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Abstract—Non–invasive brain–computer interface technology
has been developed for detecting human mental states with
high performances. Detection of the pilots’ mental states is
particularly critical because their abnormal mental states could
cause catastrophic accidents. In this study, we presented the fea-
sibility of classifying distraction levels (namely, normal state, low
distraction, and high distraction) by applying the deep learning
method. To the best of our knowledge, this study is the first
attempt to classify distraction levels under a flight environment.
We proposed a model for classifying distraction levels. A total
of ten pilots conducted the experiment in a simulated flight
environment. The grand–average accuracy was 0.8437 (±0.0287)
for classifying distraction levels across all subjects. Hence, we
believe that it will contribute significantly to autonomous driving
or flight based on artificial intelligence technology in the future.
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I. INTRODUCTION

Brain–computer interface (BCI) allows users to commu-
nicate between human and external devices by recognizing
human’s status and intention [1]–[8]. In particular, the non–
invasive BCI system has advantages in that it does not require a
surgical operation and costs less than other BCI systems. Since
electroencephalogram (EEG) can reflect the user’s intention
and current state, the BCI system using EEG has been devel-
oped [9]–[13]. In addition, advanced BCI has been applied in
various domains, including diagnosis of Alzheimer’s disease
[14] and controlling external devices such as a robotic arm
[15] and a speller [16].

One of the interesting issues in the BCI domain is the
detection of human abnormal mental states with robust perfor-
mances [17]–[23]. In addition, the technology of autonomous
driving or flight is required when the driver’s or pilot’s mental
state changes from a normal state to an abnormal state. Since
the driver’s or pilot’s mental state is directly related to the
safety of passengers, the technology to accurately detect their
mental state has been developed. Controlling an aircraft is a
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challenging task, and it consumes a number of energy [24].
Among various abnormal mental states, distraction occurs
when pilots cannot concentrate on flight control for many
different variables. In addition, the CAA of New Zealand
reported that pilots’ distraction was the major reason among
the various reasons for flight accidents [25].

EEG signals are important signals in the case of detecting
human’s mental states because they reflect the human’s mental
states directly [26]. A few research groups have studied detect-
ing distraction using only EEG signals. Sonnleitner et al. [23]
described the impact of an auditory secondary task on drivers’
mental states during a primary driving task. Provoked reaction
time to brake lights and EEG alpha spindles were analyzed
to describe distracted drivers. Brake reaction times and alpha
spindle rate were significantly higher in distraction. Wang et
al. [27] assessed the differences in behavioral performance
and EEG activity when participants performed a lane–keeping
driving task and a mathematical problem–solving task. Their
system achieved 84.6 ± 5.8 % and 86.2 ± 5.4 % classification
accuracies in detecting the participants’ attention on the math
and driving tasks, respectively. Li et al. [28] developed a novel
deep learning–based distraction detection approach based on
both temporal and spatial information. The results showed that
their proposed approach achieved an overall binary (distraction
vs. non–distraction) classification accuracy of 0.92.

The main contributions are as follows. i) We acquired
distraction–related EEG signals under a flight environment
with pilots. We measured EEG signals corresponding to a
normal state (NS), low distraction (LD), and high distraction
(HD) according to the difference in tasks. ii) We propose
hybrid deep neural networks for classifying distraction levels.
We obtained the highest classification performance using our
proposed model compared to the conventional models. To the
best of our knowledge, this is the first attempt to classify
distraction levels based on the deep learning architecture
robustly.

The rest of this paper is organized as follows. In Section
II, we introduce our experimental design and the explanation
of the proposed model. In Section III, we present the
experimental results. Finally, we conclude this paper in
Section IV.
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II. MATERIALS AND METHODS

A. Subjects

Ten pilots (S1–S10, aged 25.6 (±0.52)) participated in our
experiment. All of them had flight experience (over 100 hr.)
in the Taean Flight Education Center. They had no history of
psychiatric or neurological disorders. We informed the entire
experimental protocols to pilots. Our experimental protocols
and environment were approved by the Institutional Review
Board of Korea University [1040548–KU–IRB–18–92–A–2].
Before the experiment, they consented according to the
Declaration of Helsinki. For evaluating the experimental
paradigm, we instructed the pilots to fill out a questionnaire
to check their mental and physical conditions after finishing
the experiment.

B. Experimental Environment

The Cessna 172 (Garmin, Olathe, KS) was used in the flight
simulator which included the screen, the cockpit, a keypad,
and the signal amplifier. A flight yoke and other control
panels were the components of the cockpit for constructing a
realistic flight environment. The subjects inputted the number
using a keypad. We attached a keypad to the flight yoke
directly for preventing the unnecessary movement when the
subjects press the keypad. The signal amplifier (BrainAmp,
Brain Products GmBH, Germany) was used to measure EEG
and EOG signals. We set the sampling frequency of EEG and
EOG signals as 1,000 Hz, and we used a 60 Hz notch filter
for removing the power supply noise. We placed the 30 EEG
channels according to the international 10/20 system. Also,
we attached the four EOG channels to the horizontal and
vertical lines around the eye. FCz and AFz channels were
used to the reference and ground electrodes, respectively. We
set up the impedance of electrodes below 10 kΩ by injecting
the conductive gel.

C. Experimental Protocol and Paradigm

We designed the experimental paradigm for acquiring the
distraction-based EEG signals effectively, as shown in Fig.
1. The tasks given to the subjects were not difficult for the
pilot, as it is hard to obtain high–quality distraction–based
EEG signals if the tasks are difficult. The air traffic control
(ATC) message (length: 4–22 words) was presented to the
subjects. The subjects simultaneously counted the number of
words contained in the ATC message while performing the
flight. We instructed the subject to count the number of words
without any body movement. We divided the distraction level
according to the length of the ATC message (level 1: 4–9
words, level 2: 10–14 words, level 3: 15–22 words). We
defined level 1 as LD and level 2 and level 3 as HD.
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Fig. 1. Experimental paradigms for inducing distraction in a simulated flight
environment.

D. Signal Preprocessing

We conducted the preprocessing of EEG signals using
a BBCI toolbox in MATLAB 2019a [29]. We utilized the
band—pass filter using a 2nd order zero–phase Butterworth
filter between 1 and 50 Hz and down—sampled the signals
from 1,000 to 100 Hz. We applied the independent component
analysis [30] for removing the contaminated components.
Each trial was segmented into 1 sec. data without overlap
[26]. 1,860 samples ([Level 1] 10 samples×40 trials + [Level
2] 10 samples×40 trials + [Level 3] 10 samples×40 trials +
[Rest after entering the numbers of words] 4 samples×120
trials + [Rest between 1st and 2nd sessions] 180 samples)
were obtained for each subject. Across all subjects, 18,600
samples were obtained. Since there is a difference in the
number of samples in the NS, LD, and HD, We solved
the problem of data unbalance according to the number of
samples in the LD with the smallest number of samples.

E. Proposed Model

We proposed the model to classify distraction levels using
EEG signals accurately. EEG signals have various features
such as spectral, spatial, and temporal information. Hence,
we designed the model with the principle of a hybrid deep
learning framework. The components of our proposed model
were five convolutional blocks and one LSTM block.

The five convolutional blocks were utilized for extracting
the significant spatial and spectral features from EEG signals.
The 1st, 2nd, and 3rd convolutional blocks have two layers, 1
× 5 filters, 1 × 1 stride, and a batch normalization layer. 4th

and 5th convolutional blocks have three layers, 5 × 1 and 3 ×
1 filters, respectively, 1 × 1 stride, and a batch normalization
layer. In addition, we applied the maximum– and average–
pooling layers for avoiding the overfitting problem. Also, we
used the exponential linear unit as an activation function.

LSTM network, which is one of the recurrent neural net-
works, is an effective network for recognizing mental states.
One LSTM block, which has two LSTM layers with 256 and
128 hidden units, respectively, was utilized for extracting the
significant temporal features from EEG signals.

The last part of our proposed model is the classification
block, which has three fully connected layers and a softmax
layer. The hidden units of 1st and 2nd fully connected layers
were 128 and 64, respectively. Also, the output of the 3rd

fully connected layer was fed to 3–way softmax.



TABLE I
COMPARISON OF THE CLASSIFICATION PERFORMANCES WITH THE

STATISTICAL ANALYSIS FOR CLASSIFYING DISTRACTION LEVELS AMONG
THE CONVENTIONAL MODELS AND THE PROPOSED MODEL.

Subject PSD–SVM [31] DeepConvNet [32] Proposed

S1 0.6831 0.7244 0.8128

S2 0.6806 0.7276 0.8489

S3 0.6184 0.7641 0.8403

S4 0.6999 0.7575 0.8374

S5 0.7305 0.7983 0.8401

S6 0.7177 0.8012 0.9088

S7 0.5804 0.7001 0.8235

S8 0.7198 0.7798 0.8554

S9 0.7087 0.7596 0.8612

S10 0.6582 0.7341 0.8082

Avg. 0.6797 0.7547 0.8437

Std. 0.0483 0.0331 0.0287

p–value <0.05 <0.05 -

III. RESULTS AND DISCUSSION

A. Performance Evaluation

We applied the five–fold cross–validation method for eval-
uating performance fairly. The dataset was randomly shuffled
and divided into five parts. The four parts were used as
the training set and the one part was used as the test set.
Table I presented the comparison of the performances for
classifying distraction levels among the conventional models
and the proposed model. The conventional models used for
performance comparison were the power spectral density–
SVM (PSD–SVM) [31] and DeepConvNet [32]. The PSD–
SVM is a model that uses PSD of the δ– (1–4 Hz), θ– (4–8
Hz), α– (8–13 Hz), and β–bands (13–30 Hz) as a feature
and SVM as a classifier. The DeepConvNet is one of the rep-
resentative models for decoding EEG signals. It consists of a
total of four convolutional blocks. The first convolutional block
consists of consecutive temporal and spatial convolutions,
and the remaining convolutional blocks consist of temporal
convolutions. Our model showed the highest average accuracy
of 0.8437 (±0.0287) compared to the conventional models.
In the case of our proposed model, S6 and S10 represented
the highest and the lowest performance, respectively, and the
values were 0.9088 and 0.8082, respectively. In addition, our
proposed model indicated the lowest–standard deviation of
0.0287 compared to the conventional models. It means the
highest stability across all subjects.

B. Neurophysiological Analysis from EEG Signals

We divided the brain region into temporal, central, and pari-
etal regions and the frequency into δ–, θ–, α–, and β–bands,
as shown in Fig. 2. We represented the scalp topographies
using EEG signals of the representative subject (S6). We used
the grand–average band power to plot the scalp topographies.
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Fig. 2. Scalp topographies according to the spectral bands (δ–, θ–, α–, and
β–bands) across the representative subject (S6). The locations of channels
with the statistical significance are indicated as grey ‘∗’ (*: p<0.05).

All EEG channels and each frequency band were used for
calculating the amplitude. The amplitude was significantly
different for each brain region and each spectral band. When
distraction level increased, the amplitude of the θ–band in the
centro–parietal region increased, and that of the α–band in the
central region increased. The grey ∗ indicates the locations of
channels with the statistical significance (p<0.05). However,
we could not find any particular spatial tendencies in the δ–
and β–bands.

IV. CONCLUSION

The pilot’s abnormal mental states are the most important
among the various reasons for flight accidents. Since it is
directly related to the safety of passengers, detection of the
pilots’ mental state with robust performance is necessary.
Detection of various mental states using EEG signals is
one of the important challenging issues in the BCI domain.
Especially, accurate classification of levels in–depth for mental
states helps to prevent accidents caused by human error. In
this paper, we proposed a model for classifying distraction
levels using EEG signals. Our proposed model could classify
distraction levels with robust performance compared to other
conventional models. Since we acquired distraction–based
EEG signals from highly disciplined pilots, we believe that
our study will help advance autonomous driving or flight.
To apply our study to the real–world environment, we will
develop our proposed model after acquiring more various
abnormal mental states-based EEG signals using our modified
experimental paradigms.
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