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Abstract— Blockchain denial of service (BDoS) and selfish 

mining are the two most crucial attacks on blockchain 

technology. A classical DoS attack targets the computer network 

to limit, restrict, or stop accessing the system of authorized users  

which is ineffective against renowned cryptocurrencies like 

Bitcoin, Ethereum, etc. Unlike the conventional DoS, the BDoS 

affects the system’s mechanism design to manipulate the 

incentive structure to discourage honest miners to participate in 

the mining process. In contrast, in a selfish mining attack, the 

adversary miner keeps its discovered block private to fork the 

chain intentionally that aiming to increase the incentive of the  

adversary miner. This paper proposed a technique to 

successfully avoid BDoS and selfish mining attacks. The existing 

infrastructure of blockchain technology doesn’t need to be 

changed a lot to incorporate the proposed solution.  
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I. INTRODUCTION 

Bitcoin is a peer-to-peer electronic cash system introduced 
by Satoshi Nakamoto in 2008 [1]. It has grown into a popular 
cryptocurrency and its current market capitalization is more 
than $400B [2]. The data structure behind Bitcoin technology 
is blockchain. As Bitcoin is a public blockchain, anyone can 
join to the system anytime. Participants in the blockchain are 
called nodes and nodes who collect cryptocurrency 
transactions between clients are known as miners. Miners 
have to solve a complex mathematical cryptopuzzle to create 
a block to the blockchain successfully [3]. Every node in the 
network adds the new transactions i.e. block to get updated. A 
miner needs to spend its resources to solve a complicated 
mathematical cryptopuzzle and generate Proofs of Work 
(PoW) [4]. This work is known as mining which is very 
difficult but easily verifiable. A miner who successfully mines 
a block gets rewarded with cryptocurrency for his effort.  

Bitcoin necessitates a majority of the miners to be truthful. 
This virtual currency can be controlled by a pool of miners if 
the pool holds the majority of the mining power called 51% 
attack that goes against the concept of decentralization. For 
example, such a pool can forbid a selected transaction or more 
transactions. It is very common that the Bitcoin miners form 
pools and behave strategically. For a specific pool, all miners 
use their mining power to solve the cryptopuzzle and if any 
miner finds it s/he informs the pool manager and all other 
miners stop mining that block. If the pool successfully creates 
a block, the rewards are distributed among the miners of the 
pool proportionally to their contributions. It decreases the 
variance of their income rate.  

Blockchain Denial of Service (BDoS) is an attack on the 
blockchain domain that manipulate the reward structure to 
discourage authentic miners to participate in the process of 
mining. Another attack on this domain known as selfish 
mining is a situation when a pool of miners keeps its 
discovered blocks private to fork the chain intentionally. Both 
attacks need around one-third of the total mining power to take 
control of the blockchain. This paper analyzes the above 
attacks and proposes a solution to avoid these attacks in an 
efficient manner.  

II. PRELIMINARIES 

A. Blockchain 

A Blockchain B is a distributed, decentralized, and tamper-
proof storage mechanism consisting of a number of n blocks 
𝑏0 ,𝑏1 ,… , 𝑏𝑛 . Each block 𝑏𝑖  can contain m transactions 
𝑡𝑟0, 𝑡𝑟1 , … , 𝑡𝑟𝑚 (may vary), a hash of the previous block ℎ𝑖−1, 
a timestamp 𝑇𝑆, a nonce 𝑟𝑖 , etc. The hash of the previous 
block is calculated by ℎ𝑖−1 = ℎ𝑎𝑠ℎ(𝑏𝑖−1) and 𝑟𝑖  denotes a 
random number to ensure the validity of the block. The block 
is formally defined as 𝑏𝑖 = ((𝑡𝑟0 , 𝑡𝑟1, … , 𝑡𝑟𝑚), ℎ𝑖−1, 𝑇𝑆, 𝑟𝑖) . 
Blockchain B is thought to be valid if each block 𝑏𝑖 is valid 
where the validity of the 𝑏𝑖 depends on the validity of each 
transaction 𝑡𝑟𝑖  in that block and the hash of the 𝑏𝑖 is to comply 
with a certain threshold 𝑡ℎ [5]. A new block 𝑏𝑛𝑒𝑤 gets added 
to the blockchain B only when the majority of nodes ( > 1

2
) in 

the blockchain have agreed to it by validating all transactions 
𝑡𝑟𝑖 . The mechanism by which the nodes agreed to add the 
𝑏𝑛𝑒𝑤 is known as the consensus mechanism.  PoW is the most 
renowned consensus mechanism in this domain is discussed 
in the following step. As new blocks are added to the 
blockchain, its size continues to grow. A simple B is illustrated 
in the following Fig. 1. Each 𝑏𝑖  in the blockchain has two 
parts: a block header 𝑏𝑖ℎ  and a block body 𝑏𝑖𝑏.  Secure 
Hashing Algorithm (SHA)-256 is a prominent algorithm for 
hashing used in this domain. 

 

Fig. 1. Blockchain structure. 

B. PoW 

Calculating the block header's hash value is the first step 
in the Proof of Work (PoW) consensus mechanism. The block 
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different hash values of the 𝑏ℎ𝑖. As the mechanism needs to be 
found a hash value (ℎ𝑖 = 𝑆𝐻𝐴256(𝑏𝑖)) to remain within a 
certain threshold 𝑡ℎ , miners have to solve a complex 
mathematical cryptopuzzle. A miner mk who solves the 
cryptopuzzle first will add the 𝑏𝑛𝑒𝑤 to the B. While mk append 
the newly created block 𝑏𝑛𝑒𝑤 to the B, it broadcasts the 𝑏𝑛𝑒𝑤 
to the blockchain network. The other nodes of the blockchain 
network validate all the 𝑡𝑟 of the 𝑏𝑛𝑒𝑤 and update the block to 
its blockchain [4].  

III. DESCRIPTIONS OF ATTACKS 

 This section demonstrates BDoS and selfish mining 
attacks in detail.  

A. BDoS 

A Denial of Service (DoS) attack targets the computer 
network to limit, restrict, or stop accessing the system of 
authorized users. There have been no successful DoS attacks 

to date against prominent cryptocurrencies like Bitcoin, 
Ethereum, etc. Unlike the classical Denial of Service (DoS), 
Blockchain Denial of Service (BDoS) targets to manipulate 
the revenue structure to discourage authentic miners to 
participate in the process of mining.  

Let B* be the current state of the main chain illustrated in 

Fig. 2(a). An attacker Ăi creates a block bĂ and appends it to 
the B* and the resultant chain is BĂ which is shown in Fig. 
2(b). Rather than publishing the entire block bĂ, the Ăi 
publishes only the block header bĂh and withholds the block 
body bĂb that contains mainly the list of transactions 
(𝑡𝑟0 , 𝑡𝑟1 , … , 𝑡𝑟𝑡). The reason behind publishing only the block 

header bĂh is to give proof that the Ăi successfully creates the 
block. At this point, a rational miner mk can ignore the bĂh of 
the Ăi and create a block bk following the main chain B* and 
creates the resultant chain Bk.  

As there are two different chains e.g. BĂ and Bk, this 
situation is known as a fork that is shown in Fig. 2(c). When 
the mk publishes the bk to the blockchain network, the Ăi also 
immediately publishes the contents of the bĂ, resulting in a 

race between BĂ and Bk that is depicted in Fig. 2(d). 
Depending on the parameters of the system, the block bk of 
mk may or may not get added to the B*. Hence, the probability 
of getting rewards for the successful block creation of the 
rational miners mrat lessens. Pausing mining turns out to be a 
better alternative than mining if the incentive is low enough. 

If the incentive reduces significantly all the miners stop 
mining and the resultant situation is that the Ăi can also stop 
mining after taking the incentive of creating block. The 
blockchain thus grinds to a complete halt. This attack 
necessitates significantly lower than 50% power of mining.  

B. Markov Chain Representation of BDoS 

The BDoS problem can be represented in a markov chain 
model depicted in the Fig. 3. Here, 0, 1, and 2 specify the state 
number.  

State0: specifies initial state of the blockchain (Fig. 2(a)).  

State1: denotes the attack on progress and Ăi successfully 

creates a block and publishes only the bĂh to the blockchain 

network (Fig. 2(b)).  

State2: states that the mrat creates a block ignoring the 

block of Ăi and starts a race condition (Fig. 2(c) and Fig. 
2(d)). 

Let the Ăi creates a block bĂ in State0 with its’ mining 
power, α

Ă
 and appends it and reaches at State1. Rather than 

publishing the entire block bĂ, the Ăi publishes only the block 
header bĂh. In Fig. 3(a), it is observed that mi and mrat are still 
mining in the State1 with mining power α𝑚𝑖  and α𝑚𝜈 , 

respectively. Although they know that the probability of 

rewarding from this state is low. This is true for all the mrat. 
If the mi stops mining in the State1 which is depicted in Fig. 
3(b), then it will be beneficial for the Ăi. Here, β (≤ 1) 
represents the rushing ability of the block of Ăi i.e. β.mrat 
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Fig. 2. Blockchain Denial of Service. 
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Fig. 3. Markov chains of BDoS. 
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miners with β.α𝑚𝜈 mining power mining on the top of the 

block of Ăi. In contrast, the rest (1 β).mrat miners with 
(1 β)(1 α𝑚𝜈) mining power mining on the top of the block 

of mrat. The reward is given to the winner of the race. This 
can be shown using the equation (1). 

Ɍ = {
 𝑖 , 𝑖𝑓 𝛽.𝛼𝑚𝜈

> (1  𝛽)(1 𝛼𝑚𝜈
) 

 𝑚𝑟𝑎𝑡 , 𝑖𝑓 (1  𝛽)(1  𝛼𝑚𝜈
) > 𝛽. 𝛼𝑚𝜈

                        (1) 

In case of Fig. 3(b), the mi stops mining in State1 and it is 
logical as the block is already created by Ăi. The reward is 

given to the winner of the race shown in the following 
equation (2). 

Ɍ = {
 𝑖 , 𝑖𝑓 β. 𝑚𝜈−𝑚𝑖

> (1  𝛽)(1  𝛼𝑚𝜈−𝑚𝑖
) 

 𝑚𝑟𝑎𝑡, 𝑖𝑓 (1  𝛽)(1 𝛼𝑚𝜈−𝑚𝑖
) > 𝛽. 𝛼𝑚𝜈−𝑚𝑖

             (2) 

C. Selfish Mining 

Selfish mining is a situation when a pool of selfish miners 
mself keeps its discovered blocks bself private to fork the chain 
intentionally. To do it, the selfish mining pool Poolself 

publishes only selective mined block to invalidate the block 
bauth of the authentic miners mauth. The Poolself retains bself 
private, secretly forking the blockchain that creates a private 
branch brpri. For the time being, the mauth continue mining on 
the smaller public branch brpub. As the mself hold a 
comparatively small fraction of the total mining power, the 

brpri will not lead of the brpub indefinitely. Thus, the mself 
selectively divulges blocks bself from the brpri to the public, 
such that the mauth will switch to the recently published 
blocks, leaving the shorter brpub.  This makes the block 
creation labor spent on the shorter brpub wasted, and enables 
the selfish pool Poolself to collect the greater revenues. 

The selfish mining is shown in the following Fig 4. The 
current state of the main chain is illustrated in Fig 4(a). The 
strategy is determined by the Poolself or by the other mauth. The 
results depend on the relative lengths the brpri and the brpub. 
They are as follows: 

(a) When the brpub is longer than the brpri then the Poolself is 

behind the brpub. As the mself holds less mining power 
compared to the mauth, the chances of the mself mining on 
the brpri and lead the main branch are low. Therefore, 
the Poolself must update with the main branch each time 
its brpri falls behind which is shown in Fig. 4(b).  

(b) When the Poolself is able to create a bself, it leads a block 

over the brpub on which the mauth perform mining. At this 
point, mself keep the bself secret and update its brpri to the 
Poolself without publishing into the network that is 
depicted in Fig. 4(c). There may arise two possible 
outcomes: 

i. Firstly, the mauth discover a bauth on the brpub that 

cancel out the Poolself’s lead. In this case, while the 
mauth publishes the bauth to the network, the Poolself 
immediately publishes its brpri containing bself, 
resulting in a race between brpub and brpri which is 
illustrated in Fig. 4(d) similar to BDoS (Fig. 2(d)). 
At this point, if the mself manage to create a bself, it 

immediately publishes the bself to win the reward of 
two blocks which is shown in Fig. 4(e). If the mauth 

creates a bauth over the mined block of Poolself, then 

the pool wins the reward of its block and the mauth 

get the profits of its block that is depicted in Fig. 4(f). 

ii. The Poolself mines another bself2 and extends its lead 
two block on the brpub illustrated in Fig. 4(g). At this 

stage, if the mauth creates a bauth, the pool publishes 
one block from its brpri. This process will be 
continued if the pool has two block or more lead. As 

the mining power of mself is relatively small 
compared to other, eventually it turns out to a single 
block lead. At this point, the pool publishes the brpri.  
As the brpri is larger than brpub, all miner adopts it as 
a main branch. Hence, the pool enjoys all blocks' 

reward. 

D. Markov Chain Representation of Selfish Mining 

The selfish mining problem can be exemplified in a 
markov chain model depicted in the Fig. 5. Here, 0, 1, 2 and 
3 specify the state number of selfish mining. 
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Fig. 4. Selfish Mining. 
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State0: specifies initial state of the blockchain (Fig. 4(a)).  

State1: states that Poolself successfully creates a block bself 

and keeps it secret (Fig. 4(c)). In this case, pool is on lead. 

State2: denotes that the mauth creates a block bauth and 

cancel out the Poolself’s lead. Now the Poolself immediately 
publishes bself, resulting in a race (Fig. 4(d)). 

State3: states that the Poolself leads on two block (Fig. 

4(g)). 

 

Let Poolself is in State0 and creates a blocks bself and now 
it is in State1. It keeps bself confidential to fork the chain 

intentionally. If mauth discover a bauth that cancel out the 
Poolself’s lead resulting in a race in State2 as Poolself 
immediately publishes bself (Fig. 4(d)). The reward is given to 
the winner of the race. This can be shown using the equation 
(3).  

Ɍ = {
𝑃𝑜𝑜𝑙𝑠𝑒𝑙𝑓, 𝑖𝑓 𝛼𝑠𝑒𝑙𝑓 > 𝛼𝑎𝑢𝑡ℎ  

 𝑚𝑎𝑢𝑡ℎ , 𝑖𝑓 𝛼𝑎𝑢𝑡ℎ > 𝛼𝑠𝑒𝑙𝑓
                                        (3) 

In this circumstance, if the Poolself manage to create a bself, 

it immediately publishes the bself to win the reward of two 
blocks in State3 (Fig. 4(e)). Otherwise, in State2 if the mauth 
discover a bauth over the block of Poolself, then both the Poolself 
and mauth win the reward of their respective block (Fig. 4(f)). 
As it is a stable situation, the blockchain is in its initial stable 
state, State0. In contrast, if the Poolself mines another bself2 and 

extends its lead of two block then discovering bauth by mauth 
will not work because if the mauth creates a bauth, the pool 
publishes one block from brpri. This process will be continued 
if the Poolself has two block or more lead presented in State3.  
As the mining power of mself is relatively small, eventually the 
blockchain turns out to the initial stable state. 

IV. THE PROPOSED SOLUTION  

This section briefly describes the proposed system to avoid 
BDoS attack and to prevent selfish mining problem. 

A. Overview of the proposed solution 

The proposed solution mainly works based on adding a 
dummy block bdummy at the end of the main chain at interval of 
block creation time r plus overhead ē. Here, r denotes the 
block generation time for the miners in a blockchain network 
and ē denotes some extra time for block propagation, etc. For 
example, in Bitcoin blockchain the value of r is 10 minutes on 
overage. Block creation will only take into account the entire 
block not block header. The proposed technique will 
automatically create a dummy block bdummy on the existing 
public main branch, brpub to avoid from the BDoS attack and 
selfish mining attack. Hence, the blockchain will be more 
stabilized and all the miners/pools will get equal chance for 
creating blocks. But in some cases, there may have some loss 
of the honest miners because of time limit but this is 

negligible. Although the proposed solution allows BDoS and 
selfish mining within (r + ē) time but the probability of 
happening this is very low. 

B. Avoidance of BDoS 

Let, the attacker Ăi creates a block bĂ and appends it to 
the B* and the resultant chain is BĂ. Rather than publishing 
the entire block bĂ, the Ăi publishes only the block header bĂh 

and withholds the block body bĂb that contains mainly the list 
of transactions (𝑡𝑟0 , 𝑡𝑟1 , … , 𝑡𝑟𝑡). At some point, the system 

has been passed the (r+ē) times, the system automatically   
generates an dummy block on the public main chain, brpub. 
As (r+ē) times have been passed, the block header bĂh and 
withholds the block body bĂb are discarded and the bdummy is 

added. The entire process is depicted in the following Fig. 6. 

 

C. Avoidance of selfish mining 

Let, the pool Poolself creates a new block bself, it leads a 
block over the brpub on which the mauth perform mining. At this 
point, if mself keeps the bself secret and update its brpri to the 
Poolself without publishing into the network, it is allowed only 
within the (r+ē). After ending the period (r+ē), the system 
automatically generates a dummy block on the public main 
chain i.e. the bdummy is added to brpub. No new block bnew is 
accepted on the previous chain. Fig. 7. depicts the entire 
process. 

V. SOLUTION ANALYSIS 

The proposed solution described above successfully 
avoids the BDoS attack and prevents the selfish mining 
problem. However, the solution has some limitations also. 

 
 

Fig. 5. Markov chain of Selfish Mining. 
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Fig. 6. Proposed solution to solve BDoS. 
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Fig. 7. Proposed solution to solve Selfish Mining. 
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The analysis of the proposed solution described in the 
following.  

A. Loss of honest miner 

Let, honest miners are trying to create a block with some 

transactions but within (r + ē) time they don’t manage to 
append the block to the blockchain. As dummy block bdummy 
is added to the main chain after (r + ē) time, the effort of the 
honest miners will be lost fully. Let ƍ is the probability that 
the honest miners are not able to mine of a block then the 
amount of loss of honest miners in BDoS attack can be 

expressed by the following equation (4). 
 

𝐿𝑜𝑠𝑠𝑚𝑖𝑛𝑒𝑟𝑠 =  ƍ × α𝑚𝜈                                (4)  

B. Loss of attacker 

Let, the attacker is not able to manage to append the block 

to the blockchain with probability ȥ within (r + ē) time. As 

dummy block bdummy is added to the main chain, the effort of 

the attacker will be lost fully. The amount of loss of attacker 

in BDoS attack can be expressed by the equation (5). 

𝐿𝑜𝑠𝑠𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 =  ȥ × α
Ă
                                 (5) 

 
C. BDoS Attack within (r + ē) time 

The proposed solution allows BDoS within (r + ē) time 
but in such scenario is very rare. Let, the attacker Ăi creates a 

block within (r + ē) time and only publishes the block header 
to discourage honest miners to participate in the mining 
process. The honest miners still mining on the top of the main 
chain knowing that the dummy block may be added after (r 
+ ē) time discarding the block of attacker if it is not fully 
published. But if the attacker is able to create another block 

within the (r + ē) time and publishes the first block fully then 
the efforts of honest miners will be totally lost. Now the 
attacker has another (r + ē) time for creating another block. 
If it is able to find another block, then it may publish the 
previous block and gain the rewards. This process may be 
continuing until the attacker is able to create a block within 

(r + ē) time. But for creating two blocks within (r + ē) time 
needs high computation cost which is inefficient to the 
attacker. In contrast, dummy block adding time (r + ē) needs 
to adaptive to mitigate this scenario. Thus probability of 
BDoS attack against the proposed solution is very low. 

 
 

D. Selfish mining within (r + ē) time 

The proposed solution allows selfish mining within (r + 
ē) time but in such scenario is very rare. Let, the pool Poolself 
creates a block within (r + ē) time keeps it secret. Again if 

the pool Poolself is able to create another block within the (r 

+ ē) time and publishes the first block only then the efforts of 
honest miners will be totally lost. Now the attacker has (r + 
ē) time for creating another block. If it is able to find another 
block, then it may publish the previous block and gain the 

rewards. This process may be continuing until the attacker is 
able to create a block within (r + ē) time. But for creating two 
blocks within (r + ē) time needs high computation cost which 
is inefficient to the attacker. In contrast, dummy block adding 
time (r + ē) needs to adaptive to mitigate this scenario. Thus 
probability of selfish mining against the proposed solution is 

very low.  

 
 

E. Race between dummy block and new block 

For the usual cases, the dummy block propagation time 
over the blockchain network is assumed to be ē. For some 

cases, it may be more than the ē due to different constraints. 
Then there is a possibility of race condition if some of miners 
manage to create a block before getting the dummy block. 
This scenario is depicted in the following Fig. 10(a). 
However, the problem of forking in this case is trouble-free 
as the (r + ē) time is over, no new block is allowed to the 

main chain except the dummy block. So, the main chain after 
(r + ē) time is depicted in the Fig. 10(b). 

 

VI. CONCLUSION 

Blockchain denial of service (BDoS) and selfish mining 

are the two most critical attacks on blockchain technology 
which may affect incentive structure and increase the 
incentive of adversary miner, respectively. Unlike the 
conventional DoS, the BDoS affects the system’s mechanism 
design to manipulate the incentive structure to discourage 
honest miners to participate in the mining process. In 

contrast, in a selfish mining attack, the adversary miner keeps 
its discovered block private to fork the chain intentionally 
that aiming to increase the incentive of the adversary miner. 
This paper proposed a technique to successfully avoid BDoS 

 
Fig. 8. BDoS Attack within (r + ē) time. 
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Fig. 9. Selfish mining within (r + ē) time. 
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Fig. 10. Forking after (r + ē) time. 
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and selfish mining attacks. The existing infrastructure of 
blockchain technology doesn’t need to be changed a lot to 
incorporate the proposed solution. 
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