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Abstract—Drowsiness reduces concentration and increases re-
sponse time, which causes fatal road accidents. Monitoring
drivers’ drowsiness levels by electroencephalogram (EEG) and
taking action may prevent road accidents. EEG signals effectively
monitor the driver’s mental state as they can monitor brain dy-
namics. However, calibration is required in advance because EEG
signals vary between and within subjects. Because of the incon-
venience, calibration has reduced the accessibility of the brain-
computer interface (BCI). Developing a generalized classification
model is similar to domain generalization, which overcomes the
domain shift problem. Especially data augmentation is frequently
used. This paper proposes a calibration-free framework for driver
drowsiness state classification using manifold-level augmentation.
This framework increases the diversity of source domains by
utilizing features. We experimented with various augmentation
methods to improve the generalization performance. Based on
the results of the experiments, we found that deeper models
with smaller kernel sizes improved generalizability. In addition,
applying an augmentation at the manifold-level resulted in an
outstanding improvement. The framework demonstrated the
capability for calibration-free BCI.

Keywords–Brain-computer interface, Electroencephalogram,
Driver drowsiness classification, Domain generalization, Manifold-
level augmentation

I. INTRODUCTION

Drowsy driving continues to cause accidents. Therefore, an
accurate drowsiness state classification is necessary to prevent
road traffic accidents. Physiological signals are frequently used
to estimate mental states. Especially, EEG is capable of mea-
suring brain activity directly and monitoring brain activity [1]–
[3]. Recently, detecting affective states such as emotions and
mental states with EEG signals, in other words, affective brain-
computer interface (BCI), has consistently gained interest [4]–
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[6]. For instance, Xu et al. [7] proposed a unified convolutional
attention neural network that concurrently identifies personal
information and detects the driver’s drowsiness. Paulo et al.
[8] proposed a drowsiness detection model with spatiotemporal
image encoding representations such as recurrence plots and
gramian angular fields.

EEG signals, however, have a characteristic of variability
which differs between and within subjects [9], [10]. Though it
is common to have different signals between subjects, different
characteristics of EEG signals are also obtained according to
time, physiological state, and the location of measurement.
Usually, calibration is required to readjust the system to the
current users’ state [11], [12]. This user-unfriendly repetition
has been an obstacle to practical BCI [10], [13].

One approach to overcome the variability problem and
develop a generalized drowsiness classification framework
without calibration is transfer learning [14]. For instance, Liu
et al. [15] extracted power spectral density features with trans-
fer learning-based algorithms, transfer component analysis,
and maximum independence domain adaptation. In particular,
a framework that does not require subject-specific data, or a
subject-independent framework, intends to generalize well on
unseen subjects with only the multiple source subject data.
This goal is similar to domain generalization (DG) [16]. As
we regard developing a subject-independent framework from
a DG perspective, the variability problem can be viewed as a
domain shift problem, where each subject and session can be
considered an independent domain [4]. Cui et al. [10] applied
a DG method, episodic training, and Hwang et al. [17] applied
a domain adaptation method, domain adversarial training, for
a subject-independent driver drowsiness classification.

Generally, when a distributional difference between source
and target data is expected, DG is a preferred task [18].
In computer vision literature, DG tasks are solved through
perturbing source domains with data augmentation, apply-
ing domain adversarial training [18], or meta-learning [19].
Among methods, data augmentation is frequently used. This
method generates data samples by flipping, cropping, and
sliding windows, increasing the diversity of source domains
[20]. The model can experience various data to simulate the
real-world domain shift [20]. In most cases, data augmen-
tation is conducted with raw data samples. However, raw-
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level augmentation methods can potentially deteriorate the
characteristics of signals. Therefore, we compare manifold-
level augmentation methods and find the suitable method for
driver drowsiness classification.

This paper proposes a generalized driver drowsiness clas-
sification framework without the need for subject-specific
data. Each subject is considered an independent domain, and
intermediate features are used for augmentation. We conducted
experiments with multiple augmentation methods and claimed
that augmentation in the manifold-level improves the general-
ization performance in the EEG signal dataset.

II. METHODS

We compared four deep learning models known to have
shown competitive performance in EEG-based classification.
We selected the highest-performing model as the backbone
model for experimenting with various augmentation methods.

A. Deep Learning Models

We briefly introduce four deep learning-based models that
were used for comparison: EEGNet4,2 [21], EEGNet8,2 [21],
one-dimensional ResNet with 8 layers (ResNet1D-8) [16],
[22], and 18 layers (ResNet1D-18) [16], [22]. In EEG-based
classification, EEGNet4,2 and EEBNet8,2 are commonly used
and have shown competitive performance [23], [24]. As with
ResNet1D, a modified version of ResNet [25], has recently
shown remarkable performance in DG and mental state clas-
sification [16], [26].

1) EEGNet4,2: EEGNet4,2 learns in a total of four tem-
poral filters and two spatial filters per temporal filter. The
model comprises temporal, spatial, depthwise, and separable
convolution with kernel sizes based on the sampling rate and
channel size. Depthwise and separable convolution were used
for the reduction of parameters. Moreover, it has a batch
normalization, average pooling, and dropout layer with an
exponential linear unit (ELU) activation function.

2) EEGNet8,2: This model has the same structure as EEG-
Net4,2, except it learns eight temporal filters and two spatial
filters per temporal filter.

3) ResNet1D-8: ResNet1D-8 consists of three residual
blocks and a fully-connected layer. Features are extracted
from the residual blocks and classified with a fully-connected
layer. Dropout, batch normalization, ELU activation, and one-
dimensional convolutional layers are included in each residual
block. The kernel size of each residual block is 11, 9, and 7,
respectively. In addition, a skip connection is implemented in
the residual block when there is a discrepancy between the
input and output size of the residual block. The convolutional
layer in the skip connection has a kernel size of 1 to match
the shape.

4) ResNet1D-18: ResNet1D-18 consists of four residual
blocks for feature extraction and a fully-connected layer for
classification. As ResNet1D-8, the residual block in this model
has the same composition. Instead, since this model is deeper
than ResNet1D-8, the kernel size of each convolution layer is
3 to reduce the model parameters.

B. Data Augmentation Methods

We applied three data augmentation methods: Mixup [27],
Manifold Mixup [28], and MixStyle [26], [29]. Mixup is
a raw-level augmentation method, and Manifold Mixup and
MixStyle are manifold-level augmentation methods.

1) Mixup: Mixup performs a weighted sum of randomly
selected raw input values and one-hot encoding labels from
the dataset, respectively, with a weight sampled from a prede-
fined distribution. Since Mixup sums two data, the predefined
distribution is the Beta distribution. When the i-th data and
labels are denoted as (xi, yi), the constructed virtual training
sample (xmix, ymix) is as follows:

xmix = λxi + (1− λ)xj ,
ymix = λyi + (1− λ)yj ,

(1)

where λ is a weight sampled from the Beta distribution (λ ∼
Beta(α, α), α ∈ (0,∞)).

2) Manifold Mixup: Manifold Mixup is an extended version
of Mixup, which constructs virtual training samples at the
manifold-level. The original raw input values are changed
into the features extracted from each layer. For each pair of
raw input values and class labels (xl,i, yl,i), let zl,i be the
extracted feature of xl,i after the l-th residual block. The Eq.
1 is modified as

zmix
l = λzl,i + (1− λ)zl,j ,
ymix
l = λyl,i + (1− λ)yl,j .

(2)

3) MixStyle: MixStyle simulates new styles by mixing
two instances’ style statistics with a random convex weight
sampled from the Beta distribution. First, this method shuffles
or swaps the position of each sample in a batch to generate a
reference batch B̃ from the original batch B. Then calculates
the mixed feature statistics (γmix, βmix) by

γmix = λσ(xB) + (1− λ)σ(xB̃),
βmix = λµ(xB) + (1− λ)µ(xB̃),

(3)

where λ is also derived from the Beta distribution (λ ∼
Beta(α, α), α ∈ (0,∞)), xB is the instances in B̃, and µ(x)
and σ(x) are the mean and standard deviation of x, respec-
tively. Mixed statistics are applied to the style-normalized x
to construct a virtual data sample as

MixStyle(B) = γmix x− µ(x)
σ(x)

+ βmix. (4)

MixStyle is activated probabilistically and only changes in-
stances’ distribution, not the class labels.

III. EXPERIMENTS

A. Dataset Description

We used a publicly available dataset in [30] that consists
of eleven subjects’ EEG signals. The subjects and sessions
were selected from a dataset [31] conducted at the National
Chiao Tung University, Taiwan. EEG signals were acquired
while driving on an empty, straight road for 90 minutes.
Participants had to focus on the road and steer the wheel when



TABLE I
OVERALL DROWSINESS CLASSIFICATION PERFORMANCE (%) IN SUBJECTS ACCORDING TO THE AUGMENTATION METHODS

Model Subject

S01 S02 S03 S04 S05 S06 S07 S08 S09 S10 S11 Avg. F1-score±Std.

ResNet1D-18 74.71 12.90 71.92 64.33 62.72 78.76 80.72 65.55 71.02 65.17 63.57 64.67±18.26
+ Mixup [27] 80.19 9.49 81.76 65.07 83.72 85.31 78.50 57.99 77.60 62.07 69.17 68.26±21.58 (+3.59)a
+ Manifold Mixup [28] 74.00 17.87 75.95 64.21 77.63 80.81 79.26 58.90 80.37 63.74 78.60 68.30±18.37 (+3.63)
+ MixStyle(123) [29] 71.74 11.84 75.80 66.67 78.34 80.81 80.18 62.37 71.60 70.59 71.10 67.37±19.25 (+2.70)
+ MixStyle(1234) [26] 62.65 29.08 71.70 66.03 80.58 88.15 79.11 61.35 73.62 68.69 71.53 68.41±15.28 (+3.74)

Avg.: Average, Std.: Standard deviation
MixStyle(·): The position where MixStyle is applied (e.g., MixStyle(123) defines applying MixStyle after the first, second, and third residual block)
aNumbers in parenthesis indicate the amount of improvement in F1-score based on the baseline
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Fig. 1. Experimental protocol of the publicly available dataset. A 3-second
window before the lane deviation event was segmented. Deviation onset,
response onset, and response offset denote the starting point of lane deviation,
the recognition point, and the point when the original lane is reached.

they recognized a lane deviation. A random lane-deviation
event occurred five to ten seconds after the response offset.
Each event moment, including the starting point of lane
deviation, recognition point, and when the car reaches the
original lane, is denoted as deviation onset, response onset,
and response offset. In the original dataset, the direction of
the lane-deviation event was additionally divided, but in the
preprocessed dataset [30], they are considered the same event.
32 Ag/AgCl electrodes were used to record EEG signals at a
sampling rate of 500 Hz.

B. Data Preprocessing

We used the ’unbalanced dataset’ [30] that is down-sampled
to 128 Hz and comprised of a 3-second window of data before
the lane-deviation event, as in Fig. 1. Data samples were
labeled into two classes (‘alert’ and ‘drowsy’) based on the
reaction time (RT) [30], [32]. RT is defined as the difference in
time between the deviation onset and the response onset. The
selected eleven subjects had a relatively balanced distribution
of classes among the sessions, with each class comprising over
50 samples. In total, 1,221 and 1,731 samples for the ‘drowsy’
class and the ‘alert’ class, respectively.

C. Implementation Details

We evaluated the performance using leave-one-subject-out
cross-validation [9]. In detail, 90% of each remaining subject
data was used as a training set and 10% as the validation set.

TABLE II
AVERAGE DROWSINESS CLASSIFICATION PERFORMANCE (%) OF DEEP

LEARNING MODELS

Model F1-score AUROC Precision Recall

EEGNet4,2 [21] 61.99 70.45 75.78 57.53
EEGNet8,2 [21] 63.97 71.26 74.63 61.24
ResNet1D-8 [16] 64.12 68.83 71.10 63.40
ResNet1D-18 [26] 64.67 69.33 70.25 64.49

At training, samples were drawn from all source domains in a
manner that considered both domain and class balance [18] to
consider the number of samples in each domain. We attempted
to increase the influence of minority sample domains. As an
optimizer, we used an Adam algorithm with a learning rate of
0.002. Furthermore, we assigned α = 0.1 for all of the Beta
distributions used for augmentation and activated MixStyle
with a probability of 50%. In addition, we considered the
‘drowsy’ class as positive and ‘alert’ as negative for evaluation.

D. Results and Discussion

As Table II shows the average drowsiness classification per-
formance of deep learning models, ResNet1D-18 achieved the
highest F1-score of 64.67% and AUROC of 69.33%. Because
F1-score accounts more for positive classes, the higher F1-
score results mean that the model correctly classifies drivers’
drowsiness as drowsy. Among EEGNet models, EEGNet8,2,
which learns more temporal filters, achieved a higher F1-
score of 63.97% and the highest AUROC of 71.26%. Among
ResNet1D models, the network with deeper layers achieved a
higher generalization performance, an F1-score of 64.67% and
AUROC of 69.33%. As a result, we selected the ResNet1D-
18 as our backbone network for comparing augmentation
methods.

Table I shows each subject’s overall drowsiness classifi-
cation performance according to the augmentation methods.
The number between the parenthesis indicates the position
where MixStyle is applied. For example, MixStyle(1234)
defines using MixStyle after all the residual blocks. Comparing
the average generalization performance, using MixStyle after
every residual block, as in [26], resulted in an F1-score of
68.41% with the smallest standard deviation of 15.28%. The
performance in each subject was not the best but showed
competitive results. In addition, the average F1-score increased



by 3.59%, 3.63%, 2.70%, and 3.74% for applying Mixup,
Manifold Mixup, and Mixstyle after the first three blocks and
after all the residual blocks, respectively. Specifically, Mixup,
a raw-level augmentation method, performed the lowest per-
formance among methods of an F1-score of 68.26%, and
MixStyle, a mainifold-level augmentation method, improved
the overall highest generalization performance. Therefore,
combining intermediate features for augmentation seems to
be effective in EEG signal datasets. Moreover, comparing the
placement of implementing MixStyle, unlike the computer
vision tasks [29] where the label-sensitive information is
captured at the last block, style information remains until the
last residual block in the publicly available dataset like [26].

IV. CONCLUSION

We proposed a robust calibration-free driver drowsiness
classification framework by a manifold-level augmentation.
Unseen domain samples were generated by mixing intermedi-
ate instances’ style statistics. We conducted experiments with
multiple augmentation methods, especially manifold-level aug-
mentations. Based on the experiments, applying augmentation
with intermediate features increased the framework’s robust-
ness. Furthermore, the position of augmentation influenced the
improvement of EEG-based classification. Our limitations are
that we compared only three augmentation algorithms, and this
framework is limited to driver drowsiness classification. There-
fore, for future analysis, we will benchmark other drivers’
mental state-related datasets and compare other augmentation
methods.
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