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Abstract—We present a 7 Tesla fMRI proof-of-concept study 

of the first letter speller BCI that decodes imagined letter shapes 

from activity patterns in early visual cortical areas. New tools 

are developed to enable real-time population receptive field 

retinotopic mapping for encoding and decoding. Using two 

different letter shapes (H and T), classification performance of 

generated activity patterns during imagery reaches 80% 

accuracy in each individual. Using a denoising autoencoder, 

recognizable letter shapes could be reconstructed and displayed 

as feedback to participants in the scanner. 
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I. INTRODUCTION 

Recently we developed an offline procedure to reconstruct 
vividly imagined letter shapes from associated activity 
patterns in early visual cortical areas measured with 7 Tesla 
functional magnetic resonance imaging (fMRI) [1]. 
Reconstruction of a stimulus from brain activity patterns 
required only a short (10 minutes) additional scan for 
estimating the population receptive fields (pRFs) of voxels in 
early visual cortex [2]. The reconstruction (decoding) process 
then inverts the established relationship between visual field 
and cortex such that activation of voxels can be projected back 
into the visual field. In an effort to extend this work to a more 
natural letter-speller BCI, we test the feasibility of a “Mind’s 
Eye BCI” by efficiently implementing the retinotopic 
encoding and decoding tools in a real-time fMRI analysis 
software package, and test and refine the novel BCI system on 
healthy subjects during real-time fMRI scanning. 

II. METHODS 

Fig. 1 provides an overview of the developed fMRI real-

time BCI. The most important components of the system are 

described below. 

A. Data Collection 

FMRI measurements were acquired for three subjects 
(mean age 27 years, two males) in four pilot scans. Hence, 
scanning parameters may vary. The scans included one 
retinotopy run (random bar paradigm, [3]), imagery and 
perceptual runs. We recorded anatomical (voxel size = 0.7 × 
0.7 × 0.7 mm 3 , TR = 5000 ms) and functional (voxel size = 
0.8 × 0.8 × 0.8 mm3, TR = 2000 ms) images with a Siemens 
Magnetom 7T scanner and a 32-channel head-coil. 

 

Fig. 1. Overview of “Mind’s Eye BCI”. Participants were cued (auditory) 
to create vivid mental images of the letters ‘T’ and ‘H’ (trial=10s). After a 

short resting period (10s), cortical activity related to visual mental imagery 

was reconstructed into 150x150 pixel images and presented as feedback on 

the scanner display. 

B. Real-time pRF-mapping using Gradient Descent on 

Hashed-Gaussian Tiles 

Conventional pRF mapping [2] requires too much 
computational time and resources for our real-time 
application. Therefore, a new pRF mapping approach has been 
developed [4,5] based on tile coding and hashing [6]. Here, we 
exhaustively partitioned the input space (mapping stimulus) 
into overlapping regions (tiling). 2D Gaussians were used as 
tiles as they tend to produce smooth receptive fields. Each 
tiling was then pseudo-randomly collapsed into a smaller set 
of tiles such that individual tiles consist of non-contiguous 
regions (hashing). The stimulus response was modeled as a 
linear combination of the overlap of tiles and the presented 
stimulus. Gradient descent was performed on the weights of 
the tiles. By computing the dot product between tiles and their 
corresponding weights, receptive fields can be obtained. 

C. Denoising Autoencoder 

The auto-encoder was trained on an independent dataset of 
six participants [1]. The input contained reconstructions of 
individual trials of letters 'H' and 'T' from perception data. 

 

 

 

 



Fig. 2. Classification accuracies. Each bar represents ConvNet 

classification accuracy for a single run (10 trials). Mean classification 
accuracy of imagery trials was 80%. SE was taken from the binomial 

distribution. 

To these reconstructions, we added reconstructions of 
noise observed in the same runs. The variance of added noise 
was a factor of 8 larger than the variance of signal to mimic 
and exaggerate the lower SNR for imagery as compared to 
perception and helps to force the autoencoder to restore noisy 
data. The model attempts to reproduce output based on the 
input and contains a single hidden layer with the number of 
units amounting to 1% of pixels in the reconstructed image. 
Hidden units had a rectified linear activation function while 
output units activated linearly. The learning rate was 10-6, 
momentum was 0.9, batches had a size of 100, and loss was 
measured by the sum of squared distances. Training lasted 
2500 iterations. 

D. Real-Time Decoding 

Each functional volume was fed to Turbo-BrainVoyager 
for incremental linear detrending of the time-series and 3D 
motion correction. Beta values were estimated by convolving 
trial predictors with a standard hemodynamic response 
function. Next, each trial was reconstructed into estimated 
images of the visual field by projecting voxel activations back 
through their receptive fields. The reconstructions were 
subsequently fed into two streams: 

• feedback: reconstructions of mental imagery were 
denoised by the autoencoder, segmented to distinguish the 
letter from the background and finally presented to the 
participant in the scanner. 

• classification: reconstructions of imagery trials were 
classified by a convolutional neural network (ConvNet). 

The classifier was trained on reconstructions of imagery 
trials (down sampled to 30x30) of letters 'H' and 'T' from 5 of 
the 6 subjects in [1]. Data of the sixth subject was used for 
validation. The ConvNet consisted of two blocks of 
convolution batch normalization, rectification and max 
pooling, followed by another convolutional layer, batch 
normalization, rectification and a fully connected layer with a 
softmax activation. Loss was measured by cross-entropy and 
was minimized using the Adam optimizer [7] with an initial 
learning rate of 0.001. 

III. RESULTS 

Fig. 2 shows classification accuracy across three subjects, 
who were trained to imagine the letters H and T. Each bar 
indicates a single run in which there were 10 trials. 

Fig. 3. Example visual field pattern reconstructions of single trials during 

an imagery run. In the top row the correct label and the resulting 
reconstructions are shown without denoising. In the bottom row the same 

images are shown after they were ‘denoised’ by the autoencoder and had 

their background removed. 

 While participants seem to struggle in their first attempt, 
they achieve an overall accuracy of around 80%. Fig. 3 depicts 
examples of letter shape reconstructions. The top row shows 
raw imagery reconstructions, the middle row shows the 
correct letter shapes and the bottom row shows the denoised 
versions. As you can see the raw reconstructions are simply 
unrecognizable. However, in most cases the neural network 
brings the image closer to a recognizable shape. 

IV. CONCLUSONS 

Utilizing the preserved retinotopic organization in visual 
imagery, we set out to implement the first non-invasive BCI 
that can directly decode contents of the mind’s eye. Our work 
is an extension of our previous offline letter reconstruction to 
a real-time decoding BCI. Preliminary results indicate that 
real-time reconstruction of imagined letters is possible (80% 
accuracy), even when using a generalizable convnet classifier 
which does not require training examples of the individual 
being scanned. In addition, we produced recognizable 
(denoised) reconstructions of imagined letter shapes on a 
single trial basis. To achieve a natural letter-speller 
communication BCI, further optimization of the real-time 
processing tools is needed and the paradigm needs to be 
extended to more letter shapes. 

REFERENCES 

[1] M. Senden, T. C. Emmerling, R. Van Hoof, M. A. Frost, R. Goebel, 
“Reconstructing imagined letters from early visual cortex reveals tight 
topographic correspondence between visual mental imagery and 
perception,” Brain Structure and Function, 224(3), 2019, pp. 1167-
1183. 

[2] S. O. Dumoulin, B. A. Wandell, “Population receptive field estimates 
in human visual cortex,” Neuroimage 39(2), 2008, pp. 647-660. 

[3] M. Senden, J. Reithler, S. Gijsen, R. Goebel, „Evaluating population 
receptive field estimation frameworks in terms of robustness and 
reproducibility,” PloS one, 9(12), 2014, e114054.1338. 

[4] S. Bhat, M. Lührs, R. Goebel, M. Senden, “Extremely fast pRF 
mapping for real-time applications,” Neuroimage. 2021, 245:118671. 

[5] mario.senden, & salil-maastricht. (2022). ccnmaastricht/CNI_toolbox: 
M220P121 (m2.2.0p1.2.1). Zenodo. 
https://doi.org/10.5281/zenodo.5867065  

[6] R. S. Sutton, A. G. Barto, “On-policy Prediction with Approximation,” 
in Reinforcement learning: An introduction. The MIT Press, 2018, pp. 
217–222. 

[7] D. P. Kingma, J. Ba., “Adam: A method for stochastic optimization,” 
arXiv, 2014, 1412.6980.

 

 

https://doi.org/10.5281/zenodo.5867065

