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Abstract—Brain-computer interface (BCI) is the technology
that enables the communication between humans and devices
by reflecting humans’ status and intentions. When conducting
imagined speech, the users imagine the pronunciation as if
actually speaking. In the case of decoding imagined speech-
based EEG signals, complex task can be conducted more in-
tuitively, but decoding performance is lower than that of other
BCI paradigms. We modified our previous model for decoding
imagined speech-based EEG signals. Ten subjects participated in
the experiment. The average accuracy of our proposed method
was 0.5648 (±0.0197) for classifying four words. In other words,
our proposed method has significant strength in learning local
features. Hence, we demonstrated the feasibility of decoding
imagined speech-based EEG signals with robust performance.
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I. INTRODUCTION

Brain-computer interface (BCI) is the technology that en-
ables the communication between humans and devices by
reflecting humans’ status and intentions [1], [2]. Non-invasive
BCI technology has been focused on owing to low cost and
it is no need to undergo surgical implantation [3]–[5]. For the
past decade, therefore, non-invasive BCI technology has been
investigated for controlling external devices [6]–[8] or early
detecting some diseases [9], [10].

One of the most attractive issues in the BCI domain is
communicating with a drone using the electroencephalogram
(EEG) with robust performances [11]–[13]. Since EEG signals
can reflect humans’ current status and intentions, control of
the drone using EEG signals has the advantage of being able
to flexibly cope with unexpected situations. Lee et al. [11]
designed endogenous BCI paradigms (motor imagery, visual
imagery, and imagined speech) for acquiring EEG signals.
Various tasks related to controlling the drone swarm were
instructed to subjects. Karavas et al. [12] investigated the
effect of swarm cohesion on the EEG activity of the human
supervisor. They showed that brain activity is correlated to
swarm cohesion levels, which refers to spreading in the motion
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of the swarm agents. Lafleur et al. [13] examined the impact
that the operation of a real-world device has on subjects’
control in comparison to 2-D virtual cursor task. Individual
subjects were able to accurately acquire up to 90.5 % of all
valid targets presented.

In the BCI domain, stimulus-based exogenous BCI and
imagination-based endogenous BCI exist. Stimulus-based ex-
ogenous BCI has high accuracy but has high fatigue of the
eye. Also, additional equipment for providing stimulation
is required. The disadvantages of exogenous BCI can be
solved by using imagination-based endogenous BCI. Imagined
speech, one of the endogenous BCI paradigms, is that the users
imagine the pronunciation as if actually speaking. Bakhshali
et al. [14] proposed the method for extracting EEG features
of imagined speech effectively. They showed that Riemannian
distance extracts features in EEG signals effectively. Nguyen
et al. [15] proposed a novel method based on covariance
matrix descriptors, which lie in Riemannian manifold and the
relevance vector machines classifier. Their method was shown
to outperform other approaches in the field with respect to
accuracy and robustness. However, most studies of decoding
imagined speech-based EEG signals show low performances
and use machine learning algorithms to analyze data. Lee et
al. [16] analyzed imagined speech-based EEG signals in the
perspective of its presence, spatial features using the random
forest (RF), and the shrinkage regularized linear discriminant
analysis. Hernández-Del-Toro et al. [17] used five feature
extraction methods for decoding imagined speech-based EEG
signals. These methods were tested in three datasets using
RF, support vector machine, k-nearest neighbors, and logistic
regression.

In this paper, we modified our previous method [18] for
increasing the performance of decoding imagined speech-
based EEG signals. Our proposed attention-based deep neural
networks, called ADNN, could classify various words robustly
by adding the attention module. The attention module helps
the model learn to focus more on the important part to focus
on. In other words, the attention module enables increasing
the ability of expression by focusing on important features
and suppressing unimportant features. To the best of our
knowledge, this study is the first attempt to use the attention

ar
X

iv
:2

11
2.

06
92

2v
1 

 [
cs

.H
C

] 
 1

3 
D

ec
 2

02
1



module for decoding imagined speech-based EEG signals.
The proposed framework has achieved the best performance
(0.5648 (±0.0197)). Hence, we demonstrated the feasibility
of classifying the imagined speech-based EEG signals with
robust performance.

The rest of this paper is organized as follows. In Section 2,
we introduce our experimental design and the structure of the
proposed model more in detail. In Section 3, we present the
experimental results. In Section 4, we present the directions
for decoding imagined speech-based EEG signals and the
limitations of our study. Finally, we conclude this paper in
Section 5.

II. MATERIALS AND METHODS

A. Subjects

A total of ten healthy subjects (S1–S10, ten males, aged
25.8 (±2.5)) participated in our experiment. Our experimental
environment and protocols were approved by the Institutional
Review Board at Korea University (KUIRB-2020-0318-01).

After the subjects were informed about the experimental
protocols, they consented according to the Declaration of
Helsinki. In addition, we instructed the subjects to get
adequate sleep (over seven hr.) and to avoid any alcohol the
day before the experiment.

B. Experimental Environment

The signal amplifier (BrainAmp, Brain Products GmbH,
Germany) was used for the measurement of subjects’ EEG
signals. The sampling frequency was set up to 1,000 Hz and
a 60 Hz notch filter was applied for removing DC noise.
58 EEG channels were used for acquiring EEG signals,
and we placed them on the subjects’ scalp according to the
international 10/20 system. Also, we measured EOG signals
by attaching six electrodes around the subjects’ eyes. We used
the FCz and FPz channels to reference and ground electrodes,
respectively. We set the impedance of all EEG electrodes to
lower 10 kΩ or less by injecting the conductive gel into the
subjects’ scalp before the acquisition of EEG signals.

C. Experimental Paradigm

The experimental paradigm was designed for acquiring
imagined speech-based EEG signals with high quality as
shown in Fig. 1. Four words (‘/Ba/’, ‘/Ku/’, ‘/He/’, and ‘/Li/’)
were selected according to Levenshtein distance and the
Soundex algorithm. We selected four words based on these
criteria since the selection of words with a large difference
in each index value is important. Our experimental procedure
consisted of three phases. One of four words was displayed
for 2 sec., randomly. A fixation cross was provided for 1
sec., and a blank image followed for 2 sec.. We instructed the
subjects to perform an imagination when a blank image was
displayed. A fixation cross and a blank image were repeated
four times per word. After that, a bold fixation cross followed

Visual
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imagery

Visual

cue⋯

1.5 sec. 1 sec. 1.5 sec. 3 sec. 1.5 sec.

× 4 times

Fig. 1. Experimental paradigms for acquiring imagined speech-based EEG
signals with high quality.

for 3 sec. to eliminate the afterimage of the existing word.
We acquired 50 trials per word (a total of 200 trials).

D. Attention-based Deep Neural Networks (ADNN)

We used EEGNet [19] as a backbone network. The EEGNet
is characterized by a small number of parameters, using
the depthwise separable convolutional blocks. The network
consists of temporal convolution and spatial depth-wise con-
volution blocks, followed by the depth-wise separable convo-
lutional blocks. Each convolutional block uses a batch norm
and dropout, and an ELU function [20] is used as an activation
function.

In this study, we modified our previous method [18]
that can increase the performance of decoding imagined
speech-based EEG signals by adding the attention module
after the end part of EEGNet [21], [22]. Our proposed method
enables increasing the ability of expression by focusing on
important features for decoding imagined speech-based EEG
signals and suppressing unimportant features as shown in Fig.
2.

III. RESULTS AND DISCUSSION

A. Comparison of Performance with the Conventional Meth-
ods

Table I showed the results of comparing the performances
for decoding imagined speech-based EEG signals. We used the
power spectral density-support vector machine (PSD-SVM)
[23] and common spatial pattern-linear discriminant analysis
(CSP-LDA) [24] as the conventional methods for performance
comparison. The PSD-SVM is that used the PSD of the δ- (1-
4 Hz), θ- (4-8 Hz), α- (8-13 Hz), and β-bands (13-30 Hz) as
a feature and used SVM for the classification. The CSP-LDA
is that used the CSP algorithm for extracting the features in
EEG signals and used LDA for the classification.

Our proposed method represented the highest average de-
coding accuracy of 0.5648, compared to the performance of
the conventional methods. In the performance of our proposed
method, S1 showed the highest accuracy of 0.6084, but S6
and S9 showed the lowest accuracy of 0.5472. The method
showing the second highest performance is CSP-LDA. In the
performance of CSP-LDA, S9 showed the highest performance
of 0.5072, while S3 showed the lowest performance of 0.3621.
The method showing the lowest performance was PSD-SVM.
In terms of PSD-SVM performance, S1 showed the highest
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Fig. 2. The overall architecture of ADNN including pre-layer normalization and multi-head attention. (a) Pre-layer normalization architecture to train the
model with stability, (b) Multi-head attention to train the multiple aspects of data.

TABLE I
COMPARISON OF PERFORMANCES FOR THE VI CLASSIFICATION IN THE

SUBJECT-INDEPENDENT TASK

# of subjects PSD-SVM [23] CSP-LDA [24] Proposed

S1 0.4723 0.4944 0.6084

S2 0.3471 0.3840 0.5834

S3 0.4386 0.3621 0.5497

S4 0.3972 0.3967 0.5597

S5 0.3550 0.3735 0.5697

S6 0.3477 0.4070 0.5472

S7 0.4631 0.4736 0.5522

S8 0.4055 0.3742 0.5747

S9 0.4382 0.5072 0.5472

S10 0.3550 0.4291 0.5559

Avg. 0.4020 0.4202 0.5648

Std. 0.0491 0.0535 0.0197

performance of 0.4723, while S2 showed the lowest perfor-
mance of 0.3471. Our proposed method showed the highest
average accuracy and the lowest variation. The lowest variation
indicated that decoding of imagined speech-based EEG signals
was stable across all subjects.

In addition, we conducted the paired t-test with Bonferroni’s
correction to verify the difference of classification between
the conventional methods and ADNN. Initially, we validated
the normality and homoscedasticity due to a small number

of samples. The normality applying the Shapiro–Wilk test
for all methods was satisfied with a null hypothesis, and the
assumption of homoscedasticity based on Levene’s test was
also satisfied for all models. Our proposed ADNN had the
statistically significant difference in performance among all
conventional methods (p < 0.01).

B. Ablation Study about the Effect of the Attention Module

Table II indicated the results of the ablation study about
the effect of the attention module. To verify the effect of
the attention module, we calculated the performance in three
kinds of models using ‘EEGNet’, ‘EEGNet with SEFE’,
and ‘EEGNet + attention module’. Table II showed that
‘EEGNet + attention module’ improved the performance
of EEGNet compared to ‘EEGNet with SEFE’. Also, after
we conducted a paired t-test to verify the difference of
performance, we showed that ‘EEGNet + attention module’
showed the statistically significant differences compared to
other methods (p < 0.01). From these results, we found that
the attention module increases the ability of expression by
focusing on important features and suppresses unimportant
features. Compared to ‘EEGNet’ and ‘EEGNet with SEFE’,
which have significant decoding performance, our proposed
method showed the highest performance, proving that our
method has significant strength in learning local features.



TABLE II
COMPARISON OF PERFORMANCES FOR THE VI CLASSIFICATION IN THE

SUBJECT-INDEPENDENT TASK

# of subjects EEGNet [19] EEGNet with SEFE [18] Proposed

S1 0.5642 0.5361 0.6084

S2 0.5254 0.4911 0.5834

S3 0.5142 0.5536 0.5497

S4 0.5254 0.5374 0.5597

S5 0.5067 0.5111 0.5697

S6 0.4854 0.5124 0.5472

S7 0.5004 0.4899 0.5522

S8 0.4929 0.5111 0.5747

S9 0.4929 0.5186 0.5472

S10 0.4979 0.5111 0.5559

Avg. 0.5106 0.5172 0.5648

Std. 0.0233 0.0201 0.0197

IV. CONCLUSION AND FUTURE WORKS

In this study, we represented the feasibility of decoding
the imagined speech-based EEG signals. We designed the
experimental paradigm strictly to obtain EEG signals with
high quality and conducted the experiment in a restricted
environment. Moreover, we modified our previous method that
the enables increasing the ability of expression by focusing on
important features and suppressing unimportant features. Our
proposed method indicated the highest average performance
for decoding the imagined speech-based EEG signals. We
showed that our proposed method increases the ability of
expression by focusing on important features and suppresses
unimportant features. In other words, our proposed method
showed the highest performance, proving that our method has
significant strength in learning local features.

In future works, we will develop our proposed model that
can analyze the various endogenous BCI paradigms-based
EEG signals for the practical BCI systems and can perform
with robust classification performances. To this end, we will
acquire EEG signals based using new experimental paradigms
and will apply various data augmentation methods to solve a
lack of data problem.
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