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Abstract—Recently, practical brain-computer interface is actively 
carried out, especially, in an ambulatory environment. However, 
the electroencephalography signals are distorted by movement 
artifacts and electromyography signals in ambulatory condition, 
which make hard to recognize human intention. In addition, as 
hardware issues are also challenging, ear-EEG has been developed 
for practical brain-computer interface and is widely used. 
However, ear-EEG still contains contaminated signals. In this 
paper, we proposed robust two-stream deep neural networks in 
walking conditions and analyzed the visual response EEG signals 
in the scalp and ear in terms of statistical analysis and brain-
computer interface performance. We validated the signals with the 
visual response paradigm, steady-state visual evoked potential. 
The brain-computer interface performance deteriorated as 3~14% 
when walking fast at 1.6 m/s. When applying the proposed method, 
the accuracies increase 15% in cap-EEG and 7% in ear-EEG. The 
proposed method shows robust to the ambulatory condition in 
session dependent and session-to-session experiments.                                                                     

Keywords-brain-computer interface; ambulatory environment; 
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I.  INTRODUCTION 
Brain-computer interfaces (BCIs) in ambulatory conditions 

is one of the most important factors in real life. While many have 
studied BCIs for detecting human cognitive condition or 
intention based on electroencephalography (EEG), limitations 
used in real life are exposed to the ambulatory environment [l, 
2]. This is because the EEG signals are distorted much in 
ambulatory conditions [3, 4]. Movement artifacts are caused by 
electromyography generated by muscle activity when walking, 
or by skin and cable movements. Since these artifacts are much 
larger in amplitude than the brain signal that contains the user's 
intent, it is difficult to catch properly the meaning of intention. 
Therefore, decoding human intention in the ambulatory 
environment is tried these days [4-7] using movement artifact 
removal methods [8, 9] and deep neural networks [7, 10-17] to 
robust the artifacts and increase the performance.                                                                                                                                                                                                                                   

The development of simple hardware to measure EEG 
signals has become a big issue. Among them, the ear-EEG has 
recently been studied extensively by many researchers to 
improve user convenience and validated by analyzing the signal 
quality and executing various BCI paradigms. In addition, the 
conventional hardware to measure EEG is annoying users in 

terms of high cost and difficulties to setup. Setup of EEG cap 
uses a conductive gel on the hairs, which needs to wash after 
measuring, and stands out due to wearing an uncomfortable cap. 
In order to reduce the tiresome, uncomplicated devices were 
designed, such as Emotive EPOC and ear-EEG. In Kidmose et 
al. [18], the researchers analyzed scalp and ear-EEG signals with 
steady-state and transient event-related potential (ERP) 
paradigms. Moreover, Debener et al. [19, 20] designed cEEGrid 
which placed electrodes around the ear. The cEEGrid could 
preserve the ERP signals and have similar performance to cap-
EEG. Whereas, there is a limitation that the performance is lower 
than conventional scalp-EEG. Therefore, several studies tried to 
increase the performance of ear-EEG for visual or auditory 
responses [21]. 

BCI paradigms are mainly developed to motor imagery [22-
27], ERP [28-32], and steady-state visual evoked potential 
(SSVEP) [6, 7, 32-34]. ERP and SSVEP are visual responses and 
are widely used to recognize human intention because their 
patterns in EEG signals are relatively huge and they showed 
reliable performance when it comes to accuracy and response 
time with only a few EEG channels comparing to other BCI 
paradigms. SSVEPs and ERPs including P300 are primary used 
visual response paradigms. SSVEPs are the natural visual 
responses evoked in the occipital cortex to periodic visual 
stimuli at specific frequencies. They typically operate several 
targets at specific frequencies between 1 and 100 Hz and can be 
distinguished by their characteristic composition of harmonic 
frequencies [33]. 

There are many machine learning methods to recognize 
human intention through visual responses. For SSVEP, many 
use classifiers named canonical correlation analysis (CCA) [35, 
36], multivariate statistical analysis for inferring information 
from cross-covariance matrices of the relationships among the 
variables. And these days, using machine learning methods and 
deep learning methods such as convolutional neural networks 
(CNN) could increase the accuracy of huge degrees in several 
papers [37]. In Kwak et al. [7], CNN are used to classify the 
visual response from cap-EEG, having 94.03% accuracy. This 
paper experimented in ambulatory conditions as well, riding 
exoskeleton. Another study [10] also used the features based on 
fast Fourier transform and CNN classifiers to recognize the 
human intention from SSVEP. The Castermans et al. [4] 
classified ERP intention in the ambulatory environment, up to 
1.25 m/s using linear discriminant analysis (LDA) classifier.   This work was supported by Institute for Information & Communications 

Technology Promotion (IITP) grant funded by the Korea government (No. 
2017-0-00451, Development of BCI based Brain and Cognitive Computing 
Technology for Recognizing User’s Intentions using Deep Learning). 



In this paper, we decoded the visual responses from cap-EEG 
and ear-EEG in the ambulatory environment. For practical BCIs, 
simple hardware and high accurate classifier of human intention 
is necessary. Therefore, we investigated deep learning methods 
to increase human intention recognition and used ear-EEG for 
practical BCI in the real-world. 

II. MATERIALS AND METHODS 

A. Participants  
We included thirteen healthy participants (3 females, age 

24.5 ±2.5 years) with normal or corrected-to-normal vision and 
no difficulties to walk at Korea University in Seoul, Korea. None 
of the participants had a history of neurological, psychiatric, or 
any other pertinent disease that otherwise might have affected 
the experimental results. This study was reviewed and approved 
by the Korea University Institutional Review Board (KUIRB-
2019-0194-01).  

B. Experimental Paradigm 
The subjects were stood on the treadmill at 80 (±5) cm in 

front of a monitor and walked at two different speeds (0.8 and 
1.6 m/s). We experimented with three target frequencies SSVEP 
paradigm. Participants were maintained from the screen at 80 
(±10) cm in front of a 60 Hz LCD monitor (Samsung, 
SyncMaster 2494HM, refresh rate: 60 Hz; resolution: 1920 × 
1080). The white-colored SSVEP stimuli were designed to 
flicker at 5.45, 6.67, and 8.57 Hz, which were calculated by 
dividing the monitor refresh rate by an integer (60/11, 60/7, and 
60/5). The size of the stimuli was 6 cm × 6 cm. Each stimulus 
was presented for 3.5 s with an inter-stimulus interval of 4 s. The 
visual stimuli were generated using the Psychophysics Toolbox 
in Matlab. We followed the SSVEP paradigm of a previous 
study [38]. 

Figure 1. Experimental setup. (a) Experimental design. Subjects walked on a treadmill and focus on the presented stimulus on a screen. EEG signals from scalp 
and ear were measured and signals from IMU sensors were also collected at the same time. (b) Scalp-EEG channel placement. 32-channels focusing on occipital 

regions were collected. (c) Ear-EEG channel placement. 18 channels, 10 channels from left and 8 channels from right were measured.  
(d) Presented stimulus. Three different stimulus were flickering in 5.45, 8.75, and 12 Hz. 



C. Data Acquisition and Preprocessing 
Figure 1 shows the experimental setup about measurement, 

experimental tools, and channel placement. We recorded 32-
channel of cap-EEG, 18-channels of ear-EEG, and 9-channels 
Inertial Measurement Unit (IMU) sensors. We used a wireless 
interface (MOVE system, Brain Product GmbH) and Ag/AgCl 
electrodes to acquire EEG signals from the scalp and Smarting 
System (mBrainTrain LLC) and cEEGrid electrodes to acquire 
EEG signals from ear. Three wearable IMU sensors have 
recorded the movement on the head, left and right ankles. The 
cap electrodes were placed according to the 10-20 international 
system at locations: Fp1, Fp2, AFz, F7, F3, Fz, F4, F8, FC5, 
FC1, FC2, FC6, C3, Cz, C4, CP5, CP1, CP2, CP6, P7, P3, Pz, 
P4, P8, PO7, PO3, POz, PO4, PO8, O1, Oz, and O2. Ear-EEG 
electrodes were cEEGrid, having 10 channels on left side (L1 to 
L10), 8 channels on right side (R1 to R8) and GND and REF in 
the middle of right side. The impedances were maintained below 
10 kΩ for both scalp and ear-EEG. We set the sampling rate as 
500 Hz for cap and ear-EEG and 128 Hz for IMU sensors.   

All BCI experiments were developed based on the OpenBMI 
[39], BBCI [40] and Psychophysics toolboxes [41]. We 
performed down sampling or resampling to 100 Hz for all 
measurement and high-pass filter using finite impulse response 
filter passing above 3 Hz. 

D. Proposed Deep Neural Networks 
We utilized two different features, frequency-domain 

features, and time-domain features, to train deep neural networks 
algorithm described in figure 2. Two-stream deep neural 
networks are used, having CNNs for frequency-domain feature 
training and long-short term memory (LSTM) for time-domain 
feature training. For acquiring frequency-based input, FFT is 
used for each channel and is denoted by 

𝑋𝑋𝑓𝑓 = ∑ 𝑒𝑒−2𝜋𝜋𝜋𝜋𝜋𝜋�
𝑡𝑡
𝑇𝑇�𝑥𝑥𝑡𝑡𝑇𝑇−1

𝑡𝑡=0                         (1) 

where 𝑥𝑥𝑡𝑡  is time-domain input, T is time, 𝑋𝑋𝑓𝑓  is frequency-
domain output. The neural networks for frequency domain are 
three CNN-hidden layers and a fully-connected hidden layers. In 
the first layer, eight kernels, channel-wise convolution, having a 
size of 1 by the number of channels are used and the feature maps 
have a shape of time by 1. The feature maps are calculated by 

𝑥𝑥𝑘𝑘 = 𝑓𝑓(𝜎𝜎𝑘𝑘(𝑝𝑝))                                    (2)  

where 𝜎𝜎𝑘𝑘 is convolutional function, 𝑝𝑝 is a position of input, 𝑓𝑓(∙) 
function is activation function, rectified linear unit (ReLU) is 
used for the activation function and is denoted by 

𝑓𝑓(𝑧𝑧) = max (0, 𝑧𝑧)                                  (3)  

Figure 2. Deep learning networks structure. Two types of input, frequency-based input and time-based input are used. Frequency-domain learning has four hidden 
layers and time-domain learning has three hidden layers. C indicated the number of channels, according to scalp and ear-EEG. 



TABLE I.  TABLE 1 CLASSIFICATION ACCURACY OF EAR-EEG FOR ALL SUBJECTS USING DIFFERENT METHODS IN DIFFERENT WALKING ENVIRONMENT. 

The convolutional function 𝜎𝜎𝑘𝑘 can be represented by  

 𝑘𝑘(𝑝𝑝) = 𝑏𝑏𝑘𝑘 + ∑ ∑ 𝑥𝑥𝑖𝑖,𝑗𝑗 ∙ 𝑤𝑤𝑘𝑘
𝑖𝑖,𝑗𝑗𝑗𝑗=𝐾𝐾𝑦𝑦

𝑗𝑗=1
𝑖𝑖=𝐾𝐾𝑥𝑥
𝑖𝑖=1                  (4) 

where 𝑏𝑏𝑘𝑘 is bias of kernel 𝑘𝑘, 𝐾𝐾𝑥𝑥 and 𝐾𝐾𝑦𝑦 is kernel size, 𝑥𝑥 is input 
matrix, and 𝑤𝑤𝑘𝑘 is weight of kernel 𝑘𝑘.  

Time-domain features were gathered by LSTM having three 
hidden layers. After acquiring feature maps, we combined two 
feature maps, time-domain and frequency-domain features. 

Cross-entropy loss, logarithm multiplying classes, are used 
for the loss function of the algorithm, which is denoted by 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  −𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡�𝑓𝑓(𝑠𝑠)� − (1 − 𝑡𝑡) log�1 − 𝑓𝑓(𝑠𝑠)�       (5) 

where t is a class in [0,1], s is the ground truth, and f(s) is 
prediction function. The learning rate was 0.01 and weights 
were initialized with a normal distribution. The number of 
epochs was 50 and batch size was 32. 

III. RESULTS 
For evaluating our proposed methods, we compared with 

conventional methods, CCA and LDA. And we analyzed data 
for session dependent and session-to-session from standing to 
walking sessions. As CCA is a statistical analysis method that 
doesn’t need training data, we analyzed session-to-session data 
using only LDA and proposed method. The results were 
statistically analyzed using the statistical method of t-test. Table 
I shows the results of analysis for SSVEP from scalp and ear-

Speed Methods S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 Average SD 

Standing 
CCAa 0.40 0.62 0.42 0.73 0.70 0.45 0.47 0.42 0.57 0.47 0.37 0.57 0.47 0.51 0.12 
LDAb 0.38 0.46 0.41 0.41 0.30 0.35 0.27 0.41 0.27 0.30 0.46 0.35 0.38 0.36 0.06 

Proposedc 0.42 0.38 0.38 0.63 0.50 0.54 0.71 0.42 0.38 0.38 0.54 0.58 0.54 0.49 0.11 

0.8m/s 
CCA 0.37 0.38 0.53 0.48 0.53 0.38 0.42 0.38 0.43 0.38 0.32 0.47 0.38 0.42 0.07 
LDA 0.32 0.35 0.46 0.38 0.41 0.24 0.43 0.43 0.54 0.35 0.35 0.32 0.32 0.38 0.08 

Proposed 0.42 0.38 0.42 0.79 0.54 0.46 0.42 0.50 0.67 0.38 0.50 0.46 0.46 0.49 0.12 

1.6m/s 
CCA 0.35 0.52 0.43 0.37 0.50 0.42 0.33 0.45 0.38 0.38 0.47 0.37 0.37 0.41 0.06 
LDA 0.22 0.49 0.43 0.41 0.41 0.43 0.46 0.57 0.43 0.38 0.62 0.32 0.41 0.43 0.10 

Proposed 0.50 0.33 0.46 0.71 0.46 0.50 0.46 0.50 0.58 0.46 0.50 0.38 0.42 0.48 0.09 
a. CCA = canonical correlation analysis 

b. LDA = linear discriminant analysis 
c. Proposed method = convolutional neural networks + long-short term memory 

Figure 3. Performance of each method in different speeds. Left graph (a) shows the accuracy of each sessions in different speeds. Bar graphs represent the 
accuracies of EEG from scalp and the box graphs represent the average and standard deviation of the accuracies of EEG from ear. Right graph (b) shows the 
accuracy of session-to-session learning in different speeds. Training data was standing data for each subjects and test data was walking data in each speed. 

One asterisk indicates the 5% significance level between accuracies of two methods and two asterisks indicate the 1% significance level. 



EEG and indicates all subjects’ performance for each method in 
each different walking speed. 

A. Session Dependent Classification 
Figure 3 (a) indicates the accuracy of each method from scalp 

and ear-EEG for independent sessions. The bar graphs represent 
the accuracy of data from scalp-EEG. In session independent 
analysis, there are a few decreases as increasing the speed of 
walking for scalp-EEG data. When we used CCA or LDA for 
classification, the classification performance of 1.6 m/s data 
decreased from standing data as 11% and 14%, respectively. The 
proposed method for 1.6 m/s, however, decreased performance 
as only 4% comparing standing data (pCCA-CNN = 0.045, pLDA-CNN 
= 0.023). The box graphs represent the average and standard 
deviation of the accuracy of data from ear-EEG. The 
performance for ear-EEG in 1.6 m/s using CCA decreased as 
10%. On the other hand, the proposed method decreased as only 
1%. Moreover, in speed 1.6 m/s, the proposed method had the 
highest performance for both scalp (p = 0.004) and ear-EEG. 

B. Session-to-session Classification 
Figure 3 (b) indicates the accuracy of each method from 

scalp and ear-EEG for session-to-session. We used EEG data in 
standing condition as training data and walking in 0.8 m/s and 
1.6 m/s as test data. The session-to-session accuracy is lower 
than session-dependent, especially in ear-EEG. The accuracies 
using proposed method for scalp-EEG in 1.6 m/s using LDA are 
much higher than LDA having 66% and 81%, respectively (p < 
0.001). The accuracies using proposed method for ear-EEG in 
1.6m/s are also higher than LDA having 35% and 39%, 
respectively (p = 0.047). 

IV. DISCUSSION AND CONCLUSION 
In this study, we proposed a robust method in walking 

condition decoding visual response in scalp and ear-EEG using 
deep neural networks. Practical BCIs require a robust system in 
an ambulatory environment and simple hardware usable in the 
real-world. We decoded visual responses such as SSVEP from 
scalp and ear-EEG in different walking conditions. The 
proposed method is two-stream deep learning architecture using 
frequency-domain features and time-domain features. We show 
that the proposed method is robust in the ambulatory 
environment comparing with other methods.  

Kwak et al. [7] was reported that the feature map from neural 
networks had strong channel-wise features and frequency-wise 
features so that the networks could distinguish the intention of 
humans in noisy conditions. Therefore, the results for 
recognizing human intention in an ambulatory environment 
without using artifact removal methods had the reasonable 
performance in session-dependent data. However, for session-
to-session data, the performances were lower that could not fit 
network because of the artifacts’ variance.  

In conclusion, we showed that deep neural networks could 
show reasonable performance for each session even in the 
ambulatory environment. However, it was difficult to increase 
the performance fitting from training data in standing condition 
to test data in walking condition due to huge artifacts features. 
In the future, the study removing noisy signals but remaining 

essential components was necessary to recognize the human 
intention for a different session in the ambulatory environment. 
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