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Abstract—The Internet of Energy (IoE) is a distributed
paradigm that leverages smart networks and distributed system
technologies to enable decentralized energy systems. In contrast
to the traditional centralized energy systems, distributed Energy
Internet systems comprise multiple components and communica-
tion requirements that demand innovative technologies for decen-
tralization, reliability, efficiency, and security. Recent advances in
blockchain architectures, smart contracts, and distributed feder-
ated learning technologies have opened up new opportunities for
realizing decentralized Energy Internet services. In this paper,
we present a comprehensive analysis and classification of state-
of-the-art solutions that employ blockchain, smart contracts, and
federated learning for the IoE domains. Specifically, we identify
four representative system models and discuss their key aspects.
These models demonstrate the diverse ways in which blockchain,
smart contracts, and federated learning can be integrated to
support the main domains of IoE, namely distributed energy
trading and sharing, smart microgrid energy networks, and elec-
tric and connected vehicle management. Furthermore, we provide
a detailed comparison of the different levels of decentralization,
the advantages of federated learning, and the benefits of using
blockchain for the IoE systems. Additionally, we identify open
issues and areas for future research for integrating federated
learning and blockchain in the Internet of Energy domains.

Index Terms—Internet of Energy, Federated Learning,
Blockchain, Energy trading, Smart microgrids

I. INTRODUCTION

The Internet of Energy, also known as the Energy Internet,
is a cutting-edge distributed approach that merges smart net-
works and internet technology [1], [2]. Unlike conventional
centralized energy systems, Energy Internet systems are com-
posed of multiple components with varying communication re-
quirements, necessitating innovative technologies to guarantee
dependability, efficiency, and security [3]. Decentralized tech-
nologies such as blockchain, smart contracts, and distributed
federated learning present promising prospects for enhancing
Energy Internet systems.

In this study, we identify and examine three primary do-
mains of the Internet of Energy systems, namely: (i) Dis-
tributed energy trading and sharing, (ii) Smart microgrid
energy networks, and (iii) Electric and connected vehicle
management.

Distributed Energy Trading and Sharing (DETS): refers
to the exchange of energy between individuals or organizations
using distributed energy resources, such as solar panels, battery
storage systems, and wind turbines. This type of trading and

sharing allows for the decentralized generation and distribu-
tion of energy, enabling participants to buy and sell excess
energy generated from their own renewable energy systems
[4]. Trading typically occurs in exchange for payment, while
sharing is done in exchange for future benefits [5].

Smart microgrid energy networks (SMEN): A smart
microgrid is a small-scale energy network that integrates
renewable energy sources, such as solar and wind power, with
traditional sources of electricity. It utilizes advanced control
systems and technologies, such as smart meters and energy
storage systems, to optimize energy generation, distribution,
and consumption in a more efficient and sustainable way [6].
We consider energy trading and sharing systems that involve
inter-microgrid operations as falling under this domain. There
exist studies on energy trading systems in microgrids, such as
[7] where a novel system has been proposed to decentralize
the electricity transaction mode of microgrids. The proposed
system relies mainly on blockchain and continuous double
action.

Electric and connected vehicle management (ECVM):
This domain of IoE refers to the use of advanced technologies
and techniques to optimize the operation and performance
of electric vehicles (EVs) and connected vehicles (CVs) in
the transportation sector. This domain can be divided into
three main aspects: energy flow, data communication, and
computation [8].

Decentralized technologies such as novel blockchain archi-
tectures, smart contracts, and distributed federated learning
offer opportunities for designing Energy Internet systems.
In this study, one of the main contributions is analyzing
and classifying the state-of-the-art solutions utilizing these
technologies for the IoE domains. By means of the analysis,
we identified the representative system models of the existing
solutions. In the following paragraphs, we briefly describe the
key terms related to the system models.

Flat Blockchains: Blockchain is a decentralized and dis-
tributed ledger technology that allows for the permanent stor-
age of data. Its initial utilization was for the purpose of signing
and timestamping documents [9]. Subsequently, blockchain
was proposed as the foundation of Bitcoin, a peer-to-peer cash
system [10]. However, blockchain technology is not limited
to financial applications, and researchers have explored its
potential in diverse domains, such as health [11] and supply
chain management [12]. In [13], the researchers developed
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a smart grid power trading system that leveraged blockchain
technology. Similarly, a framework for decentralized electric
vehicle charging was proposed in [14], which utilized a
permissioned blockchain as the underlying infrastructure. We
refer to the traditional (non-hierarchical) blockchain architec-
tures as flat blockchains.

Hierarchical Blockchains: Hierarchical blockchains have
been introduced to solve the scalability problem in large-
scale networks. In such blockchains, the nodes are organized
into levels. Each level can be a blockchain accessed by
different nodes with different functionalities. For instance, in
the system of [15], local transactions were stored in multiple
local blockchains lying at a specific level. At the upper level,
there is a separate blockchain responsible for storing partial
views of the local blockchain at the lower level. There exists
another structure of hierarchical blockchains in [16] that is
called a hybrid blockchain. The structure had permissioned
blockchain accessible by Road-Side Units, and local Directed
Acyclic Graphs accessed by vehicles. We call such systems
hierarchical blockchains since the permissioned blockchain
and local DAGs can be considered as levels in a hierarchical
manner.

Smart Contracts: A smart contract is a type of computer
code that runs over blockchain and can automatically enforce
the terms of an agreement. It is designed to be self-executing,
self-verifying, and secure against tampering [17]. This allows
for the automation of digital contracts, which can help to
streamline processes and reduce the need for intermediaries.
Usage of smart contracts varies widely. A well-known applica-
tion of smart contracts is the creation of Non-Fungible Tokens
(NFTs). Smart contracts have been also been used [18] to
develop an adaptive model for prosumer grouping in peer-to-
peer energy trading systems, where the grouping process is
handled by a smart contract.

Federated Learning: In federated learning (FL), a central
server initializes and distributes a machine-learning model
to multiple devices, and they train the model on their own
data. These devices send back their updated model parameters
to the central server, which combines these updates and
sends a new version of the model back to the devices. This
process continues until the model achieves convergence, at
which point the final version of the model is returned to
the central server [19]. As stated in [20], there are different
types of federated learning, including Horizontal FL, Vertical
FL, Federated Transfer Learning, Cross-Silo FL, and Cross-
Device FL. Federated learning has applications in various
fields, such as healthcare, transportation, finance, and wireless
communications [20], [21]. In addition, researchers have also
utilized federated learning in the Internet of Energy field [5].

The contributions of this study are as follows:
• We conducted a thorough analysis of the current state-

of-the-art solutions that integrate blockchain, smart con-
tracts, and federated learning principles in the primary
domains of Internet of Energy systems. Our study is
the first, to the best of our knowledge, to perform such
an analysis and classification in the Internet of Energy

domains. Researchers in [22], [23] conducted reviews of
the use of blockchain in the Internet of Energy field,
but did not consider the use of federated learning. In
[24], both federated learning and blockchain were con-
sidered, but within the scope of the Internet of Vehicles
and without providing representative system models. In
[25], a classification of blockchain-enabled energy trading
systems into three models was proposed, but they focused
solely on blockchain-enabled systems, particularly energy
trading systems. In [26], a general overview of the
integration of blockchain with federated learning was
presented, while also identifying some issues. In the
work [27], researchers presented their efforts to integrate
blockchain and federated learning, building upon previ-
ous works that incorporated both techniques. However,
their primary focus was on federated learning and did
not specifically address the use of these technologies in
the context of the Internet of Energy. Additionally, they
did not extract representative models. Table I provides a
comparison of our work with the related works.

• Based on the analysis and classification of the solutions
and the consideration of the blockchain architecture and
aggregation approach, we have identified four representa-
tive system models that demonstrate the potential for inte-
grating blockchain and federated learning technologies in
the Internet of Energy. These system models can provide
a useful guideline for future research in this domain.

• We have defined four levels of decentralization and
have subsequently mapped them to the extracted system
models.

• One of the system models, Federated Learning Hierarchi-
cal Blockchain-based Systems with Decentralized Aggre-
gation, has the potential to offer improved scalability and
reduced latency compared to the other system models.
This is mainly due to its hierarchical structure and lack
of a single point of failure.

• We have discussed several open issues and potential
areas for future research and development in the use of
federated learning and blockchain-based systems in the
Internet of Energy domain.

The paper is organized as follows. Section II offers an
overview of the representative systems models of the state-
of-the-art solutions. Sections III and IV provide a detailed
description of the four system models and a comprehensive
discussion of the solutions mapped to each system model. In
Section V, a comparison of the system models and key findings
are presented. Finally, Section VI identifies open issues and
future research directions.

II. CLASSIFICATION AND OVERVIEW OF THE
SYSTEM MODELS

With a focus on the utilization of both blockchain and
federated learning in the Internet of Energy field, we iden-
tify four main system models by considering the type of
blockchain and the aggregation model. Figures 1 and 2 show
an illustration of the flat (non-hierarchical) blockchain and FL



TABLE I: Comparison with related works

Ref Blockchain
Federated
Learning

Internet of
Energy

Extracted
System
Models

[22] ✓ X Partially X
[23] ✓ X ✓ X
[24] ✓ ✓ Partially X
[25] ✓ X Partially ✓
[26] ✓ ✓ X X
[27] ✓ ✓ Partially X
Ours ✓ ✓ ✓ ✓

system models, and the hierarchical blockchain and FL system
models respectively.

Entities in these systems depend on the domain in which the
system model was found. Distributed energy trading and shar-
ing domain has consumers, prosumers, utility grids, stations,
and servers as entities. While consumers use energy, prosumers
both produce and consume energy. In the smart microgrid
energy networks domain, smart grids, in addition to the entities
in Distributed energy trading and sharing domain, are part
of the system. Finally, Unmanned Aerial Vehicles (UAVs),
Unmanned Ground Vehicles (UGVs), along with standard
vehicles, Road Side Units (RSUs), Charging Stations, Fogs,
and Servers are the key entities in the Electric and connected
vehicle management domain.

It is important to state that in most cases, not all entities
can do all the available operations. In addition, only the smart
contracts in a blockchain can be used; while in some works,
the smart contract and the consensus protocol are utilized. In
some models federated learning is not handled by the peer
itself, but by another entity with computation power. For that
reason, the symbol of federated learning ( ) is separated
from the entities.

Figure 1b shows the first system model, Federated Learn-
ing and Flat Blockchain-based Systems with Centralized
Aggregation (FLB-CA). In this model, entities can send the
trained parameters to the aggregation server directly and then
the aggregation server performs aggregation and stores the
global model on the blockchain. Another possible way is that
the entities upload local models to the blockchain, and then
the server reads local models from the blockchain, aggregates,
and writes the global model to the blockchain again. The
initialization of the model is done by the server, as well as by
writing it to the blockchain or broadcasting it to the related
entities.

Figure 1b depicts the second system model, Federated
Learning and Flat Blockchain-based Systems with De-
centralized Aggregation (FLB-DA). In this model, there is
no centralized server, thus the parameters are written to the
blockchain by entities. Thanks to the smart contracts that run
over the blockchain, some entities, or all of them in some
cases, have the ability to perform the aggregation. The smart
contract, upon being called by an entity, aggregates, and stores
the global model in the blockchain. Initializing the model can
be done by one of the entities or by an outside request.

(a)

(b)

Fig. 1: Flat Blockchain and Federated Learning-Based Models
in the Internet of Energy: (a) Federated Learning and Flat
Blockchain-based Systems with Centralized Aggregation, (b)
Federated Learning and Flat Blockchain-based Systems with
Decentralized Aggregation. In (a), the entities either send local
models to the server for aggregation or they write them to the
blockchain where the server can access them. In (b), entities
might request for aggregating the model, or the aggregation
will be done automatically by the smart contract.

The third system model, Federated Learning and Hier-
archical Blockchain-based Systems with Centralized Ag-
gregation (FLHB-CA), is illustrated in Figure 2a. In this
system model, there is a centralized server that reads local
models from the first (lower) level of the blockchain, does
global aggregation, and updates the global model in the second
(upper) level of the blockchain. Entities read the global model
from the upper level of the blockchain, do training using the
local data, then upload the parameters to the first level of the
blockchain. Some entities can do local aggregations at the first
level by calling a function from a smart contract. However, the
final aggregation can be done by the server only as mentioned
earlier.

Federated Learning and Hierarchical Blockchain-based
Systems with Decentralized Aggregation (FLHB-DA) is the
fourth extracted model as shown in Figure 2b. The difference



from the third model (FLHB-CA) is that the centralized server
does not exist here. Global aggregation is done on the second
level of the blockchain thanks to smart contracts where some
entities can make a request to do the global aggregation.

The first level of the hierarchical blockchain in Figures 2a
and 2b can be separate blockchains as in [28], local DAGs
[16], or micro blocks [29] at specific entities, all of which
are used for the same purpose, storing the local models or
locally aggregated models in most of the works. The second
level is a separate single blockchain, in the solutions of this
category, which stores the aggregated global model. In the next
two chapters, details of these system models, and the existing
solutions that fall into each, are provided.

III. FLAT BLOCKCHAIN WITH FL

In the category of flat blockchain with federated learning,
there exist two systems models, namely with centralized
aggregation and with decentralized aggregation. Table II shows
the solutions [5], [30], [31], [32], [33], and [34], which those
two models have been extracted from with the following
information about each one of them: the aggregation type,
level of decentralization, and whether the developed system
operates only by using smart contracts or not. The definitions
of decentralization levels are given in Section V.

A. Federated Learning and Flat Blockchain-based Systems
with Centralized Aggregation (FLB-CA)

In such systems, a flat blockchain is used and a centralized
server initializes the global model, asks for training it, and
then does the aggregations to update the global model as
illustrated in Fig. 1(a). The global model can be read by peers
but cannot be updated by them. The updates are limited to the
server. Since there is a single server to do the aggregation, it
is a bottleneck in the system. If the server went down or got
attacked, the whole system would malfunction. The solutions
that are based on this system model ( [30], [31], and [34])
have the following characteristics.

In [30], the authors aimed to solve the insecurity and trust-
worthiness problems in the energy sector by using blockchain
and federated learning for energy trading. The entities in
their system were prosumers and consumers as peers, stations
with computational power to run federated learning tasks,
and a server to do the aggregation and initialize the model.
Energy requests can be done by multiple nodes at the same
time and each request is decomposed and a corresponding
delivery plan is made by an AI model trained using federated
learning. Federated learning was used to increase privacy by
making peers not share raw data with the centralized server.
In addition, the federated learning approach led to a higher
delivery rate since the amount of data, the trained parameters,
to be shared is less. The blockchain was used to save the
transactions, and store peers’ devices’ capabilities. Moreover,
the trained model is stored in the blockchain to be used
later for speeding up the training process. They tested the
model using 1000 nodes and three stations, then compared the

(a)

(b)

Fig. 2: Hierarchical Blockchain and Federated Learning-Based
Models in Internet of Energy (a) Federated Learning and Hi-
erarchical Blockchain-based Systems with Centralized Aggre-
gation, (b) Federated Learning and Hierarchical Blockchain-
based System with Decentralized Aggregation. Local aggrega-
tion requests might be done by entities in (a) and (b). In (b),
global aggregation requests might exist.

model with non-federated learning models, namely vehicle-
to-vehicle, vehicle-to-infrastructure, and vehicle-to-everything.
The results show a higher delivery rate and minimal power
consumption.

The study in [31] used blockchain and federated learning to
ensure network security and data privacy while training models



in a vehicular network. A global model gets trained on the
local data in the vehicles where the parameters get transferred
to a server. The server passes the parameters trained on
critical vehicles (e.g. ambulances, police cars, firefighting cars)
through the blockchain to make sure that the critical vehicle is
authentic. Parameters trained on the normal vehicles are passed
by the server directly to fog. The fog does the aggregation
using the directly passed parameters and the parameters that
passed the blockchain and updates the global model. The usage
of blockchain in this case was for increasing the privacy of
critical vehicles. The idea of not passing all nodes through the
blockchain reduced the latency. The system was tested on up to
100 vehicles with the MNIST dataset. The tools for simulation
were MATLAB/Simulink, Contiki as an operating system, and
Erlang nodes to represent the vehicles and the server. We can
notice here that the training is handled by the peers themselves,
while in [30], the training was done on stations.

In the work [34], the researchers aimed at providing contin-
uous service to end devices using UAVs and UGVs. The struc-
ture they used is very similar to the one in [31] where training
is done on the peers, then instead of using a server to decide
whether to pass the parameters through blockchain or not, a
group leader is chosen. The group leader decides whether the
data is sensitive and if so, passes it through the blockchain. If
the data are not sensitive, it is then passed directly to the fog
which performs the aggregation and updates the global model.
The trained model aims to provide continuous service to end
devices while considering the power availability of the UAVs.

B. Federated Learning and Flat Blockchain-based Systems
with Decentralized Aggregation (FLB-DA)

This model is utilized by the solutions in [5], [32], and
[33] where the flat blockchain is used. The difference is in
the aggregation approach. While in the first model, a server
was used for the aggregation, in this model the aggregation
is done in a decentralized way thanks to the blockchain. Any
peer or peers with specific privileges can do the aggregation
by means of smart contracts, which aggregate the parameters
and update the global model as well. This system model is
represented in Fig. 1(b).

In [5], an autonomous energy trading and sharing system
inside and across microgrids, FederatedGrids, was proposed.
In this system, energy sharing is trading but for future benefits
instead of payments, and the proposed platform has con-
sumers, prosumers, microgrids, and utility grids as entities.
The platform uses flat blockchain together with federated
learning. The blockchain supports payment, stores transac-
tions, the global model, and information about entities, and
hosts smart contracts. Smart contracts have many operations,
and the most important ones are the prediction of energy
production and demand in addition to the aggregation process.
As a result, there is no server to do the aggregation and
it can be done by any peer. For the evaluation, the Hourly
Energy Consumption dataset was used and according to the
obtained results, around 18% improvement in cost for the

energy consumers and 76% improvement in load over utility
grids were achieved.

The work in [32] is similar to [5] considering the flat
blockchain usage and handling the aggregations. The aim is
to make secure and invulnerable traditional federated learning
systems for the networks of connected and autonomous vehi-
cles. Instead of sharing raw data, federated learning was used
to share a trained model on the local data. The researchers
coded a consortium (permissioned) blockchain and modified
the consensus protocol to fit their needs. The blockchain plays
a role in increasing security by being a consortium blockchain
in addition to the usage of its consensus protocol. Data about
the models are stored over the blockchain as well. Instead of
storing the whole model on the blockchain, which might be
huge, it was uploaded to an InterPlanetary File System (IPFS)
and only the model hash was stored over the blockchain. The
proposed system also supports sharing raw data when needed,
like exact location, and it was done by uploading the data to
IPFS and sharing the hash only over the blockchain.

In [33], a charging station recommendation system was
proposed. Federated learning was used to train the model
without sharing raw data. Aggregation is handled by several
cloudlets and those validator cloudlets are validated through
a consortium blockchain. The blockchain also stores the
trained parameters. Likewise, in this work, there is no single
aggregator. However, the aggregation was not handled by the
blockchain, i.e. smart contract, but it was done within the
cloudlets.

IV. HIERARCHICAL BLOCKCHAIN WITH FL

These models utilize hierarchical blockchain with federated
learning. Two different aggregation methods, centralized and
decentralized, are used. In Table II, solutions in this category
( [16], [28], and [29]) are summarized as well.

A. Federated Learning and Hierarchical Blockchain-based
Systems with Centralized Aggregation (FLHB-CA)

A centralized aggregator with a hierarchical blockchain is
utilized in this system model. In [16], a hierarchical structure
consisting of permissioned blockchain used by Roadside Units
(RSUs) and local Directed Acyclic Graphs (DAGs) used by
vehicles was proposed. The DAG can be seen as the first level
of the hierarchy, while the permissioned blockchain represents
the upper level. Local aggregation is done between nearby
vehicles, then global aggregation by RSUs. Final aggregation
and model update are done by a server, which also initializes
the model. The blockchain plays a role in storing the local
models and global ones in addition to functioning as an
authorization step since it is permissioned. A depiction of this
model is given in Fig. 2(a).

B. Federated Learning and Hierarchical Blockchain-based
Systems with Decentralized Aggregation (FLHB-DA)

A hierarchical blockchain is used in this system model along
with decentralized aggregation as illustrated in Fig. 2(b). In
[28], a blockchain and federated learning-based system was



TABLE II: Summary of the state-of-the-art solutions mapped to the extracted system models

System
Model Ref Blockchain

Type
Aggregation
Type Domain Decentralization

Level

FLB-CA
[30]

Flat
Blockchain

Centralized
Aggregation

DETS Medium
[31] ECVM Medium
[34] ECVM Medium

FLB-DA
[5] Decentralized

Aggregation

SMEN Extreme
[32] ECVM Extreme
[33] ECVM High

FLHB-CA [16]
Hierarchical
Blockchain

Centralized
Aggregation ECVM High

FLHB-DA [28] Decentralized
Aggregation

ECVM High
[29] ECVM High

proposed for knowledge sharing between vehicles while main-
taining privacy and security. The blockchain is hierarchical
where the system has a top-chain level with one blockchain
and multiple ground chains. Vehicles collect data and train a
machine learning model, then send the trained parameters to an
RSU which does local aggregation and stores the aggregated
parameters in its ground chain. Multiple ground chains exist
in different places and from each chain, a leader RSU is
selected to transfer the locally aggregated parameters to the
top chain. In the top chain, aggregating the parameters from
different ground chains is done and the model is updated. After
that, models in ground chains are updated using the global
model. The evaluation was done using 5 roadside units and
6 vehicles along with MNIST and CIFAR10 datasets. About
10% enhancement in accuracy was observed in comparison to
the traditional federated learning model.

A system for message dissemination in vehicular networks
was developed in [29]. A hierarchical blockchain with feder-
ated learning was used in the proposed system. The purpose
of using federated learning was to prevent the need for a
central server to do the training. The blockchain was used
to store local and global models. Smart contracts were used
to do security checks along with aggregating the parame-
ters. Finally, the consensus protocol of the blockchain was
modified to ensure choosing the next relay and disseminate
the message. The trained model’s purpose is multi-hop relay
selection. According to the researcher, the purpose of using
a hierarchical blockchain instead of a flat one is that the
hierarchical blockchain can deal with the forking problem that
could happen when a vehicle is offline. That is why each
vehicle stores its locally trained parameters in a microblock,
where we can consider the microblock as the first level in the
hierarchical blockchain. When a vehicle gets near an RSU,
the RSU reads the local models, does global aggregation, and
updates the global model in the main blockchain, the second
level in the hierarchy.

V. COMPARISON AND KEY FINDINGS

The Internet of Energy domains observed in the solutions
that fall into the first system model (FLB-CA) are Distributed
energy trading and sharing, and Electric and connected vehicle
management. Solutions based on the second system model
(FLB-DA) are proposed for the domains of Smart microgrid

energy networks and Electric and connected vehicle manage-
ment. For the third (FLHB-CA) and fourth (FLHB-DA) system
models, the solutions in these categories are proposed for the
Electric and connected vehicle management domain.

The system models discussed in this paper have utilized
blockchain technology for various purposes, including but not
limited to:

• Storing data is the most basic and straightforward usage
of blockchain technology. It can involve storing various
types of data, including information about the peers,
transactions between the peers, or the trained models.

• Enabling peer-to-peer operations: such as energy re-
quests, data sharing, and payments through the
blockchain.

• Replacing the centralized aggregator with smart contracts,
which has been demonstrated in some of the system
models.

• Authorizing requests, which can be facilitated through
permissioned or private blockchains.

• Enhancing privacy, since blockchain operations are
anonymous.

• Validating input, particularly the trained model, through
the consensus protocol of the blockchain.

For the blockchain technology aspects, we observe two
types of usage as follows:

• Smart Contracts-based systems: All of the operations
are handled by smart contracts. For example, [5] al-
lows energy trading/sharing requests and prediction of
future consumption of energy over smart contracts. Since
smart contracts run over the blockchain, the system is
blockchain-based, but we refer to that as smart-contract-
based to distinguish it from the second type.

• Blockchain-based Systems: Some researchers used not
only smart contracts, but the blockchain itself as a func-
tion in the system. For example, [31] used the blockchain
to increase privacy since it has authentication. Other
researchers modified the consensus protocol, which is a
main component of a blockchain, to run some operations.
For example, [29] did validation of local data and served
requests through smart contracts, and the validation of
trained models was done through the designed consensus
protocol.



The main benefit of federated learning is providing privacy
by training a global model on local peers’ data without sharing
the data directly. Moreover, less bandwidth is required to share
the trained parameters instead of raw data, which leads to
lower latency. There is no need for a high-computing server
to perform the training in federated learning, which is another
significant advantage.

Regarding the level of decentralization, four levels of de-
centralization, namely low, medium, high, and extreme, are
identified, where the more decentralized a system, the more
complex it is. The decentralization level descriptions are as
follows:

Low: There is no peer-to-peer communication, and all
processes are centralized, i.e. no decentralization at all, which
is out of the scope of this paper.

Medium: Training of the model is decentralized but the
aggregation of the global model is centralized, which applies
to system models of Federated Learning and Flat Blockchain-
based Systems with a Centralized Aggregation and Federated
Learning and Hierarchical Blockchain-based Systems with
Centralized Aggregation.

High: Training of the model is decentralized, and the
aggregation of the global model is decentralized, but using
special nodes as noticed in system models Federated Learning
Flat Blockchain-based Systems with Decentralized Aggrega-
tion and Federated Learning Hierarchical Blockchain-based
Systems with Decentralized Aggregation.

Extreme: Training of the model is decentralized and the
aggregation of the global model is decentralized where any
peer can do it, which is also under the scope of system mod-
els Federated Learning and Flat Blockchain-based Systems
with Decentralized Aggregation and Federated Learning and
Hierarchical Blockchain-based Systems with Decentralized
Aggregation.

As mentioned before, two different usages of blockchain
were noticed. Having a system that depends only on smart
contracts is useful since it can be deployed on any network,
and it might be more secure against attacks to do so. However,
deploying smart contracts on any network has the disadvantage
of being subject to the fees of that network. Deploying on a
customized network also has advantages and disadvantages.
One advantage is the ability to modify the consensus protocol
and use it to do certain operations as we discussed before.
Another advantage is that the fees of the network would not
be affected by other factors. The disadvantages are security
aspects especially when the network is new or when modifying
the consensus protocol without making experiments to assure
its effectiveness against attacks. One possible disadvantage
could be encouraging nodes to run consensus protocol and
do validating since the network is new and its token would
not be trusted or valuable at the beginning.

VI. OPEN ISSUES AND FUTURE WORK

As a result of our analysis, we identify several open issues
and future directions for integrating blockchains and federated
learning into the Internet of Energy field. These include:

• Further research and development are needed to fully
explore the potential of blockchain and federated learning
in the fields of distributed energy trading and sharing and
smart microgrid energy networks.

• Comparing the scalability of different system models is
an important area of study. This would allow researchers
to identify the most suitable model for different applica-
tions and understand the performance of each model in
different scenarios.

• Developing a hierarchical blockchain and federated
learning-enabled platform for energy trading and sharing
is a promising area of future research. This could lead
to the creation of a new and innovative platform for
decentralized energy exchange.

• One important open issue is the decision of whether
to use a blockchain that is specifically designed for a
particular platform or to utilize smart contracts on any
blockchain, such as Ethereum [35] or LightChain [36].
Future research needs to explore this decision-making
process, as it could potentially enable researchers to
determine whether it is necessary to develop their own
blockchain or if they can simply use an existing one that
supports smart contracts for their platform.

• Cyber-attacks affect such systems more since they will
affect selling and buying energy or shared knowledge.
Protection methods and the development of secure and
upgradeable smart contracts are important areas of re-
search in this field.

• Explore the potential of DHT-based blockchains [36]–
[40] integrated with federated learning for Internet of En-
ergy systems, as no current solution has been proposed in
this area. Such a system model could provide significant
benefits for the Internet of Energy.

VII. CONCLUSION

In this paper, we have focused on the Internet of Energy and
its major domains. Key technologies relevant to the Internet
of Energy, including flat blockchains, hierarchical blockchains,
smart contracts, and distributed federated learning, have been
defined. We have presented four system models that have been
extracted from state-of-the-art solutions which have utilized
blockchain and federated learning in the context of the Internet
of Energy. These system models demonstrate potential ways
for integrating blockchain and federated learning technologies
in the various domains of the Internet of Energy.

The integration of federated learning with decentralized
aggregation in both flat and hierarchical blockchain-based
systems has been shown to achieve higher levels of de-
centralization compared to the counterparts using centralized
aggregation. The hierarchical model, with its scalable and low-
latency structure, appears to be the most favorable option
among the decentralized models. Conversely, the flat model
demonstrates lower decentralization and efficiency.
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[5] O. Bouachir, M. Aloqaily, Ö. Özkasap, and F. Ali, “Federatedgrids:
Federated learning and blockchain-assisted p2p energy sharing,” IEEE
Transactions on Green Communications and Networking, vol. 6, no. 1,
pp. 424–436, 2022.

[6] C. Cecati, G. Mokryani, A. Piccolo, and P. Siano, “An overview on the
smart grid concept,” in IECON 2010-36th Annual Conference on IEEE
Industrial Electronics Society. IEEE, 2010, pp. 3322–3327.

[7] J. Wang, Q. Wang, N. Zhou, and Y. Chi, “A novel electricity transac-
tion mode of microgrids based on blockchain and continuous double
auction,” Energies, vol. 10, no. 12, p. 1971, 2017.

[8] N. Chen, M. Wang, N. Zhang, and X. Shen, “Energy and information
management of electric vehicular network: A survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 22, no. 2, pp. 967–997, 2020.

[9] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” in
Conference on the Theory and Application of Cryptography. Springer,
1990, pp. 437–455.

[10] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Decen-
tralized Business Review, p. 21260, 2008.

[11] A. Haleem, M. Javaid, R. P. Singh, R. Suman, and S. Rab, “Blockchain
technology applications in healthcare: An overview,” International Jour-
nal of Intelligent Networks, vol. 2, pp. 130–139, 2021.

[12] M. M. Queiroz, R. Telles, and S. H. Bonilla, “Blockchain and supply
chain management integration: a systematic review of the literature,”
Supply Chain Management: An International Journal, 2019.

[13] D. Zheng, K. Deng, Y. Zhang, J. Zhao, X. Zheng, and X. Ma, “Smart grid
power trading based on consortium blockchain in internet of things,” in
Algorithms and Architectures for Parallel Processing: 18th International
Conference, ICA3PP 2018, Guangzhou, China, November 15-17, 2018,
Proceedings, Part III. Springer, 2018, pp. 453–459.

[14] Z. Su, Y. Wang, Q. Xu, M. Fei, Y.-C. Tian, and N. Zhang, “A secure
charging scheme for electric vehicles with smart communities in energy
blockchain,” IEEE Internet of Things Journal, vol. 6, no. 3, pp. 4601–
4613, 2018.

[15] S. Sahoo, A. M. Fajge, R. Halder, and A. Cortesi, “A hierarchical and
abstraction-based blockchain model,” Applied Sciences, vol. 9, no. 11,
p. 2343, 2019.

[16] Y. Lu, X. Huang, K. Zhang, S. Maharjan, and Y. Zhang, “Blockchain
empowered asynchronous federated learning for secure data sharing
in internet of vehicles,” IEEE Transactions on Vehicular Technology,
vol. 69, no. 4, pp. 4298–4311, 2020.

[17] B. K. Mohanta, S. S. Panda, and D. Jena, “An overview of smart contract
and use cases in blockchain technology,” in 2018 9th international
conference on computing, communication and networking technologies
(ICCCNT). IEEE, 2018, pp. 1–4.
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