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Abstract—Modern public blockchains like Ethereum rely on
p2p networks to run distributed and censorship-resistant applica-
tions. With its wide adoption, it operates as a highly critical public
ledger. On its transition to become more scalable and sustainable,
shifting to PoS without sacrificing the security and resilience of
PoW, Ethereum offers a range of consensus clients to participate
in the network. In this paper, we present a methodology to
measure the performance of the consensus clients based on the
latency to receive messages from the p2p network. The paper
includes a study that identifies the incentives and limitations that
the network experiences, presenting insights about the latency
impact derived from running the software in different locations.

Index Terms—Ethereum, Ethereum2, Ethereum Consensus
Layer, Ethereum Rewards, The Merge

I. INTRODUCTION

Ethereum [1] has been an important achievement on the road
to ubiquitous blockchain technology. It has shown remarkable
adaptability over time, leading the technical research vanguard
of the blockchain industry after being the first decentralized
platform that offered a general-purpose virtual machine ca-
pable of processing the so-called smart contracts [2]. Over
the last five years, Ethereum has been transitioning from an
energy-hungry Proof of Work (PoW) [3] to a more efficient
and scalable Proof of Stake (PoS) [4] protocol. A transition
that relies on GasperFFG [5] and RANDAO [6] to replace the
consensus and randomness provided by PoW.

Since the merge [7], running a validator in Ethereum’s
ecosystem requires two codependent software: an execution
layer (EL) client and a consensus layer (CL) client or beacon
node. The EL client is responsible for receiving and validating
transactions or smart contracts [2] in the execution layer, track-
ing the interaction between users and the Ethereum Virtual
Machine (EVM) and rewarding the proposer validator with
the referenced tips of each transaction. On the other hand, the
CL client is in charge of operating, validating, and recording
the interaction between validators to find consensus over the
chain’s state. Ethereum validators run on top of these nodes,
which can interact with the rest of the beacon chain network,
earning rewards based on the quality of their contribution
towards consensus.

The successful transition from PoW to PoS of Ethereum
[8] implies a radical change in the consensus mechanism.
Validators must actively participate in the consensus to keep

finalizing previous epochs, assigning them periodical duties
they must accomplish over their lifetime [9]. However, to
perceive the maximum remuneration that PoS can grant to
honest participating validators, the quality of their implication
has a significant weight on their reward. Each validator has
the following duties to fulfill: i) attest on a slot every epoch
(defined randomly on the state transition between epochs), ii)
sign sync-committee duties if the validator belongs to a sync-
committee, and iii) generate and propose blocks when they are
chosen to do so. The validator is now in charge of proposing
blocks when they become block-proposers.

All these duties and their implication in the consensus are
defined in the Ethereum specification [10]. However, although
there is one single specification, Ethereum relies on a wide
variety of implementations to introduce the resilience of the
protocol. Five main clients are consolidated to participate in
the network: Lighthouse, Lodestar, Nimbus, Prysm, and Teku.
Each uses a different programming language to implement the
networking and consensus specs. Even though this multiple-
spec implementation significantly impacts the feature devel-
opment time (extra complexity making the implementations
inter-operable between clients), it makes the protocol fault-
tolerant. Ensuring that with proper client diversity in the net-
work, a bug on a single client won’t break the aggregation of
new blocks to the chain. However, although all the implemen-
tations are spec-compliant, the wide variety of conditions in
the protocol makes some algorithms more optimal than others
under specific circumstances, i.e., certain network instabilities
or the resulting latency delay derived from the geo-location
of the node. Of course, having a faster or wiser algorithm
might get mirrored in higher rewards. Thus, in this paper,
we analyze the performance differences between geographical
regions from a CL client perspective, with the final intention
of spotting any existing relevant performance difference that
could compromise the client diversity in the network.

From the premise that a better accomplishment of duties
generally means more reward for validators, this paper ana-
lyzes the direct implications of the networking conditions on
the stability and performance of the five main CL clients. We
present a study that measures the duties completion of multiple
clients across multiple locations in live networks, which has
not been previously done to the best of our knowledge. The
contribution of this work is to identify any missed performance
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between different geographical locations that could compro-
mise the network’s decentralization while proving that client
diversity in the network is mature enough to be achieved in
production without significant sacrifices. We demonstrate that
all locations perform similarly under standard networking and
hardware conditions, achieving an average extracted reward of
80.18%. However, when we deploy Ethereum clients in virtual
machines or less globally connected regions, the reward can
drop to 74.34%.

The paper is organized as follows: Section II introduces the
state of the art of the paper, going through previously done
work on the topic, Section III introduces all the methodology
and tools used to perform the study, Section IV presents the
results obtained by our study, Section V discusses the insights
presented in the paper, and Section VI summarizes all the
highlights of the study.

II. RELATED WORK

Distributed ledgers are an interesting phenomenon in the
internet space. In such a critical environment where users trust
the network to track their economic balances, participants must
agree on a set of rules to reach a consensus over the interaction
with the ledger for personal and shared interests.

From the nature of distributed networks, peers can join,
leave, and disconnect the network as they please [11] [12], i.e.,
users turning off their nodes to upgrade their version. However,
this tends to decrease when discussing proof of stake systems
[13]. Validators have incentives for actively participating in
consensus, although they can also be penalized if they don’t
do it [9]. This leads PoS blockchains’ networks to be more
stable in general. Nonetheless, they still represent Byzantine
fault tolerance systems [14], where the system can overcome
at some degree the sudden decrease of the honest participants
ensuring a unanimous consensus over the state of the chain.
Beyond a fault-tolerant consensus mechanism, Ethereum adds
a second layer of resilience by having multiple software to
participate in the network. Each one is written in a different
language and by a different team, targeting various end-users.
Thus, they are optimized for different situations.

Ethereum aims to be light and portable, substantially reduc-
ing the hardware requirements that the prior PoW meant. It has
been proved [15] that the new PoS version of Ethereum can
be successfully run on medium-low hardware machines, with
some clients needing less than 4GB of RAM and two cores
to participate in the CL network successfully. However, no
prior work analyzes the impact on the performance of such a
wide variety of end-users. The question of whether hardware-
resource optimal clients, which allow solo stackers to validate
from home, can perform as well as less hardware-restricted
ones is still unanswered.

Previous studies like [16] have demonstrated that the node’s
location directly affects the networking performance and,
inevitably, the performance of PoW-based application’s nodes.
Message distribution is essential in PoS systems such as
Ethereum. Although each slot gives a time window of 12
seconds to propose a block, commit the attestations, and

aggregate them, receiving half a second sooner or later the
block can directly impact the attestation of validators, as their
attestation could shift from, the block is valid, to there wasn’t
a block at all. This means nodes in regions far from the core
of the network could be disadvantaged. Placing a client in
a poorer connected region can incentivize other validators
to keep concentrating in the same geographical locations.
Suppose a latency increase can put at risk the performance
of a validator (and the economic stimulus attached to it). In
that case, the short window of action that the protocol suggests
would incentivize the centralization of clients in regions with
the counterpart that it increases the exposition to censorship
of the local authorities.

This paper will present the Ethereum CL performance com-
parison results based on network latency in different locations.
In the study, we empirically analyze the stability of the clients
under the real network behaviors of Ethereum’s mainnet and
the Goerli testnet. We analyze the performance of the different
implementations by comparing the quality of the accomplished
validator duties, comparing the score of the blocks generated
by the other implementations. Furthermore, we reproduced the
experiments in different geographical locations to explore the
impact of the message propagation latencies on the ability to
perform consensus duties.

III. METHODOLOGY

As Ethereum keeps all the interaction with the chain avail-
able on the public blockchain, debugging the performance
of validators from different locations remains, in most cases,
accessible. However, processing and indexing the necessary
information to determine the performance of a client or a
validator in a human-readable way imply reconstructing, in
some occasions, the chain’s status in the past, and this is not
that easy to reproduce. In this section of the paper, we will
introduce the basic fundaments of Ethereum to understand
the methodology we used to measure the performance of
Ethereum nodes, i.e., slot time utilization, block generation,
or attestation flags. Furthermore, we will also introduce the
support software we built and used to generate the data we
will later discuss in Section IV.

A. Scoring Ethereum CL’s duties

Shifting Ethereum’s consensus mechanism to PoS unar-
guably increased the complexity of the protocol. Since the
merge, only active validators in the beacon chain can par-
ticipate in the consensus, having to do it at least once every
epoch. Validator’s block proposals, block attestations, and sync
committee votes are the duties that ensure that the blockchain
keeps adding blocks under a consensus. Thus, the quality of
these duties determines how well each validator contributed to
the consensus, which ultimately defines the reward they get.

The consensus layer of Ethereum is organized in epochs (see
Figure 1 for reference). Each epoch contains 32 time windows
of 12 seconds called slots where a single validator elected
from the RANDAO Reveal [6] algorithm has the chance to
aggregate a new block to the beacon chain. Since the rest of



the existing active validators must reach a consensus over each
proposed block, splitting the epoch in 32 slots helps reduce
the computational load of processing the duties of 750.000+
(at the time of writing this paper) active validators. Thus, the
whole list of validators is divided into the 32 slots and then
into a maximum of 64 committees. This way, each added block
serves as the main unit of time where new historical data is
added to the beacon chain.

1) Attestations: Attestations or votes are the statements
each validator must make to help finalize1 beacon epochs.
Therefore, each committee’s resulting votes are aggregated
before adding them to the following proposed blocks. This
helps considerably reduce the block size by keeping track of
the duties and saves time for future block proposers as they
only have to listen to the latest aggregations of each slot. Inside
the participation of each validator, the following three main
flags determine the “quality” of the attestation:

• Source: hash of the justified checkpoint2 at the moment
the attested block was proposed.

• Target: hash of the first block at the epoch.
• Beacon block root: hash of the attested block.

Each validator has 32 slots to produce these attestations,
leading to a second parameter that interferes with the “quality”
of the attestation, the inclusion delay. The inclusion delay
refers to the number of slots it took for an attestation to get
included in a block after the attested one. This means that
the optimal performance for a validator is to produce a vote
with the three flags correct and include it in the next block,
meaning an inclusion delay of 1 slot.

2) Sync committees: Since the Altair Hard Fork [17],
sync committees were added to help light clients validate
blocks without fully downloading and processing the beacon
chain. Each sync committee comprises 512 randomly selected
validators who sign new block headers every slot and rotate
every 256 epochs (8192 slots).

3) Block proposals: In every slot, a single active validator
has the chance to generate and propose a beacon block. When
that moment arrives, the validator adds the needed metadata
of the block with as many aggregated attestations as possible.
With an upper limit of 128 aggregations that can fit into a
single beacon block, the CL reward that the proposer gets
directly depends on the quantity and quality of the included
attestations. From the reward that each non-previously in-
cluded attestation flag generates, there is a separate percentage
that gets saved for the proposer of the block that includes
it. Thus, the more new attestations we add to a block, the
greater the reward it generates. The same happens with the
sync committee rewards; the block proposer gets a percentage
of the total reward that the included sync committee duties
generate. For this reason, the block proposer is incentivized to
include as many sync committee duties as possible.

1Finalization is used to express when a block has been validated by more
than 66% of the network and for over two entire epochs. It represents the
moment when the data inside the blocks of that epoch is no longer mutable.

2Checkpoints in the CL represent the Beacon State root of the epoch’s first
slot, including the result of the state transition from the previous epoch.

B. Slot time ranges

We have already introduced the time division of Ethereum
CL’s blockchain. However, as Figure 1 shows, there is still a
smaller subdivision inside each slot. Although these numbers
are just guidelines, following them is crucial to avoid generat-
ing confusion in the network. To achieve the best performance
in the network, the following tasks need to be performed in
order inside the slot:

1) Block proposers are expected to create and broadcast
a new block at the beginning of the slot (second 0 of
the slot). This gives 4 entire seconds for the message
to reach the rest of the participants in the network. To
do so, they have a time window of 4 seconds prior to
the start of the slot to receive and group aggregated
attestations from the previous 32 slots.

2) After the first 4 seconds of the slots, validators assigned
to attest to it are expected to generate and broadcast their
votes with their perception of the chain (attesting to the
source, target, and head they see). They share this vote
with the corresponding beacon committee aggregators,
and the spec assigns the same time range of 4 seconds
to broadcast the message.

3) Finally, the committee aggregators must collect votes
between seconds 4 to 8, producing the aggregated attes-
tations at the 8th second of the slot. In all committees,
16 validators are randomly selected to aggregate and
broadcast the attestations. After that 8th second, the net-
work disposes of 4 extra seconds so that the next block
proposer has enough time to receive all the aggregations.

Keeping the correct timing between these tasks is crucial
to avoid confusion in the network. For example, if a block
proposer extends the creation of its block for 10 seconds,
the block could be received later than 12 seconds since the
start of the slot, risking being voted as a missed block. If a
validator waits too long to generate and send the attestation,
the aggregators might not include that vote in the same slot,
increasing the inclusion delay and reducing the final reward.

Fig. 1. Slot time division between duties.

C. Support softwares

Although blockchains keep most of the interactions and
balances publicly available on-chain, in some occasions, that
information (i.e., validator duties) has to be reconstructed from



the locally stored beacon states in the clients. As this infor-
mation is essential to quantify and qualify the performance of
a validator and client, we have relied on a set of tools that
helped us gather and index all the necessary information.

1) Conensus rewards: To compute the rewards obtained by
a validator over the Maximum Extractable Reward (MER) on
an epoch, we measured each validator’s attestation and sync
committee rewards on each epoch. We relied on the attestation
and sync committee rewards models proposed by [9] by using
the same software GotEth [18], an open-sourced tool that
indexes the following items from a trusted beacon node:

• Validator individual duties.
• The quality of these duties (i.e., if validators missed a

block proposal, the number of flags successfully voted).
• The max attestation and sync committee (if the validator

during that epoch was inside a sync committee) reward
that each validator could have achieved.

2) Consensus block scorer: To measure the capabilities of
the different clients to generate beacon blocks, we created a
custom open-sourced tool based on the beacon node multi-
plexer Vouch [19]. This custom tool can be connected to as
many beacon nodes as we want, indexing some metrics from
the live network into a PostgreSQL database. The tool can
communicate with these provided beacon nodes, requesting
them to generate a block at the beginning of every slot. With
the final intention of analyzing the content of each proposed
block, the tool aggregates the number of the included new
votes, sync aggregates, attester slashing, and proposer slashing,
generating a synthetic scoring system that later on will be
used to compare them. The score is derived directly from
the beacon chain rewards formulas, removing the actual Base
Reward from the equation to make the score calculation faster.
Furthermore, the tool can stream and record some events from
each beacon node’s API. For example, the tool tracks and
timestamps every time it gets notified when a new block
message is received. This allows us to compare the arrival
time of messages such as new blocks.

IV. EVALUATION

To measure the performance of each Ethereum node, we
deployed a set of experiments that would allow us to compare
the results fairly. To keep the experiments away from sim-
ulations, we relied on Ethereum’s live networks to perform
these experiments. We chose Ethereum’s mainnet as a mature,
stable, and reliable network. However, since activating a
validator in mainnet requires a deposit of 32 ETH, we relied
on Ethereum’s Goerli testnet to activate 3000 validators with
the help of the EF [20].

The correctness of the attestation flags significantly impacts
validators’ rewards. To investigate why a single location would
achieve fewer rewards than the rest, Figure 2 shows the ratio of
missed flags aggregated by location. We performed two main
experiments divided into two sections IV-A and IV-B. The
first will evaluate the accomplishment of the validator’s duties,
and the second will introduce the differences when composing
block proposals. Overall, for both studies, the control clients

TABLE I
HARDWARE SETUP PER LOCATION FOR THE REWARDS STUDY.

City Hardware CPU Memory Storage Clients
Frankfurt Baremetal 16c. 64GB 1.9TB NVMe All
London Baremetal 16c. 64GB 1.9TB NVMe All
Warsaw Baremetal 16c. 64GB 1.9TB NVMe All
Sydney1 VM 16c. 32GB 850GB SSD LH,L,P
Sydney2 VM 8c. 16GB 700GB SSD N,T

Singapore1 VM 16c. 16GB 900GB SSD LH,L,P
Singapore2 VM 4c. 16GB 700GB SSD N,T
Toronto1 VM 16c. 32GB 910GB SSD LH,L,P
Toronto2 VM 4c. 16GB 660GB SSD N,T

TABLE II
TABLE WITH THE VERSIONS USED DURING THE STUDIES.

Short Client Version
LH Lighthouse v3.1.2-01e84b7
L Lodestar v1.2.1/5813d39
N Nimbus v22.9.1-ad7541-stateofus
P Prysm v3.1.1
T Teku 22.9.1

were grouped in groups of five. Each of the main available
clients was paired with an EL client, which became mandatory
after the merge. Thus, we spawned five pairs of CL clients +
Nethermind [21] in four to six locations. However, each of
the following sections will further introduce its configuration
details.

A. Validator performance

The current PoS consensus mechanism drastically changed
the reward system in Ethereum. The protocol prioritizes re-
warding validators’ stability and continuous duty compliance.
The reward retrieved through attestations represents the 61%
of the gross reward a single validator can achieve. Thus,
this first experiment compares the stability of performing
attestations. To replicate the study and measure the impact
of running clients in what we consider regions with more
significant latency, Table I includes the configuration of nodes
we designed to perform the study.

Most cloud service providers cannot offer the exact same
hardware resources in all the regions that we wanted to test.
Therefore, we used multiple cloud providers with different
capabilities. To ensure that all clients had roughly the same
hardware resources, we broke the set of clients into two
different machines in locations such as Sydney, Singapore,
and Toronto. The hardware limitations outside the EU and the
US were noticeable.

1) Reward comparison based on Goerli validators : The
first part of the study compares the aggregated validator
rewards per location between epochs 157835 and 158835, or in
a human-readable format, between dates February 23rd 2023,
and February 27th 2023. Intending to discover any hints of
a possible underperformance of any specific region, Figure 3
shows the achieved reward by the aggregated validators per
location out of their respective MER.

Considering the aggregation of the validators per location
as our validator control pools, we observe that most nodes



Fig. 2. Average missed attestation flags. Fig. 3. Average achieved reward per location. Fig. 4. Aggregated missed blocks per location.

achieved a similar reward when comparing it with their MER.
It is expected to see drops in the achieved rewards when we
compare validators in testnets with validators in mainnet. In
this case, the Goerli testnet is publicly open for participants
to collaborate without needing fiat collateral to ensure their
participation. Thus, there is a higher ratio of participating
nodes that are not properly maintained, wrongly configured, or
directly disconnected. This ultimately impacts the stability of
the network, experiencing more missed blocks, more reorga-
nizations, more missed flags, and thus bigger inclusion delays
lowering the MER compared with validators in mainnet.

With all these said, in Figure 3, we still find a slight vari-
ation around an average reward of 80.2% for most locations.
The most significant exceptions are recorded in Sydney and
Warsaw, which fall to 74.3% and 76.8%, respectively. As
explained before, the instance deployment differs in some
locations. Nodes located in Frankfurt, London, and Warsaw
share a similar infrastructure setup, in which the achieved
reward is similar, varying between 76% and 82%. Nodes
located in Singapore, Sydney, and Toronto also share a similar
infrastructure setup between each other. However, Sydney
achieved 10% less MER than the other two locations (84%).
Since Sydney is the most remote location of the chosen setup,
as most nodes concentrate in Europe and North America [13],
a message is expected to have a slightly higher latency to
reach nodes in such remote locations. Thus, this could show
that network latency significantly impacts performance. It is
remarkable that validators hosted in nodes with apparently
“worst” connections, i.e., nodes in Singapore, extract more
rewards than “better” connected ones, such as nodes in Frank-
furt. This indicates that hardware also plays a vital role in
achieving a more significant share of the achievable rewards.

a) Missed heads: The head flag inside the attestation
points to the head slot in the canonical chain. To send a
correct head attestation, the validator must point to the head
root and provide this attestation with an inclusion delay of
1 block. Otherwise, the head attestation is given as wrong.
This explains why it is the most commonly failed flag among
validators in the network. Failing the head attestation flag
could mean that the node falls more into reorgs or that the
attestation is not sent in time and, thus, not included in the
next block (inclusion delay=1). Figure 2 shows the average flag
failure per location, where we can see that the average head

attestation flags’ failure rate is 27.4%. The figure shows that
nodes in London, Sydney, and Warsaw failed over that average
28.7%, 29.9%, and 30.8% missed head flags, respectively.

b) Missed targets: Conversely, the target attestation flag
is the least failed flag and the one that brings the most rewards
out of all three flags. This is why we define that if the target
flag is failed, the node is most likely out of sync and has been
like this for a while. Figure 2 shows a similar pattern for the
target flags, with nodes in Frankfurt, Toronto, and Singapore
missing them 5% and 6.3% of the time. On the other hand,
London, Warsaw, and Sydney nodes stay beyond that average,
reaching the missed ratio of 8% 8.9% and 10.2%, respectively.
It is clear, then, by analyzing the aggregation between the
number of missed head and target flags, that despite Sydney
sharing the same hardware with Toronto and Singapore, it falls
out of sync almost double the times.

2) Proposer duties: Validators also earn rewards from
proposing blocks when they are randomly chosen. Block
rewards are sporadic but very high, so it is frustrating for
validator owners to miss the chance of gaining such a high
reward with a straightforward duty. When proposing a new
block, the node must be fully synced with the network and
follow the chain head without delays. Not doing so could cause
the validator to miss the block proposal (or do it very late),
missing out the substantial block rewards it generates.

As block proposers are randomly chosen at every epoch,
Figure 4 shows the aggregated ratio of missed proposer duties
between locations. The figure shows that pool nodes on each
location failed an average of 1, 66% of block proposal duties,
with Sydney nodes failing up to 4% of the block proposal
duties, while Frankfurt, Toronto, and Singapore didn’t miss
any of the proposals. Once again, it is most likely that
Sydney nodes tend to fall more into the out-of-sync state and,
therefore, can not perform their duties in time.

a) Chain reorganizations on clients: Nodes have differ-
ent behaviors depending on the hardware they are running
on and the location where they are placed on. However,
validators’ achieved rewards or the ratio of missed duties are
not the only methods to measure the performance of a node.
The high ratio of missed target flags when attesting is the first
indicator of a stability problem on a particular node, or in
this case, in a location. It is hard for a validator to perform
its duties correctly when the underneath node is not fully



Fig. 5. Number of chain reorganizations per
location.

Fig. 6. Average block score per location. Fig. 7. Average arrival latency of block messages
inside slot time per location.

synced with the chain. Thus, we can interpret that nodes in
Sydney, as a representation of less well-connected nodes, tend
to lose synchronization more often. We have chosen reorgs
(chain reorganizations) as a way of measuring the stability of
a node. A chain reorg represents having to drop a number
of blocks (with their states) and sync the canonical version
of them because the node was in a non-valid variation of the
chain. As the late arrival of messages can generate those minor
forks, Figure 5 shows the aggregation of reorgs registered in
each location. In the graph, we can observe that Sydney has
the biggest reorg average from the six different places, with
eight more registered events than the average of 102 of all
the locations. Without being an extremely large number, we
can attribute the differences between duties accomplishment
to the fact that the reorgs can also be defined by the number
of blocks you had to drop and resync. Unfortunately, the node
does not offer this information to us. We will discuss this step
in detail in the following section.

B. Block scores

With the major differences we spotted between the arrival
times of the different instances deployed in mainnet (the most
stable network in the Ethereum ecosystem), we wanted to
study the impact of this arrival latency on the capabilities
of the clients to compose blocks. Following in order the
rewards quantities that a validator received over time in the
Consensus Layer, the resulting rewards of block proposals
follow attestations with a 7, 6% of the total reward. Thus, we
decided to benchmark, with a synthetic block score (III-C2),
the differences that each client and each location produce. We
experienced similar problems to the ones deploying the valida-
tor rewards study; fitting five CL clients with their respective
five Nethermind clients under the same or similar machines
was unmanageable. Thus, the clients and the machines were
organized and deployed as Table III summarizes. The data
displayed and analyzed in the following sections belongs to
the range of slots 5760722 to 5888722, which belongs to the
range from February 9th, 2023, to February 27th, 2023.

1) Beacon block generation differences: Figure 6 shows
the aggregated score of each block across the clients of each
location, where we appreciate insignificant differences. Once

TABLE III
HARDWARE TYPE ON EACH TESTED LOCATION OF THE BLOCK SCORE

STUDY.

City Hardware CPU Memory Disk Clients
Helsinki Baremetal 32c. 128GB 10TB NVMe All
London VM 32c. 128GB 7TB SSD All
Warsaw VM 32c. 128GB 7TB SSD All
Sydney1 VM 4c. 32GB 2.5TB NVMe LH,L,P
Sydney2 VM 4c. 32GB 1TB NVMe N
Sydney3 VM 4c. 32GB 1TB NVMe T

again, there is a clear dominance of nodes located in Helsinki,
outstanding over nodes in Sydney, London, and Warsaw that
achieved 1.37%, 4.29%, and 5.16% less score, respectively.
Although each of the locations should have enough time to
get the same attestation aggregations in the course of the
last 4 seconds of a slot, different factors could produce this
difference in the average score of the blocks:

a) Message propagation latency: Higher latencies when
receiving messages clearly limit the number of aggregations
that you can include in a block. Figure 7 displays the Cumu-
lative Distribution Function (CDF) of the message arrival time
in each location, where the Y axis represents the normalized
percentiles between ranges 0 and 1, and the X axis the arrival
time in seconds. We can read the figure as the 50th percentile
of blocks (0.5 on the Y axis) in Helsinki arrived in 1.44
seconds or less. We can see that, despite London having the
second-best median of arrival times, 2.18 seconds, it has one
of the worst 90th percentiles of 4.15 seconds. The large tail
of block arrivals beyond 4 seconds represents 10% of the
total tracked messages and it partially explains the block score
differences between locations.

b) The aggregation of more new votes in a block:
Receiving messages later means adding fewer votes in a new
block, which are the ones producing the rewards for the
block proposer. Figure 8 displays the average number of new
votes included at each location, including the average of their
correctness. The figure clearly shows the dominance of nodes
in Helsinki that not only aggregate more new votes but also
have, on average, more correct attestation flags.

c) Desynchronization of beacon nodes: Desynchroniza-
tion is, even if we put endless effort into avoiding it, one



Fig. 8. Number of new votes and their correct flags
on each location.

Fig. 9. Percentage of slots each beacon node was
out of sync in each location.

Fig. 10. Average block arrival time per client and
location.

of the major drawbacks we found to explain the difference in
average score between locations. Of course, a beacon node can
not process new messages and generate new blocks if it gets
out of sync with the head of the chain. Several events could
cause this to happen, such as big local reorgs caused by higher
latencies or by hardware limitations (slow disk where to prune
states or not enough CPU available to validate messages on
time). Figure 9 displays the percentage of slots each node was
down versus the number of slots we measured. In the picture,
we can appreciate that Helsinki was barely unsynchronized.
We can also appreciate how Lodestar in London affected the
previous averages, with a 37, 74% of the measured slots out
of sync. The results are more puzzling when we compare it
with Warsaw, concluding that despite having similar hardware,
it was stable and in harmony with the rest of the clients at
around 5, 25% downtime, and despite this, it performs worse
than London both in correct flags and block score.

2) Latencies on block arrival: We have already introduced
the importance of message broadcasting latencies within the
slot time range. Shorter notice of messages such as blocks or
aggregations might be critical to ensure that validator duties
are correctly achieved. As we would imagine, different loca-
tions with different connections with the rest of the network
could generate different network perspectives. This way, if the
defined 4 seconds to distribute a message weren’t enough, we
could expect that those regions with higher latencies would
perform poorer than the better-connected ones. To corroborate
our hypothesis, we tracked the arrival of block messages to
each client in the four different mainnet instances. The tool
would first subscribe to the beacon node’s API to stream the
arrival of new blocks, indexing the event with the notification
timestamp. From the difference between the local timestamp
and the time the slot started (second “0” of the slot, when
block proposers should publish the block), we have aggregated
the arrival times, distinguishing the distribution from the
following figure. Figure 10 shows how clients in Helsinki
received the block messages significantly sooner. We would
expect from previous experiences that the European area has
better connectivity in general terms, and this graph proves it:
on average, nodes in Helsinki received blocks 1.06 seconds
sooner than nodes in Sydney. However, even though we are

not making any distinction across clients (all clients were
aggregated) to have a fair comparison between the locations,
the differences between London, Sydney, and Warsaw are not
as remarkable as the arrival times in Helsinki. With an average
block arrival time of 2.60, 2.68, and 2.53 for each, the figure
shows that the major differences between the instances could
be originated from the distinct machines chosen per location.

Although we tried to have the most similar machines in
each location, Cloud Service providers couldn’t offer the
same hardware tier across the four locations. With a clearer
dominance of resources from the machine in Helsinki, even
though it had to share the disk among ten different clients (five
CL + five EL), it still had a powerful bare metal machine with
32 CPU cores and 128GB of memory. Limited CPU resources
could become a bottleneck when a client receives and validates
a block message, as they generate computational spikes every
4 seconds. Thus, to some degree, this CPU bottleneck can
increase the measured latency of processing blocks, including
the time our tool got notified. Of course, different clients
mean different implementations. The heat map in Figure 10
breaks down the block arrival times per client and location
showing some differences across the clients. Without being
highly dispersed among the clients, it is clear that some clients
received and processed the block faster than others during our
study. Despite showing the same distribution as the previous
figure 9 among the different locations, Lodestar is in the order
of 300ms slower in receiving and processing new blocks.

There are many reasons that could cause a later message
arrival. On the one hand, we have the number of connected
peers, where Lodestar and Prysm stay at 50 to 55 number of si-
multaneously connected peers, Lighthouse and Teku stay with
an average of 80 to 100 connections and Nimbus outstands
the rest with 160 direct peers. However, on the other hand,
clients must allocate more computational power at the arrival
of messages to process and validate the messages or to update
the local beacon state. For this reason, the bigger the number
of simultaneous connections the node has, the more messages
you need to process. Thus, this normally generates CPU usage
peaks every 4 seconds, and as it happens with higher latencies,
both have a direct impact on the performance of the client.



V. DISCUSSION

This paper presents a distinct methodology that can be
used to analyze the impact of latency on the performance
of Ethereum CL nodes located around different geograph-
ical locations. In the presented results, we have identified
that Ethereum CL’s default 4 seconds for broadcasting gives
enough margin to propagate and receive all the necessary mes-
sages (i.e., sync committee attestations and block proposals) in
most geographical locations, at least if the clients are running
in instances with minimum hardware specifications.

We have empirically demonstrated that some regions, such
as Oceanı́a and Southeast Asia, have higher latency distribu-
tions when receiving block messages for the first time; with
some locations receiving 10% of the messages beyond the 4
second mark. This makes nodes more likely to lose the correct
head of the chain, leading more often to reorg their local
chain and ultimately failing or performing duties more poorly
because the node is not fully operational. This gets mirrored
when comparing the rewards achieved between the available
locations, where Sydney nodes earned 10% fewer rewards
from the MER than the rest. We have demonstrated that even
though the hardware requirements to participate in a Post-
Merge Ethereum are substantially smaller than its predecessor
PoW consensus, there are some minimum requirements to run
both EL and CL clients without a hardware bottleneck.

Furthermore, the paper compares the networking perfor-
mance of the different available Ethereum CL clients. We have
demonstrated that under optimal networking and hardware
conditions (i.e., the instance in Helsinki), there are barely any
differences between clients, i.e., a similar downtime or out-of-
sync time. We have identified that hardware limitations directly
increase the latency (mostly from message validation). Thus,
nodes face more downtime as they might get out of sync, or
could potentially add fewer new votes to their blocks.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a new methodology to quantify, qualify,
and compare the performance of Ethereum beacon nodes.
We have demonstrated that despite all the clients performing
similarly under optimal hardware and networking conditions,
variations or limitations on these same ones can severely
impact the stability of the beacon nodes, and thus, the per-
formance of the hosted validators. We can conclude the study
by stating that there is indeed a performance impact related
to the connectivity of a node. Still, it is only significant
when the hardware is not properly dimensioned. With the
presented clear difference in block arrival latencies across
locations, nodes further away from the core of the network
can see their stability and performance reduced. Reaching
even critical stability problems if the hardware is not slightly
over-dimensioned. In future work, we aim to explore a real-
time model able to aggregate and compare all the presented
parameters to monitor and alert the performance of a client
with or without a validator.
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