
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

A technique to avoid Blockchain Denial of Service

(BDoS) and Selfish Mining Attack
Md. Ahsan Habib

Dept. of Computer Science and Engineering
Khulna University of Engineering & Technology

Khulna, Bangladesh
Email: mahabib@cse.kuet.ac.bd

Md. Motaleb Hossen Manik

Dept. of Computer Science and Engineering
Khulna University of Engineering & Technology

Khulna, Bangladesh
Email: mh.manik@cse.kuet.ac.bd

Abstract— Blockchain denial of service (BDoS) and selfish

mining are the two most crucial attacks on blockchain

technology. A classical DoS attack targets the computer network

to limit, restrict, or stop accessing the system of authorized users

which is ineffective against renowned cryptocurrencies like

Bitcoin, Ethereum, etc. Unlike the conventional DoS, the BDoS

affects the system’s mechanism design to manipulate the

incentive structure to discourage honest miners to participate in

the mining process. In contrast, in a selfish mining attack, the

adversary miner keeps its discovered block private to fork the

chain intentionally that aiming to increase the incentive of the

adversary miner. This paper proposed a technique to

successfully avoid BDoS and selfish mining attacks. The existing

infrastructure of blockchain technology doesn’t need to be

changed a lot to incorporate the proposed solution.

Keywords—Blockchain, DoS, BDoS, Selfish mining, PoW

I. INTRODUCTION

Bitcoin is a peer-to-peer electronic cash system introduced
by Satoshi Nakamoto in 2008 [1]. It has grown into a popular
cryptocurrency and its current market capitalization is more
than $400B [2]. The data structure behind Bitcoin technology
is blockchain. As Bitcoin is a public blockchain, anyone can
join to the system anytime. Participants in the blockchain are
called nodes and nodes who collect cryptocurrency
transactions between clients are known as miners. Miners
have to solve a complex mathematical cryptopuzzle to create
a block to the blockchain successfully [3]. Every node in the
network adds the new transactions i.e. block to get updated. A
miner needs to spend its resources to solve a complicated
mathematical cryptopuzzle and generate Proofs of Work
(PoW) [4]. This work is known as mining which is very
difficult but easily verifiable. A miner who successfully mines
a block gets rewarded with cryptocurrency for his effort.

Bitcoin necessitates a majority of the miners to be truthful.
This virtual currency can be controlled by a pool of miners if
the pool holds the majority of the mining power called 51%
attack that goes against the concept of decentralization. For
example, such a pool can forbid a selected transaction or more
transactions. It is very common that the Bitcoin miners form
pools and behave strategically. For a specific pool, all miners
use their mining power to solve the cryptopuzzle and if any
miner finds it s/he informs the pool manager and all other
miners stop mining that block. If the pool successfully creates
a block, the rewards are distributed among the miners of the
pool proportionally to their contributions. It decreases the
variance of their income rate.

Blockchain Denial of Service (BDoS) is an attack on the
blockchain domain that manipulate the reward structure to
discourage authentic miners to participate in the process of
mining. Another attack on this domain known as selfish
mining is a situation when a pool of miners keeps its
discovered blocks private to fork the chain intentionally. Both
attacks need around one-third of the total mining power to take
control of the blockchain. This paper analyzes the above
attacks and proposes a solution to avoid these attacks in an
efficient manner.

II. PRELIMINARIES

A. Blockchain

A Blockchain B is a distributed, decentralized, and tamper-
proof storage mechanism consisting of a number of n blocks
𝑏0 ,𝑏1 ,… , 𝑏𝑛 . Each block 𝑏𝑖 can contain m transactions
𝑡𝑟0, 𝑡𝑟1 , … , 𝑡𝑟𝑚 (may vary), a hash of the previous block ℎ𝑖−1,
a timestamp 𝑇𝑆, a nonce 𝑟𝑖 , etc. The hash of the previous
block is calculated by ℎ𝑖−1 = ℎ𝑎𝑠ℎ(𝑏𝑖−1) and 𝑟𝑖 denotes a
random number to ensure the validity of the block. The block
is formally defined as 𝑏𝑖 = ((𝑡𝑟0 , 𝑡𝑟1, … , 𝑡𝑟𝑚), ℎ𝑖−1, 𝑇𝑆, 𝑟𝑖) .
Blockchain B is thought to be valid if each block 𝑏𝑖 is valid
where the validity of the 𝑏𝑖 depends on the validity of each
transaction 𝑡𝑟𝑖 in that block and the hash of the 𝑏𝑖 is to comply
with a certain threshold 𝑡ℎ [5]. A new block 𝑏𝑛𝑒𝑤 gets added
to the blockchain B only when the majority of nodes (> 1

2
) in

the blockchain have agreed to it by validating all transactions
𝑡𝑟𝑖 . The mechanism by which the nodes agreed to add the
𝑏𝑛𝑒𝑤 is known as the consensus mechanism. PoW is the most
renowned consensus mechanism in this domain is discussed
in the following step. As new blocks are added to the
blockchain, its size continues to grow. A simple B is illustrated
in the following Fig. 1. Each 𝑏𝑖 in the blockchain has two
parts: a block header 𝑏𝑖ℎ and a block body 𝑏𝑖𝑏. Secure
Hashing Algorithm (SHA)-256 is a prominent algorithm for
hashing used in this domain.

Fig. 1. Blockchain structure.

B. PoW

Calculating the block header's hash value is the first step
in the Proof of Work (PoW) consensus mechanism. The block
header 𝑏ℎ𝑖 contains a 𝑟𝑖 that is continually changed by the
node participating in the mining process called miner to obtain

Block body
• Transactions data

Block header

• Block ID

• Previous block’s hash

• Nonce

• # of transaction

• Timestamp

• Merkle Root

Block body
• Transactions data

Block header

• Block ID

• Previous block’s hash

• Nonce

• # of transaction

• Timestamp

• Merkle Root

Block n-1 Block n

Corresponding Author:

Md. Ahsan Habib

Department of Computer Science & Engineering

Khulna University of Engineering & Technology, Bangladesh

Email: mahabib@cse.kuet.ac.bd

different hash values of the 𝑏ℎ𝑖. As the mechanism needs to be
found a hash value (ℎ𝑖 = 𝑆𝐻𝐴256(𝑏𝑖)) to remain within a
certain threshold 𝑡ℎ , miners have to solve a complex
mathematical cryptopuzzle. A miner mk who solves the
cryptopuzzle first will add the 𝑏𝑛𝑒𝑤 to the B. While mk append
the newly created block 𝑏𝑛𝑒𝑤 to the B, it broadcasts the 𝑏𝑛𝑒𝑤
to the blockchain network. The other nodes of the blockchain
network validate all the 𝑡𝑟 of the 𝑏𝑛𝑒𝑤 and update the block to
its blockchain [4].

III. DESCRIPTIONS OF ATTACKS

 This section demonstrates BDoS and selfish mining
attacks in detail.

A. BDoS

A Denial of Service (DoS) attack targets the computer
network to limit, restrict, or stop accessing the system of
authorized users. There have been no successful DoS attacks

to date against prominent cryptocurrencies like Bitcoin,
Ethereum, etc. Unlike the classical Denial of Service (DoS),
Blockchain Denial of Service (BDoS) targets to manipulate
the revenue structure to discourage authentic miners to
participate in the process of mining.

Let B* be the current state of the main chain illustrated in

Fig. 2(a). An attacker Ăi creates a block bĂ and appends it to
the B* and the resultant chain is BĂ which is shown in Fig.
2(b). Rather than publishing the entire block bĂ, the Ăi
publishes only the block header bĂh and withholds the block
body bĂb that contains mainly the list of transactions
(𝑡𝑟0 , 𝑡𝑟1 , … , 𝑡𝑟𝑡). The reason behind publishing only the block

header bĂh is to give proof that the Ăi successfully creates the
block. At this point, a rational miner mk can ignore the bĂh of
the Ăi and create a block bk following the main chain B* and
creates the resultant chain Bk.

As there are two different chains e.g. BĂ and Bk, this
situation is known as a fork that is shown in Fig. 2(c). When
the mk publishes the bk to the blockchain network, the Ăi also
immediately publishes the contents of the bĂ, resulting in a

race between BĂ and Bk that is depicted in Fig. 2(d).
Depending on the parameters of the system, the block bk of
mk may or may not get added to the B*. Hence, the probability
of getting rewards for the successful block creation of the
rational miners mrat lessens. Pausing mining turns out to be a
better alternative than mining if the incentive is low enough.

If the incentive reduces significantly all the miners stop
mining and the resultant situation is that the Ăi can also stop
mining after taking the incentive of creating block. The
blockchain thus grinds to a complete halt. This attack
necessitates significantly lower than 50% power of mining.

B. Markov Chain Representation of BDoS

The BDoS problem can be represented in a markov chain
model depicted in the Fig. 3. Here, 0, 1, and 2 specify the state
number.

State0: specifies initial state of the blockchain (Fig. 2(a)).

State1: denotes the attack on progress and Ăi successfully

creates a block and publishes only the bĂh to the blockchain

network (Fig. 2(b)).

State2: states that the mrat creates a block ignoring the

block of Ăi and starts a race condition (Fig. 2(c) and Fig.
2(d)).

Let the Ăi creates a block bĂ in State0 with its’ mining
power, α

Ă
 and appends it and reaches at State1. Rather than

publishing the entire block bĂ, the Ăi publishes only the block
header bĂh. In Fig. 3(a), it is observed that mi and mrat are still
mining in the State1 with mining power α𝑚𝑖 and α𝑚𝜈 ,

respectively. Although they know that the probability of

rewarding from this state is low. This is true for all the mrat.
If the mi stops mining in the State1 which is depicted in Fig.
3(b), then it will be beneficial for the Ăi. Here, β (≤ 1)
represents the rushing ability of the block of Ăi i.e. β.mrat

(a) Initial State (B
*
)

(b) State 1 (BĂ)

(c) State 2 (BĂ and Bk)

(d) Race condition

Fig. 2. Blockchain Denial of Service.

bn-1 bnb0

bn-1 bn

bĂh

bĂb

b0

bn-1 bn

bk

bĂh

bĂb

b0

bn-1 bn

bk

bĂ

b0

(a) mi mining on state 1

(b) mi stop mining on state 1

Fig. 3. Markov chains of BDoS.

0 1 2

 𝑚𝑖

 𝑚 −𝑚𝑖

 𝑚𝑖

 𝑚 −𝑚𝑖

(1 β)(1 𝑚)

β. 𝑚

0 1 2

 𝑚𝑖

β. 𝑚 −𝑚𝑖

 𝑚 −𝑚𝑖

β. 𝑚 −𝑚𝑖

(1 β)(1 𝑚 −𝑚𝑖)

miners with β.α𝑚𝜈 mining power mining on the top of the

block of Ăi. In contrast, the rest (1 β).mrat miners with
(1 β)(1 α𝑚𝜈) mining power mining on the top of the block

of mrat. The reward is given to the winner of the race. This
can be shown using the equation (1).

Ɍ = {
 𝑖 , 𝑖𝑓 𝛽.𝛼𝑚𝜈

> (1 𝛽)(1 𝛼𝑚𝜈
)

 𝑚𝑟𝑎𝑡 , 𝑖𝑓 (1 𝛽)(1 𝛼𝑚𝜈
) > 𝛽. 𝛼𝑚𝜈

 (1)

In case of Fig. 3(b), the mi stops mining in State1 and it is
logical as the block is already created by Ăi. The reward is

given to the winner of the race shown in the following
equation (2).

Ɍ = {
 𝑖 , 𝑖𝑓 β. 𝑚𝜈−𝑚𝑖

> (1 𝛽)(1 𝛼𝑚𝜈−𝑚𝑖
)

 𝑚𝑟𝑎𝑡, 𝑖𝑓 (1 𝛽)(1 𝛼𝑚𝜈−𝑚𝑖
) > 𝛽. 𝛼𝑚𝜈−𝑚𝑖

 (2)

C. Selfish Mining

Selfish mining is a situation when a pool of selfish miners
mself keeps its discovered blocks bself private to fork the chain
intentionally. To do it, the selfish mining pool Poolself

publishes only selective mined block to invalidate the block
bauth of the authentic miners mauth. The Poolself retains bself
private, secretly forking the blockchain that creates a private
branch brpri. For the time being, the mauth continue mining on
the smaller public branch brpub. As the mself hold a
comparatively small fraction of the total mining power, the

brpri will not lead of the brpub indefinitely. Thus, the mself
selectively divulges blocks bself from the brpri to the public,
such that the mauth will switch to the recently published
blocks, leaving the shorter brpub. This makes the block
creation labor spent on the shorter brpub wasted, and enables
the selfish pool Poolself to collect the greater revenues.

The selfish mining is shown in the following Fig 4. The
current state of the main chain is illustrated in Fig 4(a). The
strategy is determined by the Poolself or by the other mauth. The
results depend on the relative lengths the brpri and the brpub.
They are as follows:

(a) When the brpub is longer than the brpri then the Poolself is

behind the brpub. As the mself holds less mining power
compared to the mauth, the chances of the mself mining on
the brpri and lead the main branch are low. Therefore,
the Poolself must update with the main branch each time
its brpri falls behind which is shown in Fig. 4(b).

(b) When the Poolself is able to create a bself, it leads a block

over the brpub on which the mauth perform mining. At this
point, mself keep the bself secret and update its brpri to the
Poolself without publishing into the network that is
depicted in Fig. 4(c). There may arise two possible
outcomes:

i. Firstly, the mauth discover a bauth on the brpub that

cancel out the Poolself’s lead. In this case, while the
mauth publishes the bauth to the network, the Poolself
immediately publishes its brpri containing bself,
resulting in a race between brpub and brpri which is
illustrated in Fig. 4(d) similar to BDoS (Fig. 2(d)).
At this point, if the mself manage to create a bself, it

immediately publishes the bself to win the reward of
two blocks which is shown in Fig. 4(e). If the mauth

creates a bauth over the mined block of Poolself, then

the pool wins the reward of its block and the mauth

get the profits of its block that is depicted in Fig. 4(f).

ii. The Poolself mines another bself2 and extends its lead
two block on the brpub illustrated in Fig. 4(g). At this

stage, if the mauth creates a bauth, the pool publishes
one block from its brpri. This process will be
continued if the pool has two block or more lead. As

the mining power of mself is relatively small
compared to other, eventually it turns out to a single
block lead. At this point, the pool publishes the brpri.
As the brpri is larger than brpub, all miner adopts it as
a main branch. Hence, the pool enjoys all blocks'

reward.

D. Markov Chain Representation of Selfish Mining

The selfish mining problem can be exemplified in a
markov chain model depicted in the Fig. 5. Here, 0, 1, 2 and
3 specify the state number of selfish mining.

(a) Initial State

(b) Public chain longer

(c) Pool lead

(d) Race condition

(e) Pool lead again

(f) Block create over pool’s block

(g) Pool lead two block

Fig. 4. Selfish Mining.

bpub-1 bpubb0

bpub-1
bpub

bauth1 bauth2

bself1

b0

bpub-1 bpub

bself1

b0

bpub-1 bpub

bauth1

bself1

b0

bpub-1 bpub

bauth1

bself1 bself2

b0

bpub-1 bpub bself1 bauth2b0

bpub-1 bpub

bself1 bself2

b0

State0: specifies initial state of the blockchain (Fig. 4(a)).

State1: states that Poolself successfully creates a block bself

and keeps it secret (Fig. 4(c)). In this case, pool is on lead.

State2: denotes that the mauth creates a block bauth and

cancel out the Poolself’s lead. Now the Poolself immediately
publishes bself, resulting in a race (Fig. 4(d)).

State3: states that the Poolself leads on two block (Fig.

4(g)).

Let Poolself is in State0 and creates a blocks bself and now
it is in State1. It keeps bself confidential to fork the chain

intentionally. If mauth discover a bauth that cancel out the
Poolself’s lead resulting in a race in State2 as Poolself
immediately publishes bself (Fig. 4(d)). The reward is given to
the winner of the race. This can be shown using the equation
(3).

Ɍ = {
𝑃𝑜𝑜𝑙𝑠𝑒𝑙𝑓, 𝑖𝑓 𝛼𝑠𝑒𝑙𝑓 > 𝛼𝑎𝑢𝑡ℎ

 𝑚𝑎𝑢𝑡ℎ , 𝑖𝑓 𝛼𝑎𝑢𝑡ℎ > 𝛼𝑠𝑒𝑙𝑓
 (3)

In this circumstance, if the Poolself manage to create a bself,

it immediately publishes the bself to win the reward of two
blocks in State3 (Fig. 4(e)). Otherwise, in State2 if the mauth
discover a bauth over the block of Poolself, then both the Poolself
and mauth win the reward of their respective block (Fig. 4(f)).
As it is a stable situation, the blockchain is in its initial stable
state, State0. In contrast, if the Poolself mines another bself2 and

extends its lead of two block then discovering bauth by mauth
will not work because if the mauth creates a bauth, the pool
publishes one block from brpri. This process will be continued
if the Poolself has two block or more lead presented in State3.
As the mining power of mself is relatively small, eventually the
blockchain turns out to the initial stable state.

IV. THE PROPOSED SOLUTION

This section briefly describes the proposed system to avoid
BDoS attack and to prevent selfish mining problem.

A. Overview of the proposed solution

The proposed solution mainly works based on adding a
dummy block bdummy at the end of the main chain at interval of
block creation time r plus overhead ē. Here, r denotes the
block generation time for the miners in a blockchain network
and ē denotes some extra time for block propagation, etc. For
example, in Bitcoin blockchain the value of r is 10 minutes on
overage. Block creation will only take into account the entire
block not block header. The proposed technique will
automatically create a dummy block bdummy on the existing
public main branch, brpub to avoid from the BDoS attack and
selfish mining attack. Hence, the blockchain will be more
stabilized and all the miners/pools will get equal chance for
creating blocks. But in some cases, there may have some loss
of the honest miners because of time limit but this is

negligible. Although the proposed solution allows BDoS and
selfish mining within (r + ē) time but the probability of
happening this is very low.

B. Avoidance of BDoS

Let, the attacker Ăi creates a block bĂ and appends it to
the B* and the resultant chain is BĂ. Rather than publishing
the entire block bĂ, the Ăi publishes only the block header bĂh

and withholds the block body bĂb that contains mainly the list
of transactions (𝑡𝑟0 , 𝑡𝑟1 , … , 𝑡𝑟𝑡). At some point, the system

has been passed the (r+ē) times, the system automatically
generates an dummy block on the public main chain, brpub.
As (r+ē) times have been passed, the block header bĂh and
withholds the block body bĂb are discarded and the bdummy is

added. The entire process is depicted in the following Fig. 6.

C. Avoidance of selfish mining

Let, the pool Poolself creates a new block bself, it leads a
block over the brpub on which the mauth perform mining. At this
point, if mself keeps the bself secret and update its brpri to the
Poolself without publishing into the network, it is allowed only
within the (r+ē). After ending the period (r+ē), the system
automatically generates a dummy block on the public main
chain i.e. the bdummy is added to brpub. No new block bnew is
accepted on the previous chain. Fig. 7. depicts the entire
process.

V. SOLUTION ANALYSIS

The proposed solution described above successfully
avoids the BDoS attack and prevents the selfish mining
problem. However, the solution has some limitations also.

Fig. 5. Markov chain of Selfish Mining.

0 1 2

 𝑎𝑢𝑡ℎ

3
 𝑠𝑒𝑙𝑓 𝑎𝑢𝑡ℎ 𝑠𝑒𝑙𝑓

 𝑠𝑒𝑙𝑓

 𝑎𝑢𝑡ℎ
 𝑎𝑢𝑡ℎ

(a) Dummy block creation

(b) Main chain after (r + ē)

Fig. 6. Proposed solution to solve BDoS.

bn-1 bn

bĂh

bĂb

bdummy

t > (r + ē)
b0

bn-1 bn bdummy

t > (r + ē)
b0

(a) Dummy block creation

(b) Main chain after (r + ē)

Fig. 7. Proposed solution to solve Selfish Mining.

bpub-1 bpub

bself1

bdummy

t > (r + ē)
b0

bn-1 bn bdummy

t > (r + ē)
b0

The analysis of the proposed solution described in the
following.

A. Loss of honest miner

Let, honest miners are trying to create a block with some

transactions but within (r + ē) time they don’t manage to
append the block to the blockchain. As dummy block bdummy
is added to the main chain after (r + ē) time, the effort of the
honest miners will be lost fully. Let ƍ is the probability that
the honest miners are not able to mine of a block then the
amount of loss of honest miners in BDoS attack can be

expressed by the following equation (4).

𝐿𝑜𝑠𝑠𝑚𝑖𝑛𝑒𝑟𝑠 = ƍ × α𝑚𝜈 (4)

B. Loss of attacker

Let, the attacker is not able to manage to append the block

to the blockchain with probability ȥ within (r + ē) time. As

dummy block bdummy is added to the main chain, the effort of

the attacker will be lost fully. The amount of loss of attacker

in BDoS attack can be expressed by the equation (5).

𝐿𝑜𝑠𝑠𝑎𝑡𝑡𝑎𝑐𝑘𝑒𝑟 = ȥ × α
Ă
 (5)

C. BDoS Attack within (r + ē) time

The proposed solution allows BDoS within (r + ē) time
but in such scenario is very rare. Let, the attacker Ăi creates a

block within (r + ē) time and only publishes the block header
to discourage honest miners to participate in the mining
process. The honest miners still mining on the top of the main
chain knowing that the dummy block may be added after (r
+ ē) time discarding the block of attacker if it is not fully
published. But if the attacker is able to create another block

within the (r + ē) time and publishes the first block fully then
the efforts of honest miners will be totally lost. Now the
attacker has another (r + ē) time for creating another block.
If it is able to find another block, then it may publish the
previous block and gain the rewards. This process may be
continuing until the attacker is able to create a block within

(r + ē) time. But for creating two blocks within (r + ē) time
needs high computation cost which is inefficient to the
attacker. In contrast, dummy block adding time (r + ē) needs
to adaptive to mitigate this scenario. Thus probability of
BDoS attack against the proposed solution is very low.

D. Selfish mining within (r + ē) time

The proposed solution allows selfish mining within (r +
ē) time but in such scenario is very rare. Let, the pool Poolself
creates a block within (r + ē) time keeps it secret. Again if

the pool Poolself is able to create another block within the (r

+ ē) time and publishes the first block only then the efforts of
honest miners will be totally lost. Now the attacker has (r +
ē) time for creating another block. If it is able to find another
block, then it may publish the previous block and gain the

rewards. This process may be continuing until the attacker is
able to create a block within (r + ē) time. But for creating two
blocks within (r + ē) time needs high computation cost which
is inefficient to the attacker. In contrast, dummy block adding
time (r + ē) needs to adaptive to mitigate this scenario. Thus
probability of selfish mining against the proposed solution is

very low.

E. Race between dummy block and new block

For the usual cases, the dummy block propagation time
over the blockchain network is assumed to be ē. For some

cases, it may be more than the ē due to different constraints.
Then there is a possibility of race condition if some of miners
manage to create a block before getting the dummy block.
This scenario is depicted in the following Fig. 10(a).
However, the problem of forking in this case is trouble-free
as the (r + ē) time is over, no new block is allowed to the

main chain except the dummy block. So, the main chain after
(r + ē) time is depicted in the Fig. 10(b).

VI. CONCLUSION

Blockchain denial of service (BDoS) and selfish mining

are the two most critical attacks on blockchain technology
which may affect incentive structure and increase the
incentive of adversary miner, respectively. Unlike the
conventional DoS, the BDoS affects the system’s mechanism
design to manipulate the incentive structure to discourage
honest miners to participate in the mining process. In

contrast, in a selfish mining attack, the adversary miner keeps
its discovered block private to fork the chain intentionally
that aiming to increase the incentive of the adversary miner.
This paper proposed a technique to successfully avoid BDoS

Fig. 8. BDoS Attack within (r + ē) time.

bn-1 bn

bk

bĂh

bĂb

b0

bĂh

bĂb

t ≤ (r + ē)

t ≤ (r + ē)

Fig. 9. Selfish mining within (r + ē) time.

bpub-1 bpub

bself1 bself2

b0

bauth1

t ≤ (r + ē)

t ≤ (r + ē)

(a) Race Condition

(b) Main chain after (r + ē)

Fig. 10. Forking after (r + ē) time.

bpub-1 bpub

bnew

bdummy

b0

bn-1 bn bdummy

t > (r + ē)
b0

and selfish mining attacks. The existing infrastructure of
blockchain technology doesn’t need to be changed a lot to
incorporate the proposed solution.

REFERENCES

[1] S. Nakamoto, “Bitcoin: a peer-to-peer electronic cash system,

October 2008,” Cited on, 2008.

[2] Coinmarketcap, “Cryptocurrency Market Capitalizations,” 2019.

https://coinmarketcap.com/ (accessed Aug. 20, 2022).

[3] I. Eyal and E. G. Sirer, “Majority Is Not Enough: Bitcoin mining

is vulnerable,” Commun. ACM, vol. 61, no. 7, pp. 95–102, Jun.

2018, doi: 10.1145/3212998.

[4] S. Sharkey and H. Tewari, “Alt-PoW: An alternative proof-of-

work mechanism,” in Proceedings - 2019 IEEE International

Conference on Decentralized Applications and Infrastructures,

DAPPCON 2019, Apr. 2019, pp. 11–18. doi:

10.1109/DAPPCON.2019.00012.

[5] F. Bravo-Marquez, S. Reeves, and M. Ugarte, “Proof-of-learning :

A blockchain consensus mechanism based on machine learning

competitions,” in Proceedings - 2019 IEEE International

Conference on Decentralized Applications and Infrastructures,

DAPPCON 2019, Apr. 2019, pp. 119–124. DOI:

10.1109/DAPPCON.2019.00023.

