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Abstract—Developing electroencephalogram (EEG) based
brain-computer interface (BCI) systems is challenging. In this
study, we analyzed natural grasp actions from EEG. Ten healthy
subjects participated in this experiment. They executed and imag-
ined three sustained grasp actions. We proposed a novel approach
which estimates muscle activity patterns from EEG signals to
improve the overall classification accuracy. For implementing, we
have recorded EEG and electromyogram (EMG) simultaneously.
Using the similarity of the estimated pattern from EEG signals
compare to the activity pattern from EMG signals showed higher
classification accuracy than competitive methods. As a result, we
obtained the average classification accuracy of 63.89±7.54% for
actual movement and 46.96±15.30% for motor imagery. These
are 21.59% and 5.66% higher than the result of the competitive
model, respectively. This result is encouraging, and the proposed
method could potentially be used in future applications, such as a
BCI-driven robot control for handling various daily use objects.

Keywords-brain-computer interface; electroencephalogram;
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I. INTRODUCTION

Decoding electroencephalogram (EEG) based brain-
computer interfaces (BCIs) is a challenging task. Even with
its difficulties, the BCIs are promising tools for detecting user
intention and controlling robotic devices such as upper limb
prosthesis [1]–[3]. Many research groups use EEG-based
BCI because of its cost-effectiveness, convenience [2]–[5],
and potentials [6]–[8]. At the same time, improving the
decoding accuracy of the BCI system is one of the major
interests of many researchers [9], [10]. Among the many other
motor-related EEG studies, we focused on hand movements.
The hands are uniquely related to more dynamic brain activity
than other extremities so we can acquire the EEG signals
in the various amounts and aspects. About the decoding of
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movement in the hands and upper extremities, three related
studies inspired our research. Schwarz et al. [11] tried to
decode natural reach and grasp actions from human EEG.
They attempted to identify three different executed reach
and grasp actions, namely lateral, pincer, and palmar grasp,
utilizing EEG neural correlates.

Other research groups had slightly different approaches.
Ofner et al. [12] had encoded single upper limb movements in
the time-domain of low-frequency EEG signals. The primary
goal of the experiment was to classify six different actions,
and those are elbow flexion, extension, hand grasp, spread,
wrist twist left, and twist right.

Agashe et al. [13] had decoded hand motions with a
different approach. They demonstrated that global cortical
activity predicts the shape of the hand during grasping. It
was an offline study, and they inferred from EEG hand joint
angular velocities as well as synergistic trajectories as subjects
perform natural reach-to-grasp movements. They also showed
real-time closed-loop neuroprosthetic control of grasping by
an amputee and the feasibility of decoding brain signals of
a variety of hand motions. However, these related studies
could not achieve adequate and robust decoding performance
on multiple tasks of the natural hand movements due to its
complex characteristics of the brain signal data related to
the hand and upper limb. Therefore, we tried to solve this
challenging limitation with a new approach and perspective.

The objective of this study is to confirm whether our pro-
posed method that performs muscle activity pattern matching
by creating the estimated muscle activity patterns from each
electromyographic (EMG) and EEG signals improves the BCI
performance of each subject or not. At the same time, we
proved the feasibility of classifying various grasping tasks in
the right hand from EEG signals with the proposed method
in both actual movement and MI paradigm. Using this new
approach, we achieved the improvement of classification accu-
racy. This approach will be used for further BCI applications,
such as controlling a robotic hand. The signals from ten
participants were acquired, and we only selected the signals
related to muscle activity from the segmented data. With the
running of sufficient experimental trials and data analysis,
we could construct a robust decoding model based on our
proposed method.
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Fig. 1. Experimental environment and location of EEG and EMG electrodes

TABLE I
SELECTED EMG CHANNELS AND THE TARGETED MUSCLES

Ch. Target muscle Related Muscle activity
1 Extensor carpi ulnaris Wrist extension and abduction
2 Extensor digitorum Finger extension and abduction
3 Flexor carpi radialis Wrist and hand flexion
4 Flexor carpi ulnaris Palm and finger flexion
5 Biceps brachii Forearm lifting
6 Triceps brachii Forearm extension and retraction

II. MATERIALS AND METHODS

A. Participants

Ten healthy subjects with no history of neurological disease
were recruited for the experiment (S1S10; ages 2433; six
men, four women; all right-handed). This study was reviewed
and approved by the International Review Board, at Korea
University [1040548-KU-IRB-17-172-A-2], and written in-
formed consent was obtained from all participants before the
experiments.

B. Experimental Setup

During a session of the experimental protocol, the subjects
sat in front of a 24-inch LCD monitor screen, in a comfortable
chair. The screen was installed on the table to make sure
that the subjects could see the objects and visual cue. Fig. 1
indicates the experimental setup and the environment during
the entire session. The subjects were asked to perform or
imagine a specific grasping action following each auditory and
visual cue. During the experiment, the subjects were asked to
perform three different grasp actions or imagery, which are
illustrated in Fig. 2 (a). The location of the object setup was
randomly changed to reduce the effect of artifacts.

C. Data Acquisition

EEG data were collected at 2,500 Hz using 20 Ag/AgCl
electrodes (FC1–6, C1–6, Cz, CP1–6, and CPz) in 10/20 in-
ternational system via BrainAmp (BrainProduct GmbH) [14]–
[16]. At the same time, a 60 Hz notch filter was used to remove
power frequency interference. The FCz and FPz were used as

Resting state Preparation
(Visual cue)

Real movement
/ Motor imagery

0 3 6 10 (sec)

Single-trial

Cylindrical (Cup) Spherical (Ball) Lateral (Card)

… …

(b)

(a)

+
Rest

Fig. 2. Experimental protocol for data acquisition and visual cues

reference and ground electrodes, respectively. All impedances
were maintained below 10 kΩ. The 20 channels were located
only on the motor cortex to make sure that the recorded EEG
signals are highly related to the motor-related potentials, which
are from the actual movement and MI, as shown in Fig. 1.

EMG signals were recorded using 7 Ag/AgCl electrodes
from a digital amplifier, which is the same equipment to record
EEG signals. We acquired the EMG signals with the EEG
signals, simultaneously. The EMG data were recorded from
six related muscles of right arm movement, as shown in Table
I. The last electrode was placed nearby on the right arm elbow,
which is a non-muscle movement area, for a reference signal
[17].

D. Data Analysis

We followed the conventional process of filtering the EEG
and EMG signals [14], [18], [19]. We used [4–40] Hz fre-
quency band and separated them into eleven sub-bands for
further analysis. The size of the separated bands is 4 Hz
size with a step size of 2 Hz [20], [21]. We extracted spatial
patterns using common spatial patterns (CSP) from the filtered
EEG [22], [23]. The various window size of 500–2,000 ms was
applied to make data segments from the raw EMG signals.
The same sliding window was applied to the raw EEG signals
as well. After creating the data segments, we adapted the
function to calculate the root mean square (RMS) value on
the segmented EMG data [17], [24]. Before the RMS step,
we already calculated a threshold from the averaged RMS
value in a single trial (0–4 sec). When the RMS value of
the EMG signal occurs at the specific time point over the
pre-defined threshold, we classify this data segment to 0 or
1, a binary classification. We used the sliding windows and
made 30 segments from a single trial which is 4,000 ms long.
The 1×30 size image shows the result of decoding EMG
signals, as shown in Fig 3. This process was performed once
by each EMG channel so we could create six images from the
six channels. The 6×30-size image shows a muscle activity
pattern. We have built the group of pattern for each grasp
action class by repeating this process 50 times because each
subject performed 50 trials for each class.
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Fig. 3. Proposed method for classifying grasp actions with muscle activity pattern matching and comparison
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Fig. 4. Average classification accuracy on the each EMG activation

In the case of EEG signal decoding, we applied the same
moving window from the EMG decoding process. We used this
data to train a binary classifier. The label is generated from the
EMG decoding and it is used as a training label and ground
truth for scoring the performance of the classifier. The CSP
was applied to extract spatial features. The features were used
as input data to train the linear discriminant analysis (LDA).
Throughout the process, we have noted that the estimated
pattern from the EEG corresponds to the pattern from the
EMG signals. After that, we compared the similarity with the
group of patterns, the ground truth. We calculated the mean
squared error (MSE) for every 150 pattern images. One of
the three that showed the lowest averaged error (the highest
similarity) compared to the estimated pattern can be defined
as the intended grasp action by the subject.

III. RESULTS AND DISCUSSION

The proposed method improves the overall classification
performance of the BCI system. We compared our method
to the two other competitive models, the model I and model
II, as shown in Tables II and III. Model I contains CSP
and LDA [22], [25]. Model II contains filter bank regularized

CSP (FBRCSP), which usually shows the highest performance
in other BCI studies [21], [26]. The proposed method that
uses muscle activity patterns to classify natural grasp actions
showed 24.01% increased classification accuracy than the
model I and 21.59% improvement compared to the model II.

Table III describes the results in the motor imagery
paradigm. The proposed method showed 8.60% and 5.66%
improvement in the motor imagery paradigm. It is much
less than the result in actual movement, but we point out
the proposed method increases the classification performance
dramatically on specific subjects, such as S3, 4, and 8.

In motor imagery, the proposed method showed unstable
performance for improving the classification accuracy. We
assume that the problem is because of the binary classifier
which is used to create the estimated pattern from EEG signals.
Unlike the case of the actual movement paradigm, we could
not obtain the corresponding EMG signals while the subjects
performed motor imagery. Therefore, we recalled the trained
classifier from the actual movement decoding process and then
applied it to the EEG data of the motor imagery [19], [27].

As a result, the similarity of the final estimated pattern as
compared to the muscle activity patterns is much lower than
the pattern we could create in the actual movement paradigm
due to the limitation of estimating without the corresponding
EMG signals. Nevertheless, the proposed method also showed
an improvement in performance, although the limitation in the
motor imagery paradigm.

IV. CONCLUSION AND FUTURE WORK

The proposed method suggested a novel approach to decode
EEG signals to classify natural grasp actions. In Fig. 4, each
graph shows binary classification accuracy for each muscle
activity by the EMG channel. Using this binary classifier,
we could get reliable estimated muscle activity patterns from
EEG data decoding. Our method has the potential to improve
performance by increasing the classification accuracy on the
binary classifier to get a more accurate estimated muscle
activity pattern or improve the similarity comparison step
using an advanced model such as deep learning [28], [29].



TABLE II
CLASSIFICATION RESULT COMPARISON IN ACTUAL MOVEMENT PARADIGM

Subject Accuracy (%)
Proposed Model I Model II

S1 69.32 39.54 41.32
S2 71.98 33.04 40.12
S3 70.22 36.23 38.88
S4 67.13 42.32 41.32
S5 59.10 39.31 44.08
S6 68.23 35.24 39.20
S7 47.43 48.23 49.12
S8 67.02 41.48 47.33
S9 58.43 45.01 39.42
S10 60.01 37.99 42.15

MeanStd. 63.897.54 39.844.60 42.293.52

TABLE III
CLASSIFICATION RESULT COMPARISON IN MOTOR IMAGERY PARADIGM

Subject Accuracy (%)
Proposed Model I Model II

S1 33.32 34.13 41.32
S2 38.42 33.50 36.44
S3 69.23 38.12 39.43
S4 62.13 40.31 32.54
S5 38.03 40.01 35.23
S6 43.23 39.31 59.32
S7 35.23 43.23 43.24
S8 73.48 32.48 44.24
S9 34.11 38.49 39.32
S10 42.42 44.01 41.9

MeanStd. 46.9615.29 38.363.93 41.307.32
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