote the time difference relative to that measured by
anchor point1 and thenth anchor point asφn, then we obtain
the logarithm of the distribution ofφn as,

− ln f (φn) =

(
φn − dn−d1

c

)2

4c2σ2
t

, (30)

wherec denotes the speed of light,σ2
t in the variance of the

timings, anddn denotes the distance between thenth anchor
point and Eve, expressed as

dn =

√

(xn − x0)
2 + (yn − y0)

2. (31)

According to (30), we can introduce a variable asθn =
arctan yn−y0

xn−x0

, then we express the Fisher matrix of the TDOA
scheme as

J (φn) =

[
J (φn)11 J (φn)12
J (φn)21 J (φn)22

]

, (32)

where

J (φn)11 =
1

2c2σ2
t

N∑

n=2

(cos θn − cos θ1)
2
, (33)

J (φn)22 =
1

2c2σ2
t

N∑

n=2

(sin θn − sin θ1)
2 , (34)

and

J (φn)12 = J (φn, ϕn)21

=
1

2c2σ2
t

N∑

n=2

(sin θn − sin θ1) (cos θn − cos θ1) . (35)



Based on (32), we express the covariance matrix of the true
Eve’s location asV = J−1. We further defineV as

V =

[
σ2
x σxy

σyx σ2
y

]

, (36)

where σxy = σyx. We denote the estimated Eve’s location
by ξE = [xE , yE ], and the correlation coefficient byρ =
σxy/ (σxσy) . As such, the distribution of the estimated Eve’s
location can be expressed as

P (ξE) =
1

2π
√

1− ρ2σxσy

exp

{

− 1

2 (1− ρ2)

(

(xE − x0)
2

σ2
x

+
(yE − y0)

2

σ2
y

− 2ρ (xE − x0) (yE − y0)

σxσy

)}

. (37)

In order to examine the impact of the uncertainty in Eve’s
location, we adopt an “average” measure ofPout (RS), which
is given by

P out (Rs) =

∫ ∞

−∞

∫ ∞

−∞

Pout (Rs)P (ξE) dxEdyE . (38)

We note that a closed-form expression forP out (Rs) in (38)
is not attainable. As such, we will numerically evaluate the
impact of Eve’s location uncertainty on the secrecy outage
probability in Section V. Specifically, such an evaluation
will be performed through the following steps: (1) Obtain
Eve’s estimated location by randomly selecting a position
ξE = [xE , yE] from the distribution given in (37). (2) Based on
this estimated location, obtain the distance between Aliceand
Eve’s locationd̂E , and the angle from Alice to the estimated
Eve’s locationθ̂E (see Fig. 1). (3) SubstitutêdE and θ̂E into
(19), and obtainPout (RS). (4) Repeat (1)-(3) and utilize all
derivedPout (RS) in (38), thereby obtainingP out (Rs).

V. NUMERICAL RESULTS

In this section we present numerical results to validate our
analysis. Specifically, we first demonstrate the effectiveness of
the proposed location-based beamforming scheme. We then
examine in detail the impact of the uncertainty in Eve’s
location on the secrecy performance of our proposed scheme.

In Fig. 2, we plotPout (RS) versusτ for different values of
NA with Ne = 2, KB = 10 dB, KE = 5 dB, γB = γE =
10 dB, θB = π/3, θE = π/4, andRs = 1 bits/s/Hz. We first
observe that the analytical curves, generated from Proposition
1 and Theorem 1, precisely match the simulation points
marked by black dots, thereby demonstrating the correctness
of our analysis forPout (RS) in Theorem 1. Second, we
see that there exists a uniqueτ∗ that minimizesPout (RS)
for each NA. Third, we see that the minimalPout (RS),
denoted byP ∗

out (RS), decreases significantly asNA increases.
Furthermore, we observe that the optimalτ∗ that achieves
P ∗

out (RS) approaches1 as NA increases. This reveals that
the optimal beamforming vectorw∗ that minimizesPout (RS)
approacheswZF asNA increases.
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Fig. 2: Pout (RS) versusτ for different values ofNA with
NE = 2, KB = 10 dB, KE = 5 dB, γB = γE = 10 dB,
θB = π/3, θE = π/4, andRS = 1 bits/s/Hz.
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Fig. 3: P ∗
out (RS) versusγB for different values ofNA with

NE = 2, KB = 10 dB, KE = 5 dB, γE = 10 dB, θB = π/3,
θE = π/4, andRS = 1 bits/s/Hz.

In Fig. 3, we plotP ∗
out (RS) versusγB for different values

of NA. In this figure, we have adopted the same system config-
urations as those in Fig. 2. The analytical curves, represented
by red dashed lines, are generated from Proposition 1 and
Theorem 1 with the optimalτ∗ which minimizesPout (RS)
being selected for different values ofNA. The optimal beam-
forming solutions, represented by ‘•’ symbols, are obtained
from minimizing Pout (RS) via an exhaustive search (i.e., a
full multi-dimensional search) for different values ofNA. We
first see that the minimal secrecy outage probabilityP ∗

out (RS)
achieved by our proposed beamforming scheme is almost the
same as the optimal beamforming solution found via exhaus-
tive search. This shows the optimality of our proposed scheme.
Second, we see thatP ∗

out (RS) decreases significantly asNA

increase. This reveals that adding extra transmit antennasat
Alice improves the secrecy of the adopted system. We further
see thatP ∗

out (RS) monotonically decreases asγB increase.
This reveals that the secrecy outage probability reduces when
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Fig. 4: P out (RS) versusτ for different values ofcσt with
NA = 4, NE = 2, KB = 10 dB, KE = 5 dB, γB = γE = 10
dB, θB = π/3, θE = π/4, andRS = 1 bits/s/Hz.

Alice uses a higher power to transmit.
In Fig. 4, we plotP out (RS) versusτ for different levels

of Eve’s location uncertainty using the procedures described
in Section IV. The level of Eve’s location uncertainty is
represented bycσt. The largercσt is, the less accurate Eve’s
location is. In this figure, we consider that Alice and Bob
are located in[0 m, 0 m] and [1225 m, 707 m], respec-
tively. We also consider that the true location of Eve is
[1000 m, −1000 m]. For illustration purposes, we adoptη = 4.
We see that there exists a uniqueτ∗ that minimizesP out (RS)
for eachcσt. We also see that the minimalP out (RS) increases
as cσt increases, which demonstrates that the secrecy perfor-
mance of our proposed beamforming scheme decreases, as the
level of uncertainty in Eve’s location increases. Althoughnot
completely shown here, we close by noting that our results
approach the appropriate solutions as the location uncertainty
approaches both zero and infinity (i.e., location unknown),and
show the expected trends between these two extremes.

VI. CONCLUSION

In this work we have proposed a new location-based beam-
forming solution for Rician wiretap channels, in which a multi-
antenna source communicates with a single-antenna receiver in
the presence of a multi-antenna eavesdropper. In our scheme,
we assumed that the CSI from the legitimate receiver is known
at the source, while the only available information on the
eavesdropper is her location. We showed how the beamforming
vector that minimizes the secrecy outage probability of our
scheme can be obtained via our simplified analytical expres-
sion for the secrecy outage probability. We also examined
the impact of the eavesdropper’s location uncertainty on the
secrecy performance, showing that secrecy can still exist
over a wide range of (anticipated) location inaccuracies. The
results presented here are of importance to a range of realistic
wiretap channels in which the only information known on an
eavesdropper is a noisy estimate of her location.
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