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Abstract—Surfing Online Social Media (OSM) websites have
become a daily activity for a large number of people worldwide.
People use OSMs to satisfy their innate need to socialise, but
also as a source of information or to share personal facts.
Thanks to the massive success of cryptocurrencies, the blockchain
technology gained popularity among researchers, giving birth to a
new generation of social media. Steemit is the most well-known
blockchain-based social media, and it is based on the public
blockchain Steem. Steemit employs Steem as data storage, and
to implement a rewarding mechanism that grants cryptocurrency
to pieces of content that are considered relevant by the users.
Steem represents the first experiment that integrates OSMs and
an economic rewarding system on the same platform, and in
this paper, we inspect the interactions among the users from
a community perspective. We apply two community detection
algorithms on five graphs that model just as many facets of the
Steem blockchain and test the detected structure against three
measures for community structure evaluation. Findings show that
communities tend to be very large, index of how much users are
encouraged to interact as much as possible, and in particular,
in the monetary graph, we detect a large number of the block
producers of Steem.

I. INTRODUCTION

Online Social Networks (OSNs) have become the most
important channels through which people can socially interact
with each other. Creating posts, reading, commenting and
evaluating other user’s posts have become one of the daily
activity of people to satisfy their need for social interaction.
OSNs, such as Facebook, and other social media sharing plat-
forms, such as Instagram or TikTok, are usually implemented
exploiting a fully centralized architecture, meaning that all
data is stored and maintained by a single entity. Using a
centralized architecture is a flaw if we consider problems
like scalability, dependence on a provider, privacy [1], and
poor value redistribution [2]. To overcome the weaknesses
of centralized architectures, researchers and developers have
focused their attention to the possibility of implementing an
OSN platform on top of decentralized architectures.

Primarily fuelled by the revelations of the Cambridge Ana-
lytica scandal [3], many Decentralized Online Social Networks
(DOSNSs), implemented on P2P architectures, have been pro-
posed [4], [5], [6]. However, since the revamp started in the
early 2010s thanks to the success of Bitcoin [7], the blockchain
technology, has started to gain importance. Blockchain quickly
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evolved since then to support not only the storage of economic
transactions, but also the storage of more general data, up to
the point where the blockchain can support the execution of
code, as in Ethereum. One of the outcomes of this enormous
interest towards the blockchain technology is its integration
in numerous scenarios, including the one of social networks.
Thanks to the support of blockchain, a new generation of
decentralized Social Media, referred to as Blockchain Online
Social Media (BOSM), have been proposed [8]. BOSMs had
a relevant impact on the OSN scenario, and there are many
BOSMs platforms which rely on blockchain technology for
the storage and rewarding systems to encourage their users
to create and share high quality contents. One of the most
well-known BOSM platform is Steemit!, implemented on
top of the blockchain Steem. The blockchain Steem natively
supports the development of social applications through a
rich set of 38 transaction types. The transactions are used to
store social, economic and management information on the
blockchain, and thanks to the rewarding system users are able
to gain based on their social activity. The rewarding system
is based on the attention economy, and is such that the more
users vote a piece of content, the higher the reward will be.
The economic incentive is granted as cryptocurrency, and is
such to encourage the production of better contents that can
generate more votes. While the main motivation behind the
rewarding system is to fight the problems of creation of low
quality content, fake news, and censorship [8], the real effect
on the social behaviour of users is still unclear. Indeed, it
was observed that BOSMs encourages polarisation [9] or the
distortion of the social interactions. Our main concern is that
economic incentives may fuel numerous interactions which are
not strictly social, but also have economic gain as main goal.
This leads to situations in which platforms have unusually
large interactions communities.

In this paper, we conduct an investigation concerning the
community structure detected on a set of graphs induced
by the Steem blockchain in order to find details concerning
the combination of both the social and economic side of
this platform. We evaluate 5 different graphs, focusing on
just as many aspects of the social blockchain. In detail, we
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consider the Interactions graph, containing all the transactions,
the Social Interactions Graph, which considers only social
transactions, the Social No Bot Interactions Graph, which
is obtained by removing a small set of identified bots from
the Social Interactions Graph, the Follower-Following Graph,
which considers only the follow transactions, and finally
the Monetary Interactions Graph, which considers only the
economic transactions. We apply two community detection
algorithms, namely the Louvain Method and the Label Prop-
agation. This choice was mainly driven by the fact that the
five graphs considered contain 1.2 million nodes and up to
almost 200 millions of edges. Indeed, due to the size of the
graphs, algorithms that cannot be parallelized or have high
time and space complexity cannot be easily used. We check
the community structure returned by the two approaches on
all the five graphs, and assess the quality of the structures
using three measures: modularity, intra-cluster density, and
conductance. Results show that the structure returned by Label
Propagation is too simplistic and is usually made of one
large community which contains almost all the nodes of the
considered graphs. On the other hand, Louvain Method returns
a much more relevant community structure, as shown by the
values of modularity, intra-clsuter density and conductance.

The rest of the paper is structured as follows. In Section 2
we review the relevant literature concerning BOSM, and the
most important concepts of community detection. In Section 3
we describe how the transactions contained in the blockchain
can be interpreted as interactions. In Section 4 we describe
the relevant features of the dataset used. In Section 5 we show
the experimental results, focusing on the community structures
identified on the graphs. Section 6 draws conclusions and
points to possible future works.

II. LITERATURE REVIEW

The most used OSN platforms are implemented through
centralized servers storing all the information of the users and
interfaces which take the form of web or mobile applications.
Adopting a set of centralized servers has several drawbacks
including privacy, dependence on a provider, and scalability
[1]. In recent years, thanks to the fact that OSNs have become
the most popular web services, they have become one of the
main channels through which privacy is violated but at the
same time they allow and extremely rapid and efficient spread
of information. Alongside the technical challenges that need
to be faced when implementing massive worldwide, real time
systems, an ever-increasing interest in privacy preservation has
led researchers and developers to rethink social networking
platforms considering a decentralized architecture.

The decentralization presents some benefits, but also intro-
duces a number of new challenges. The main ones are: Data
availability and persistence, which addresses the problem of
where to store and how to make available users’ data over the
service; Information diffusion, which addresses the problem
of how information is spread on the platform; Privacy, which
addresses the problem of ensuring that users data are protected
and not accessible without consent; Mobile users & Physical

locality, addresses a wide range of problems and possibilities
connected to the fact that most users access OSN services
through mobile devices; Trust, addresses the problem of how
to define and use the concept of trust between users and
devices.

The first generation of Decentralized Online Social Net-
works (DOSN5) did not have a major impact, however, thanks
to the momentum gained by the blockchain technology, new
solutions are being proposed. A DOSN implemented with the
support of a blockchain is called a Blockchain Online Social
Media (BOSM) [8]. The main goal of BOSMs is to overcome
the issues connected to fake news diffusion and censorship,
by exploiting the blockchain for the implementation of a
rewarding strategy.

A. Blockchain for Online Social Media

Despite its innovative nature, there are already numerous
active BOSMs platforms. The most famous is Steemit [2],
[10], which has surpassed 1.5 million registered users, and
represents an important and successful alternative to central-
ized OSNs. It was the first of its kind and it introduced the
idea of rewarding user activity to oppose the spread of fake
news and low quality content. It is implemented on its own
blockchain, called Steem.

Peepeth? is a BOSM that runs over Ethereum, and has
features similar to Twitter. It includes: Peepeth, an open-
source smart contract running on the Ethereum blockchain,
which acts as data storage; and Peepeth.com, the front-end
for the interaction with the smart contract. Data is saved in
the Ethereum blockchain, and anyone can monitor Peepeth’s
public data. Users can evaluate contents on Peepeth through
a feature called Enso. Users can give only one Enso per day,
and it should be given only to contents which are of very
high quality. This feature should encourage the creation of
“dignified, beautiful, and timeless content” 3 as stated by
the developers. Since the number of Enso is limited to one
per day per user, there is a very high competition among
content creators to create contents relevant to the platform.
Additionally, an Ensd cannot be revoked. Lastly, Peepeth is
moderated transparently, because of the open nature of the
blockchain.

Sapien* provides a platform for users to create, publish,
access, view, and evaluate content. Contrarily to other social
media platforms, which are usually specialised in only one
type of content (e.g. Youtube is primarily thought for videos),
Sapien provides a common platform for articles, images,
videos, and other. A piece of content can be public or private,
implying that the platform guarantees a level of visibility of
social data. The social services offered are: create a personal
profile, add friends, form tribes (groups), share and comment
on posts. Content creators are rewarded on Sapien directly
through Peer-to-Peer (P2P) transactions.

Zhttps://peepeth.com/welcome
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Minds® is an open-source BOSM based on the contribution
of its users. Contributions can take many forms: account setup
and verification, referring new users, generating high quality
content, maintaining an active channel, code improvement or
bug fixing, and more. Each contribution is rewarded in tokens
on a daily basis. The amount of tokens granted as reward
is directly proportional to the contribution of the user and
inversely proportional to the activity of all the users. The
tokens earned can then be used for several purposes, such
as tipping other users or channels, or they can be exchanged
for more views on specific pieces of content. To ensure that
the platform is always available, its core is hosted on Amazon
Web Services, but the project is open source. The the economic
system is implemented on Ethereum, through a smart contract,
and users need an Ethereum identity to be able to receive
rewards.

Hive Blog is one of the many interfaces of the Hive
blockchain, a new blockchain that originated as a fork of
Steem after a controversial series of events involving a large
sum of cryptocurrency. Although it is a new platform, its core
mechanisms are similar to Steemit.

Appics is a social media application that revolves around
image sharing. It runs on top of the Telos blockchain 6, but
its tokens, called APX, can be exchanged with tokens on the
EOS blockchain. It was initially implemented with the same
blockchain technology of Steem.

In terms of academic proposals, BCOSN [11] focuses
primarily on privacy issues. The blockchain is used as a trusted
server to provide central control services.

B. Community Detection

A research field relevant to the scenario of OSNs is graph
theory and in particular the problem of community detection,
whose aim is to find relevant sets of nodes in a given network.
Contrarily to other graph problems, there is no unique or
widely-accepted definition of what a community is, but, intu-
itively, a community can be seen as a set of “well-knit” nodes
of the whole graph. The absence of a formal definition let to
the proliferation of different possible definitions, each of which
is based on different ideas and concepts. The most well-known
definitions rely on a pure topological aspects, such as graph
structure, visits and distances. For instance, some methods
aim at building partitions of the network that minimize or
maximize an objective function or find good approximations
with strict time/space bounds. One such example is the Lou-
vain Method [12], which aims at maximising the modularity
based on the contribution of single nodes. Other methods
for community detection aim at finding particular structures,
such as cliques, others still rely on more complex procedures.
For instance, Label propagation is based on assigning nodes
to communities based on labels propagated through edges
[13]. A detailed survey of community detection techniques
is presented in [14].

Shttps://www.minds.com/
Shttps://telos.net/

Given a community structure of a network, it is possible
to assess the quality of the structure through some measures.
Among the most popular and important we find: Modularity,
Intra-cluster density, and Conductance. The most used measure
in literature is the Modularity [15]. The modularity of a
community structure is based on the density of the edges of
the given communities compared to the expected density of
random defined communities. Modularity can be written as
Q = 55 2 (Aij — %%i)§(i, §), where m is the number of
edges of the graph, i and j are two vertices, A is the adjacency
matrix and A;; = 1 <= ¢ and j are connected by an
edge, k; is the degree of node i, and § is a function that
returns 1 if the two nodes passed as argument belong to the
same community, and O otherwise. Although this is a very
commonly used measure, it was also shown that in some cases
community structures with the highest modularity value are
affected by the resolution limit [16].

The intra-cluster density of a community is the density of
the subgraph consisting of the nodes inside the community.
To assess the quality of the whole community structure of the
whole graph, the intra-cluster density values of all communi-
ties are aggregated. Among the possible aggregation functions
we find the minimum and the average.

Lastly, we cite the Conductance, which measures how a
community is well separated from the other communities.
Considering that also for the conductance we have a list of
values, one for each community, we need to consider possible
aggregation functions, such as the average or the maximum.

C. Community detection in Online Social Media

The study of the community structure can be beneficial
for multiple problems in the scenario of OSNs. In [17] the
authors propose to tackle the problem of sentiment analysis at
a community level, rather than a global level, to have a more
detailed and granular evaluation of the sentiment. In particular,
the study shows how the results obtained from the community
detection task and the sentiment analysis task can be mutually
beneficial to increase the quality of each result. In [18]
the authors propose a study on Twitter specifically targeting
users discussing about human papillomavirus vaccines. They
propose a parallel study of topic detection on the tweets
and community detection on the follower-following networks,
showing that there is some alignment between the results.
Community detection was also used for the role identification
task. In [19] the authors show that including the direction
of the edges can play a crucial role towards the quality of
the results. Thanks to their analyses, the community structure
uncovers that some users have more important roles in their
network. The authors of [20] propose a stance classification
method based on community detection. Starting from a handful
known profiles, through the execution of community detection
on multi layered networks, they are able to understand the
stance of each user towards a certain topic. In [21] the
authors study the community structure in content sharing
social networks. They show that their community-detection



analysis framework is beneficial for link prediction in follower-
following networks.

D. Community detection in blockchain

The task of community detection was also studied specifi-
cally in networks derived from blockchain scenarios. In [22]
the authors propose a technique for de-anonymisation of
Bitcoin addresses which is guided by the application of a
community detection algorithm. The authors firstly build a hint
network, which is derived from the transactions appearing in
the Bitcoin network. In the hint network, nodes represent users
and edges are added whether the two users are suspected to
be the same user. A community detection algorithm is applied
to find dense parts of this graph or, in other words, to find
sets of users for which there are many hints suggesting that
they are the same user. A similar approach is presented in
[23], where a graph is created according to the transactions,
but the nodes are also annotated with some attributes (such
as maximum amount of bitcoin sent in a single transaction).
Once the graph is created, a community detection algorithm
based on attribute propagation to detect users with a similar
activity.

III. INTERACTION IN BLOCKCHAIN ONLINE SOCIAL
MEDIA

A BOSM is an Online Social Media platform implemented
with the support of the blockchain technology. Steemit is
the first successful BOSM and is implemented on Steem, a
blockchain specifically designed to support the development
of socioeconomic applications. Indeed, all activity on Steemit
is stored in the form of (unencrypted) transactions on the
Steem blockchain [2]. Transactions are then validated, packed
into blocks, and put in the blockchain by the witnesses. A
witness is a Steem user which runs a witness node, and has
many tasks for the management of the blockchain. Witnesses
are voted by the Steem users, but only the top 20 witnesses
by votes are entitled to create blocks for the blockchain.
Users on Steemit, similarly to other social platforms can
create, comment, evaluate, and share contents. Additionally,
the platform incorporates an economic side which is tightly
connected to the social side [10]. The blockchain Steem
provides support in terms of storage, indeed all user activity,
including creating a post, voting or transferring cryptocurrency
are all actions that are stored in the blockchain as a transaction.

Steem provides 38 transaction types to support the storage
of social and economic interactions among the users and the
development of social applications. We classify the transaction
types according to the same categorisation proposed in [2],
which can be summarized as following:

o Social. Social transactions are the transactions used to
model social actions, such as creating posts or voting
pieces of content.

o Monetary. Monetary transactions are the transactions
used to model economic actions, such as cryptocurrency
transfers or escrow transactions.

« Management. Management transactions includes trans-
actions for account management, and transactions that can
be used only by witnesses for blockchain management.

The decentralization introduced by the blockchain technol-
ogy had an impact on multiple aspects of the platform. The
most important aspect introduced by BOSMs platform is the
possibility to grant economic rewards to the users, based on
their social activity. Indeed, as explained in [10] each post
or comment on the platform can be evaluated (curated) by
the users and depending on the evaluation received, a sum of
cryptocurrency is assigned as reward to the piece of content.
The reward is then granted to both the creator of the piece of
content and its curators. At least half of the reward is granted
to the creator and the remaining is granted to the curators but
the first curators get more.

This rewarding strategy highly encourages phenomena like
automatic content curation or evaluations buying and selling
(buy the votes of the most influential users to increase the
reward assigned to a post) powered by bots [24]. These types
of phenomena fuel a new kind of interaction, one that is not
strictly social, but has potentially other goals. Indeed, while
in the most famous OSNs interactions are made to establish
social ties or to increase one’s social capital, in BOSMs
and Steemit in particular interactions can have an economic
implication [25]. Clearly, the introduction of the economic
aspect in the scenario of OSNs may have a set of repercussions
and can force the social and non-social interactions among
users that would have ignored each other otherwise.

With the aim to show that the social interactions are highly
influenced on BOSMs, we extract the interactions graph,
taking Steem as case study. Interactions graph are made such
that the nodes represent the users on Steem, and the edges rep-
resent the interactions among them. Interactions in the Steem
blockchain are stored in the form of transactions, therefore we
need to parse the relevant transactions to extract how people
interact with each other. We extracted 5 different graphs,
explained in detail in Section IV. To prove our hypothesis, we
applied two state-of-art algorithms for community detection.
The choice fell on Label Propagation [13], [26] and Louvain
Method [12], [27] because they are largely known and applied.
The choice was also partially driven by the fact that the graphs
we are dealing with contain millions of nodes and hundreds
of millions of edges, making unfeasible to apply algorithms
with high time and space complexity. The application of
the community detection algorithms will return a community
structure, one for each algorithm used. Considering the nature
of the graph, the community structures can be seen as sets of
users which represent meaningful interaction groups.

IV. DATASET

The dataset considered for this analysis contains the blocks
included in the Steem blockchain starting from the block at
height 10.000.000, produced on the 8th of March 2017 at
17:34:21, up to block at height 29.059.999, produced on the 1st
of January 2019 at 00:40:27. Data is organised in JSON objects
for ease of use. From the blocks we extracted the interactions



Graph #nodes #edges
Interactions Graph 1.244.889  191.205.168
Monetary Interactions Graph 1.074.722 4.204.473
Social Interactions Graph 1.230.568  187.953.267
Social no bot Interactions Graph  1.230.554  182.884.418
Follower-Following Graph 1.223.473 98.092.374

TABLET
NUMBER OF NODES AND EDGES OF THE 5 GRAPHS CONSIDERED.

among the users with which we were able to build 5 graphs.
The size of the graphs in terms of nodes and edges is shown
in Table L.

In the graphs node represent users and edges represent
interactions among them in the form of transactions present
in the blockchain. In detail, the graphs are built according to
the following rationale:

o The Interactions Graph is built using all the transactions
available in the dataset.

o The Monetary Interactions Graph is built using only
the transactions that belong to the Monetary category.

o The Social Interactions Graph is built using only the
transactions that belong to the Social category.

« The Social no bot Interactions Graph is a subgraph of
the Social Interactions Graph where the most influential
bots detected through in-degree centrality are removed.

o The Follower-Following Graph is built using only trans-
actions that express the intention to ’follow” another user
(similarly to Twitter or Instagram).

As shown in Table I, the graphs have a similar number of
nodes, meaning that almost all are involved in at least a social
and a monetary transaction. It is however interesting to notice
how the Follower-Following graph contains approximately half
the edges of the Interactions Graph, sign that a lot of interac-
tions happen also outside this kind of expressed relationships.
Additionally, the Monetary Interaction Graph contains only
4 million edges, which hints that the economic side of the
platform is highly underdeveloped and underused with respect
to the social counterpart. This is a somewhat unexpected effect,
considering that the economic side of Steemit is what makes
it unique with respect to other well-known OSN platforms.

V. EXPERIMENTAL RESULTS

In this Section, we summarise the most relevant findings
detected by the application of the Label Propagation and
Louvain Method for community detection on the five graphs
introduced in Section IV. For the analyses we made use of
Networkit, a powerful tool for managing large networks [28].
In particular, we applied the parallel implementations of Label
Propagation [26] and Louvain Method [27].

A. Interaction Graph

Table II describes the community structure detected by
Label Propagation and Louvain Method in the Interactions

LabProp Louvain
#communities 2 44
min community size 2 1
max community size 1.24489 06 775,319
avg community size 622,444 28,292.9
modularity 3491 e708 3749 ¢~ 01
density (graph) 2217 e~ 04
intra-cluster density ~ 2.217 e~ 0%  3.089 e~04
conductance 2.140 97 8363 ¢ 01

TABLE IT

COMMUNITY STRUCTURE ON THE INTERACTIONS GRAPH
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Fig. 1. Witness recap in the 12 largest communities (Louvain) of the
Interactions Graph

Graph. The community structure detected by Label Propa-
gation is made of solely 2 communities, of which one of
them contains just two nodes, and the other contains all the
remaining nodes. The detected community structure hardly
has any significance because almost all the nodes belong to
the same community, and this lack of community structure is
also identified by the values of modularity, intra-cluster density
and conductance. On the other hand, the community structure
detected by the Louvain Method is able to partition the graph
in a much more meaningful structure. Indeed, there are 44
identified communities, where the smallest one contains just
one node and the largest contains more than half of the nodes.
The intra-cluster density, although still low, is higher with
respect to the graph density. The modularity score of 0.37 is
higher with respect to the one obtained by Label Propagation,
meaning that the community structure has a modular structure.
The conductance score of 0.83 shows that the communities are
very well separated from each other.

Considering the high modularity and the very low con-
ductance scores obtained by the community structure, we
decide to delve deeper in the community structure detected
by Louvain Method. In particular, we decided to inspect
the identity of the nodes inside the communities and check
how many witness nodes are present in each community.
The number of witnesses in each community is shown in
Figure 1. We only show the top 12 communities sorted by the



LabProp Louvain
#communities 51 189
min community size 2 1
max community size  1.03981 e06 756,312
avg community size 21,073 5,686.36
modularity 4.196 e792 4,648 ¢ 01
density 6.595 ¢~ 06
intra-cluster density  6.985 e~ 06  8.964 ¢~06
conductance 1469  7.152 =01

TABLE TIT

COMMUNITY STRUCTURE ON THE MONETARY INTERACTIONS GRAPH

number of nodes in the community. The Figure shows that two
communities, namely the second largest community and the
fifth largest community, have a much higher concentration of
witness users in them, if compared to the other communities.
We find that just these two communities host 55 witnesses,
which are more than half, which may hint the presence of two
“factions” of witnesses which ultimately brought to the Hive
hard fork in early 2020. The Figure additionally shows that
the witnesses are unevenly distributed among the communities,
indeed in the largest community, only a few of them are
present.

B. Monetary Interactions Graph

Table III describes the community structure detected by
Label Propagation and Louvain Method in the Monetary
Interactions Graph. With respect to the Interactions graph,
the two community detection algorithms are able to detect
a much more articulated structure in this graph, despite the
fact that the graph contains less nodes and much less edges.
Label Propagation detected a set of 51 communities, with
sizes ranging from 2 nodes for the smallest community and
over 1 million nodes for the largest community. The con-
ductance score of the community structure detected by Label
Propagation is relatively low, which underlines the fact that
communities are well separated. This result is partly confirmed
by the modularity score, which is not as close to 0 as in the
case of the Interactions Graph. Overall, the modularity is quite
low, hinting to the fact that communities are well separated but
poorly knitted. This fact is confirmed by the value of inter-
cluster density which is only marginally higher with respect
to the whole graph. The community structure detected by
the Louvain method is made up of 189 communities with
sizes ranging from 1 and 750,000 nodes. Also in this case
the chosen measures for community quality evaluations are
better for the community structure detected by the Louvain
Method. While the intra-cluster density is only marginally
higher, the conductance is less than half, which suggests
that the community are better separated each other and more
dense. The modularity score, which is higher by an order of
magnitude, confirms an overall better community structure,
made of several independent modules.

Considering their important role, and their dedication to
the economic side of the platform, we inspect the presence
of witnesses in the largest communities of the Monetary
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Fig. 2. Witness recap in the 12 largest communities (Louvain) of the Monetary
Interactions Graph

LabProp Louvain
#communities 3 31
min community size 2 2
max community size 1.230 Y6 560,373
avg community size 410,189 39,695.7
modularity 9.453 =06 3614 ¢~ 01
density 2.235 ¢~ 04
intra-cluster density  2.235 e=94  4.809 ¢—04
conductance 5357 €% 7.152 ¢ 01

TABLE TV

COMMUNITY STRUCTURE ON THE SOCIAL INTERACTIONS GRAPH

Interactions Graph. We only focus on the community structure
detected by the Louvain Method because the community
structure returned by this algorithm was proven to be better
according to modularity, intra-cluster density and conductance.
The number of witness accounts per community in the 12
largest communities is shown in Figure 2. Contrarily to what
we observed in the Interactions Graph, in the Monetary
Interactions Graph, over half of the witnesses gathered in a
single community: the second in terms of number of nodes.
One of the possible motivations why we do not observe the
same phenomenon in this case is clearly related to the fact that
the economic side of the platform is still quite underdeveloped
and only few accounts have a relevant economic activity on
the platform. Witness nodes are more active in this aspect due
to the fact that they have access to block producing rewards,
as part of their dedication to the network.

C. The social graphs

Table IV describes the community structure detected by
Label Propagation and Louvain Method in the Social Inter-
actions Graph. The community structure identified by the
two algorithms is more similar to the one detected in the
Interactions Graph with respect to the one detected in the
Monetary Interactions Graph. Label Propagation detected only
three communities, one of which contains the vast majority
of the nodes of the graph. The poorness of this community



LabProp Louvain
#communities 17,697 17,715
min community size 2 1
max community size 1.212 Y6 492,924
avg community size 69.5 69.4
modularity 1.130 e7 96 3,667 ¢~ 01
density 2.173 704
intra-cluster density 2237 e~ 04 4448 ¢—04
conductance 9.916 %1 1.179 ¢=03

TABLE V

COMMUNITY STRUCTURE ON THE SOCIAL NO BOT INTERACTIONS GRAPH

structure is also confirmed by the scores achieved in the
quality measures considered. Indeed, modularity is very low,
intra-cluster density is equal to the whole graph density, and
conductance is extremely high. The Louvain Method detects a
community structure made of 31 communities, and the com-
munities size range from 2 to 560.000 nodes. Concerning the
quality of the community structure detected, we acknowledge
that the modularity score, although slightly lower than the
community structure detected in the Interaction Graph, is still
sign of a good community structure. Additionally, we see that
the intra-cluster density is more than double of the density of
the who graph, while the conductance is lower than 1.

Table V describes the community structure detected by
Label Propagation and Louvain Method in the Social no bot
Interactions Graph. In this graph, both algorithms are able
to find a very complex community structure with more than
17,000 communities each, however the structures detected are
very different. Indeed, once again Label Propagation groups
the largest part of the nodes in the same community and, even
though it is not a partition algorithm, the remaining nodes
form very small communities. The scores of the community
structure evaluation measures are better with respect to the
Social Interactions Graph, but in particular the low modularity
and the fact that the intra-cluster density is very similar to the
graph density, denote a poor community quality overall. While
at a first glance the community structure obtain via the Louvain
Method may seem the same, it is indeed very different. Indeed,
the communities are made of up to 492,924 nodes, which is
the lowest maximum size for a community in our analyses.
The community structure evaluation measures tell us that that
the structure is slightly worse than the one detected by the
same algorithm in the Social Interactions Graph, save for the
conductance which is instead two orders of magnitude less.
The big differences concerning the community structures that
we see in Tables IV and V show us the importance of bots
an in particular how much they are invasive in the platform.
Indeed, by just removing a small set of the most influential
bots of the platform, the number of communities exploded,
the structure became more fragmented. To confirm this fact,
we observe that the conductance and intra-cluster values for
both community structures dropped sensibly, meaning that
communities are much better separated thanks to the removal
of few nodes.

Lastly Table VI describes the community structure detected

LabProp Louvain
#communities 69,970 69,957
min community size 2 1
max community size 1.153 Y6 707,999
avg community size 17.485 17.488
modularity 1.659 e=95 3739 ¢—01
density 1.310 =04
intra-cluster density = 1.474 ¢=0% 2,033 ¢~ 04
conductance 1.274  4.145 =04

TABLE VI

COMMUNITY STRUCTURE ON THE FOLLOWER-FOLLOWING GRAPH

by Label Propagation and Louvain Method in the Follower-
Following Graph. The community structure in this case is even
more complex as in both cases we see that the number of
communities is more than 69.000, the highest in all graphs.
Despite the very large number of communities, for both
algorithms the largest community contains the majority of
the nodes of the graph. In the case of Label Propagation,
the modularity score indicates that the community structure
is poor, and the result is confirmed by a low intra-cluster
density. However, the conductance of this community structure
is the lowest among the community structures detected by
Label Propagation in all the graphs. The structure detected
by Louvain Method in this graph is modular as confirmed by
the modularity score. The intra-cluster density score is only
marginally higher with respect to the graph density, but the
low conductance suggests that the community are very well
separated from each other.

In these three social graphs, we can observe the overall im-
pact of the rewarding system on the social interactions among
the users. The very small number of communities, especially
in the Social Interactions Graph, and the fact that in most cases
the largest community contains all the nodes of the graphs, is a
clear hint that people are highly encouraged to interact socially
with other users because of the potential rewards. This effect
is most emphasised in the Social Interaction Graph, where
the community structure has the lowest scores and bots are
included in the graph, possibly hinting the impact of the bots
on the platform.

VI. CONCLUSION

In this paper we studied the community structure obtained
from five graphs obtained by the interactions of users on the
Steem blockchain. Steem is the main blockchain used for
social applications, with more than 1.5 million users at the
time of writing this paper. Our paper considered 5 different
aspects of the platform, which let to the creation of just as
many graphs. Thanks to the toolkit provided by Networkit,
we were able to extract two community structures for each
graph and evaluate them using three measures to assess their
quality.

Results highlight that the community structure detected
by Label Propagation often tends to return one community
which contains almost all the nodes of the graph, and many
smaller communities. On the other hand, as demonstrated by



the community structure evaluation measures adopted in our
methodology, Louvain Method is able to find a more mean-
ingful community structure. We also detected than witnesses,
so are called the block producers, are mostly in the same
communities, clearly indicating, especially from an economic
point of view, that there is a “caste” of rich users on Steem.
From a social point of view, we detect that people tend to
create large aggregated communities, mainly because of the
activity of the bots.

As future works we plan to deepen our understanding of the
economic aspect of the platform, in particular understanding if
the phenomenon of the Pareto principle (rich get richer) holds
on Steem as well. Furthermore, we plan to enrich the dataset,
by collecting the fist months of Steem, and the latest ones, in
order to understand how the community structure is evolved
over time. Additionally, we will shed light on other social
phenomena that have been observed in other social networks,
such as the presence of the so-called Dunbar Circles, and
investigate the communication among users through temporal
motifs.
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