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Abstract—Recent advances in brain-computer interface tech-
nology have shown the potential of imagined speech and visual
imagery as a robust paradigm for intuitive brain-computer
interface communication. However, the internal dynamics of the
two paradigms along with their intrinsic features haven’t been
revealed. In this paper, we investigated the functional connectivity
of the two paradigms, considering various frequency ranges. The
dataset of sixteen subjects performing thirteen-class imagined
speech and visual imagery were used for the analysis. The
phase-locking value of imagined speech and visual imagery was
analyzed in seven cortical regions with four frequency ranges.
We compared the functional connectivity of imagined speech
and visual imagery with the resting state to investigate the brain
alterations during the imagery. The phase-locking value in the
whole brain region exhibited a significant decrease during both
imagined speech and visual imagery. Broca and Wernicke’s area
along with the auditory cortex mainly exhibited a significant
decrease in the imagined speech, and the prefrontal cortex and
the auditory cortex have shown a significant decrease in the
visual imagery paradigm. Further investigation on the brain
connectivity along with the decoding performance of the two
paradigms may play a crucial role as a performance predictor.

Keywords—electroencephalography; functional connectivity;
imagined speech; intuitive brain-computer interface; visual imagery

I. INTRODUCTION

Recently, imagined speech and visual imagery paradigms
are actively investigated in the field of intuitive brain-computer
interface (BCI). These endogenous paradigms are reported to
be effective in BCI communication since they involve the user
intention directly [1]. Attempts to robust decoding of the two
paradigms with the investigation of their intrinsic features are
being actively proposed [2]. However, the underlying features
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and cortical networks of imagined speech and visual imagery
are still missing. Understanding the intrinsic cortical networks
may play a crucial role in improving the decoding performance
of BCI paradigms. Yet, the intrinsic features and the cortical
networks have not been taken into account with the classifi-
cation performance. Considering the intrinsic features of the
two paradigms may highly improve the decoding performance
[3].

Previous studies have demonstrated the possibility of de-
coding imagined speech in terms of phonemes, words, and
simple sentences phonemes [4], words [5], and simple sen-
tences [6]. For multiclass decoding, studies reported three-
class classification performance of 50.1% using Riemannian
features and a relevance vector machine [7] and 54.1% using
a discrete wavelet transform feature with a multilayer per-
ceptron [8]. Qureshi et al. [9] reported 32.9% of the five-
class imagined speech classification accuracy using hybrid
connectivity features and an extreme learning machine. As
for visual imagery, the state-of-the-art performance remains at
lower levels—55.9% for binary decoding [10] and 25.9% for
six-class classification [11]. Lee et al. [1] reported 20.4% and
22.2% in thirteen-class classification of imagined speech and
visual imagery, respectively. These performances may further
be improved by considering the intrinsic features of each
paradigm.

For the intrinsic features and brain dynamics, the left
posterior superior temporal cortex (Wernicke’s area) and the
left prefrontal and premotor regions, including Broca area
and the supplementary motor area (SMA), are known to be
involved in the imagined speech process [12]. Fronto-temporal
coherence is also demonstrated as a measure of connectivity
in speech control [13]. Additionally, it has been reported for
decreased brain activity during imagery [7], high activation
on the temporal area [9], and high-frequency activation [14].
The increased top-down information flow in parieto-occipital
cortices is introduced as a distinct feature of visual imagery
[15]. It was reported that visual imagery draws most of
the same neural machinery as visual perception [16]. Visual
imagery is known to be associated with the activation of the
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temporal and occipital regions [16].
In the present study, we investigated the brain dynamics of

imagined speech and visual imagery paradigm by comparing
the brain connectivity of imagery and resting state in the two
paradigms. We analyzed the functional connectivity using the
phase-locking value (PLV) in specific frequency ranges along
with various cortical regions. By focusing on the brain state al-
terations during imagery of the two paradigms, we aim to find
out which features of the brain dynamics highly represent the
two intuitive paradigms, imagined speech and visual imagery.
Considering the brain dynamics of the two paradigms may
contribute to the precise analysis of electroencephalography
(EEG) data, thereby enhancing the decoding performance [17].

II. METHODS

A. Data Acquisition

We used the EEG dataset of sixteen subjects performing
the imagery of thirteen-class imagined speech and visual
imagery words/phrases. The experimental protocol followed
the previous work by Lee et al. [1]. The thirteen-class included
twelve words/phrases (ambulance, clock, hello, help me, light,
pain, stop, thank you, toilet, TV, water, and yes) and the resting
state. The data were recorded via Brain Vision/Recorder
(BrainProduct GmbH, Germany) with a 64-channel EEG cap
following the international 10-10 system (reference: FCz;
ground: FPz). Each subject randomly performed 88 trials of
imagined speech and visual imagery per each class (2000
ms was provided per trial). For the imagined speech session,
subjects were instructed to silently pronounce the given word
without moving the articulators; subjects imagined the given
visual scene of each class in the visual imagery session.
Subjects were instructed to relax during the rest class. The
study was conducted under the Declaration of Helsinki. The
experimental protocols were reviewed and approved by the
Institutional Review Board at Korea University [KUIRB-2019-
0143-01]. All the subjects signed an informed consent form.

B. EEG Data Processing

The pre-processing of the EEG data was performed using
the EEGLAB toolbox [18]. We down-sampled the data in
256 Hz, and bandpass filtered into 0.5-125 Hz. 60 Hz line
noise was removed by applying the notch filter. The common
average reference was used for re-referencing the data [19].
2000 ms epochs were extracted with the baseline corrected
with -500 ms from the onset. The data were then filtered
into four frequency ranges (delta: 0.5-4 Hz; theta: 4-8 Hz;
alpha: 8-13 Hz; beta: 13-30 Hz). The ocular and muscular
artifacts were removed using the automatic algorithms with
second-order blind identification and blind source canonical
correlation analysis [20].

C. Functional Connectivity

Brain alteration while performing the two paradigms was
identified for a precise understanding of the feasibility of brain
decoding. Brain connectivity was analyzed using the PLV,
which is a measure of the synchronization of electrical brain

activities for functional connectivity [21]. PLV was computed
during the imagery and resting state in four frequency ranges
within the seven cortical regions (six cortical groups + 64-
channel group) as:

PLVt,i,k =
i

N
|

N∑
n=1

exp (jθi,k(t, n))| (1)

θi,k(t, n) = φi(t, n)− φk(t, n); (2)

where θi,k(t, n) is the phase difference between channels
i and k in trials n; and N is the number of trials [21].
Since PLV is a measure between two channels, we used the
grand averaged value of every combination of two channels
involved in each cortical region. Inter-cortical connectivity was
also evaluated using the averaged PLV of every combination
between different cortical groups. Six cortical groups were the
Broca and Wernicke’s areas (AF3, F3, F5, FC3, FC5, T7, C5,
TP7, CP5, and P5), visual cortex (POz, PO3, PO4, PO7, PO8,
PO9, PO10, Oz, O1, and O2), auditory cortex (FT7, FT8, FT9,
FT10, T7, T8, TP7, TP8, TP9, and TP10), the motor cortex
(Fz, F1, F2, F3, F4, FC1, FC2, FC3, FC4, and Cz), prefrontal
cortex (Fp1, Fp2, AF3, AF4, AF7, AF8, F5, F6, F7, and F8),
and sensory cortex (Cz, C1, C2, C3, C4, CPz, CP1, CP2,
CP3, and CP4) [22]. The results were verified with statistical
analysis. A paired t-test was performed to compare the PLV
of imagery versus resting-state EEG.

III. RESULTS

A. Brain State Alteration During Imagery

We compared the PLV of the imagery with that of the resting
state in each cortical region for both paradigms (Tables I-
VIII). The PLV of imagined speech significantly decreased

TABLE I
COMPARISON BETWEEN PLV OF IMAGINED SPEECH AND RESTING STATE

(0.5-4 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.32 0.33 -2.892 0.011

Broca and Wernicke’s area 0.35 0.37 -2.600 0.020
Visual cortex 0.57 0.55 1.272 0.223

Auditory cortex 0.33 0.34 -1.500 0.154
Motor cortex 0.51 0.49 1.354 0.196

Prefrontal cortex 0.53 0.54 -1.156 0.266
Sensory cortex 0.46 0.44 1.707 0.108

Significant values are indicated in bold (p<0.05)

TABLE II
COMPARISON BETWEEN PLV OF IMAGINED SPEECH AND RESTING STATE

(4-8 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.32 0.34 -4.663 < 0.001

Broca and Wernicke’s area 0.39 0.40 -2.457 0.027
Visual cortex 0.55 0.55 -0.604 0.555

Auditory cortex 0.37 0.38 -2.081 0.055
Motor cortex 0.58 0.57 0.488 0.633

Prefrontal cortex 0.49 0.50 -1.672 0.115
Sensory cortex 0.46 0.46 <0.001 1.000

Significant values are indicated in bold (p<0.05)



TABLE III
COMPARISON BETWEEN PLV OF IMAGINED SPEECH AND RESTING STATE

(8-13 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.37 0.37 -0.387 0.704

Broca and Wernicke’s area 0.45 0.44 0.214 0.833
Visual cortex 0.55 0.55 <0.001 1.000

Auditory cortex 0.38 0.38 0.822 0.424
Motor cortex 0.64 0.64 1.202 0.248

Prefrontal cortex 0.48 0.49 -1.635 0.123
Sensory cortex 0.56 0.54 4.208 0.001

Significant values are indicated in bold (p<0.05)

TABLE IV
COMPARISON BETWEEN PLV OF IMAGINED SPEECH AND RESTING STATE

(13-30 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.30 0.32 -4.243 0.001

Broca and Wernicke’s area 0.39 0.39 -1.499 0.155
Visual cortex 0.50 0.51 -0.182 0.858

Auditory cortex 0.33 0.34 -2.683 0.017
Motor cortex 0.54 0.53 0.802 0.435

Prefrontal cortex 0.46 0.47 -1.370 0.191
Sensory cortex 0.44 0.44 <0.001 1.000

Significant values are indicated in bold (p<0.05)

TABLE V
COMPARISON BETWEEN PLV OF VISUAL IMAGERY AND RESTING STATE

(0.5-4 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.33 0.36 -2.324 0.035

Broca and Wernicke’s area 0.36 0.38 -1.773 0.097
Visual cortex 0.60 0.61 -0.653 0.524

Auditory cortex 0.36 0.37 -0.972 0.347
Motor cortex 0.53 0.55 -0.874 0.396

Prefrontal cortex 0.53 0.55 -1.553 0.141
Sensory cortex 0.46 0.48 -1.217 0.242

Significant values are indicated in bold (p<0.05)

in the whole brain region in the delta, theta, and beta bands
(Table I, II, and IV). Broca and Wernicke’s areas displayed a
significant decrease in PLV of imagined speech in the delta
and theta frequency (Table I, II); a significant decrease of
PLV of imagined speech was found in the auditory cortex
in the beta band range (Table IV). In contrast, the PLV of
imagined speech significantly increased in the sensory cortex
in the alpha band (Table III). For visual imagery, the PLV
significantly decreased in comparison with the resting state in
the whole-brain region in all four frequency regions (Table
V-VIII). Theta band displayed significantly decreased PLV of
the visual imagery in the auditory cortex and the prefrontal
cortex regions. Additionally, the auditory cortex exhibited a
significant decrease in the PLV of visual imagery, compared
to the resting state.

B. PLV of Different Cortical Regions

As shown in Tables I–VIII, a significant decrease in the
PLV of imagery state in comparison with the resting state was
mainly found in the cortical regions with inferior PLV than

TABLE VI
COMPARISON BETWEEN PLV OF VISUAL IMAGERY AND RESTING STATE

(4-8 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.33 0.36 -2.419 0.029

Broca and Wernicke’s area 0.41 0.42 -1.414 0.178
Visual cortex 0.59 0.59 0.110 0.914

Auditory cortex 0.39 0.41 -2.284 0.037
Motor cortex 0.60 0.61 -1.072 0.300

Prefrontal cortex 0.50 0.52 -2.643 0.018
Sensory cortex 0.45 0.46 -1.269 0.224

Significant values are indicated in bold (p<0.05)

TABLE VII
COMPARISON BETWEEN PLV OF VISUAL IMAGERY AND RESTING STATE

(8-13 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.37 0.40 -2.387 0.031

Broca and Wernicke’s area 0.46 0.47 -1.817 0.089
Visual cortex 0.58 0.59 -1.806 0.091

Auditory cortex 0.40 0.41 -1.059 0.306
Motor cortex 0.66 0.67 -1.766 0.098

Prefrontal cortex 0.49 0.51 -2.017 0.062
Sensory cortex 0.57 0.57 -0.346 0.734

Significant values are indicated in bold (p<0.05)

TABLE VIII
COMPARISON BETWEEN PLV OF VISUAL IMAGERY AND RESTING STATE

(13-30 HZ FREQUENCY RANGE)

Imagery Rest t-value p-value
Whole brain 0.31 0.34 -2.470 0.026

Broca and Wernicke’s area 0.39 0.41 -1.936 0.072
Visual cortex 0.52 0.53 -0.629 0.539

Auditory cortex 0.34 0.36 -2.469 0.026
Motor cortex 0.56 0.57 -1.742 0.102

Prefrontal cortex 0.46 0.48 -2.337 0.034
Sensory cortex 0.44 0.45 -1.115 0.282

Significant values are indicated in bold (p<0.05)

the other regions. For instance, the PLV of imagined speech
in the whole-brain region had shown the most inferior value
compared to any other cortical regions in the delta (0.32), theta
(0.32), and beta band (0.30). Also, the PLV of visual imagery
exhibited the lowest value in the whole brain region in delta
(0.33), theta (0.33), alpha (0.37), and beta (0.31) groups. All
of the above groups exhibited a significant decrease in PLV
of imagery compared to the resting state. On the contrary, the
PLV of imagined speech in the sensory cortex with alpha-
band exhibited the highest value (0.56) among the PLV of
other cortical groups. It exhibited a significant increase in PLV
during imagery compared to the resting state.

Fig. 1 displays the t-test results of comparing the grand-
averaged inter-cortical PLV of imagined speech versus resting
state. In the delta frequency region, the grand-averaged value
of PLV between Broca and Wernicke’s areas and auditory
cortex, Broca and Wernicke’s area and prefrontal cortex,
auditory cortex and motor cortex, auditory cortex and sensory
cortex, and motor cortex and prefrontal cortex have displayed
a significant decrease in PLV of imagined speech than the



Fig. 1. Comparison between PLV of imagined speech and resting state. (a) The t-values of paired t-test (B: Broca and Wernicke’s area; V: visual cortex; A:
auditory cortex; M: motor cortex; P: prefrontal cortex; A: auditory cortex). (b) The corresponding significance of (a) from the paired t-test (white: p < 0.05).

resting state. The inter-regional connectivity in the alpha band
mostly exhibited a significant decrease among the cortical
regions, except for the group between visual cortex to motor
and visual cortex to sensory cortex. Similarly, the PLV of
imagined speech significantly decreased between most regions,
except for the visual cortex to motor cortex, visual cortex to
sensory cortex, and motor cortex to sensory cortex. However,
no significant decrease in the PLV of imagined speech was
found between any cortical regions in the alpha frequency
ranges.

Similar aspects were shown in the case of visual imagery
(Fig. 2). Delta connectivity displayed a significant decrease
in every inter-cortical group except for Broca and Wernicke’s
area to sensory cortex, visual cortex to motor cortex, visual
cortex to sensory cortex; auditory cortex to motor cortex;
auditory cortex to prefrontal cortex, auditory cortex to sensory
cortex, prefrontal cortex to sensory cortex. In the theta band,
a significant decrease in the PLV of visual imagery was found
in Broca and Wernicke’s area to auditory, motor, prefrontal
cortex; visual cortex to auditory and prefrontal cortex; motor
cortex to prefrontal and sensory cortex; prefrontal cortex
to sensory cortex. Alpha connectivity exhibited a significant
decrease between Broca and Wernicke’s area to prefrontal
cortex; visual cortex to auditory and prefrontal cortex; motor
cortex to prefrontal cortex. Every inter-region connectivity of
visual imagery in the beta band range displayed a significant
decrease except for visual cortex to sensory cortex; motor
cortex to prefrontal and sensory cortex; prefrontal cortex to
sensory cortex.

IV. DISCUSSIONS

A. Decrease in PLV during Imagery

During imagined speech and visual imagery, the PLV in the
whole brain region significantly decreased, compared to the
resting state. Similarly, a significant decrease in PLV while
passing from the resting state to motor imagery (MI) has been
reported in the previous works [23]. This is because the actual
movement is inhibited during MI, resulting in the inhibited ac-
tivation of the corresponding region [24]. The synchronization
of the internal mental process is known to be opposed to the
processing of external stimuli, leading to increased activation
at rest and decreased activation during task performance [25].
Likewise, Nguyen et al. [7] reported decreased brain activity
during imagined speech. In line with these studies, a similar
aspect may occur during imagined speech and visual imagery
because they involve internal mental processes without other
actions. This may be an important information in decoding the
two paradigms, by focusing on the desynchronization during
the active imagery.

B. Functional Connectivity of Spectral Ranges

The results of spectral analysis display a significant decrease
in the frequency range mainly other than the alpha band,
especially for the imagined speech. Since alpha power is
involved with the relaxing state and is mainly found in the
posterior regions, the active imagery may not have been
reflected in the EEG of imagined speech. In the delta, theta,
and beta band ranges, the PLV of both imagined speech and
visual imagery has shown a significant decrease. The delta
band is known to found during the continuous attention tasks



Fig. 2. Comparison between PLV of visual imagery and resting state. (a) The t-values of paired t-test (B: Broca and Wernicke’s area; V: visual cortex; A:
auditory cortex; M: motor cortex; P: prefrontal cortex; A: auditory cortex). (b) The corresponding significance of (a) from the paired t-test (white: p < 0.05).

and the beta band is known to be associated with active
thinking, therefore, significance in the delta and beta band
frequencies may be reasonable [26], [27]. Besides, since the
subjects sat still without moving their body or speaking out,
the inhibitory response may be reflected in the theta band [26].

C. Functional Connectivity of Cortical Regions

The results on different cortical regions mainly exhibit a
significant decrease in the imagined speech on Broca and
Wernicke’s areas along with the auditory cortex. Since previ-
ous literature consistently described the left posterior superior
temporal cortex (Wernicke’s area) involved in the language
process, our results may be supporting the previous literature.
Also, fronto-temporal coherence was reported as a significant
measure of functional connectivity in speech processing [13].
In this manner, decreased PLV during imagined speech in the
temporal region may act as a relevant measure of functional
connectivity. For visual imagery, decreased PLV was found in
the auditory and the prefrontal cortex. The significance found
in the prefrontal cortex may be supported with the top-down
information flow in parieto-occipital cortices which is known
as a distinct feature of visual imagery [15]. Also, a relevant
distinction between visual imagery and visual perception is
significantly displayed as the activation of the temporal regions
[16], therefore, our results may be supporting the previous
literature.

D. Limitations and Future Works

The correlation between resting state connectivity and the
classification performance may have the potential as a perfor-
mance predictor in imagined speech and visual imagery [28].

In fact, MI performance can be predicted using the connectiv-
ity in the resting state because the brain network before MI
affects the brain signals during MI [21]. In this manner, further
investigation of the correlation between brain connectivity and
classification performance may be another crucial issue. Our
results indicate that the functional connectivity of imagined
speech or visual imagery decreases, compared to the resting
state. It may imply that subjects whose brain connectivity
has already been reduced in the resting state are easier to
reduce their PLV sufficiently to achieve good performance for
imagery [29]. However, we did not compare the resting state
before the experiments; thus, further research is required.

V. CONCLUSION

Understanding the brain connectivity of the two emerging
intuitive BCI paradigms may play a crucial role in decoding
the two paradigms. Further investigation on the correlation
between the brain connectivity and the decoding performance
may highly contribute to practical BCI. Although we used the
phase-locking value as a measure of functional connectivity,
it holds limitations of being affected by other factors such as
volume conductions in the brain. Therefore, investigation on
the functional connectivity using other factors may support our
findings. Also, further analysis on the effective connectivity of
imagined speech and visual imagery may describe the direc-
tions of the connections, therefore, contribute in a thorough
understanding of the brain dynamics that alter during the im-
agery of the two paradigms. Likewise, investigation of intuitive
BCI paradigms along with the conventional paradigms [30]–
[32] may ultimately improve the practicality of BCI works.
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